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Mixed Cryoglobulinemic Vasculitis (MCV) is a prominent extra-hepatic manifestation of Hepatitis C virus (HCV)
infection. HCV has been reported to cause B-cell disorders and genomic instability. Here, we investigated B-cell
activation and genome stability in HCV-MCV patients receiving the direct antiviral agent, Sofosbuvir, at multiple
centers in Egypt. Clinicalmanifestations inHCV-MCVpatientswere improved at the end of treatment (EOT), such
as purpura (100%), articularmanifestations (75%) and neuropathy (68%). Eighteen patients (56%) showed vascu-
litis relapse after EOT. BAFF andAPRILwere higher at EOT and continued to increase one year following treatment
onset. Chromosomal breaks were elevated at EOT compared to baseline levels and were sustained at 3 and 6
months post treatment. We report increased expression of DNA genome stability transcripts such as topoisom-
erase 1 and TDP1 in HCV-MCV patients after treatment, which continued to increase at 12 months from treat-
ment onset. This data suggest that B-cell activation and DNA damage are important determinants of HCV-MCV
treatment outcomes.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Hepatitis C virus (HCV) is infecting approximately 180 million peo-
ple worldwide. Risks of HCV infection do not only involve cirrhosis
and hepatocellular carcinoma but also extra-hepatic manifestations
[1, 2]. Mixed Cryoglobulinemic Vasculitis (MCV) is an important extra-
hepatic manifestation of HCV. Circulating mixed cryoglobulins
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complexes are detected in 40–50% of HCVpatients [3].MCV is a complex
immune disease that involves small and medium vessels of the skin,
kidneys, peripheral nerves and other tissues [4]. HCV induced MCV
(HCV-MCV) is a B-cell proliferative disorder that results frommonoclo-
nal B-cell expansion [5]. B-cell activating factor (BAFF) and A
proliferation-inducing ligand (APRIL) levels are elevated in several au-
toimmune disease such as systemic lupus erythematosus (SLE), rheu-
matoid arthritis, and Sjögren syndrome [6–12]. BAFF plays an
important role in activation of B lymphocytes and is increased in HCV-
MCV patients [13]. The role of APRIL in autoimmunity is not well iden-
tified and is yet to be investigated in HCV-MCV patients. Direct-acting
antivirals (DAAs) are proven to provide a high sustained virological
response (SVR) with minimal side effects. So far, several researchers
have studied the immunological and clinical outcomes in HCV-MCV
patients [14–18].

HCV infection can induce double-strand breaks (DSBs) and is able to
escape DNA repair mechanisms leading to cancer predisposition and
immune dysfunction [19]. HCV core proteins interfere with the normal
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Approximately 180 million individuals are infected with HCV.
Mixed Cryoglobulinemic Vasculitis (MCV) is an important extra-
hepatic manifestation of HCV; circulating mixed cryoglobulins
are detected in almost half of HCV patients. HCV-MCV involves
several organs and tissues in the body and results in high mortal-
ity andmorbidity. The introduction of treatments that directly tar-
gets HCVhas greatly improved outcomeof antiviral therapy. HCV-
MCV is a B-cell disorder that is linked to B-cell activation. B-cell
activating factors showed elevated levels in patients with autoim-
mune diseases, including MCV and correlated with poor IFN-
treatment response. HCV patients were reported to exhibit im-
paired DNA repair capacity and elevated DNA damage has also
been reported in patients with HCV extrahepatic manifestations.

Here, we hypothesized that there is an interplay between HCV
treatment, B cell activation and DNA damage response for the de-
termination of MCV outcomes as an autoimmune disease and for
the manifestation of HCV. We consequently report, for the first
time, an increased B-cell activation, DNA damage and expression
of genome stability markers. We also show that viral clearance
is not associated with sustained clinical outcome of HCV. Our
study highlights a potential role of B cell and DNA damage re-
sponse in driving patients' inflammation and determining treat-
ment outcomes. We suggest that inhibition of B-cell activating
and manipulating DNA repair capacity could be exploited as
novel approaches to improve the treatment outcomes of autoim-
mune diseases.
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activity of many DNA repair proteins such as ATM, NSB1, Chk-2, NEIL1
and P53 leading to inhibition of different DNA repair pathways and
impairment of cellular repair capacity [20]. HCV patients were reported
to have increased DNA damage levels [21] and patients-derived periph-
eral blood mononuclear cells (PBMCs) were impaired for base excision
repair (BER) activity whichwas restored with antiviral therapy [22]. Al-
though HCV-associated manifestations such as cirrhosis and hepatocel-
lular carcinoma seem to correlate with increased genomic damage [23],
accumulation of DNA damage in HCV-MCV patients has not been inves-
tigated so far. In the current study we set out to investigate the roles of
DNA damage response and B-cell activation in determining treatment
outcomes and long term efficacy of DAAs in HCV-MCV patients.
2. Patients and methods

2.1. Patients

This long term follow-up study initially included 34 Egyptian pa-
tients with HCV-MCV diagnosed according to the validated 2014 classi-
fication criteria ofMCV [24] but ended upwith 32patients. Two patients
were excluded from the study; the first patient developed hyperviscos-
ity syndrome diagnosed as Waldenstrom Macroglobulinemia and the
second developed an active nephritis which required a high dose of im-
munosuppression. Thirteen HCV patients without MCV and eight
healthy controls were included in the study. The study took place be-
tween 2014 and 2017 in several centers in Egypt and only patients
who were DAAs treatment naïve were included in the study. Patients
with other viral infection such as HIV or HBV, or other autoimmune dis-
eases were excluded from the study. The study was approved by the
local institutional research board and the institutional review board
for human subject research at National Hepatology and Tropical Medi-
cine Research Institute (NHTMRI) and was performed in compliance
with the Declaration of Helsinki. Informed consents were obtained
from all patients.

2.2. Antiviral therapy

Different DAAs antiviral therapy combinations were used for
patients treatment, according to Egyptian ministry of health HCV treat-
ment protocols. We used three different protocols 1) Sofosbuvir (SOF)
plus Ribavirin (RBV) and pegylated interferon (p-IFN) for 3 months (n
= 8), 2) SOF plus RBV for 6 months (n= 13), 3) SOF plus Daclatasvir
(DACLA) for 3 months (n = 11). Oral prednisolone at a maximum
dose of 30 mg/day was allowed while a washout period of at least 4
weeks was needed for higher doses of steroids and other immunosup-
pressive drugs except rituximab (6 months). After EOT, all patients
were followed up at 6 and 12months from treatment start to study clin-
ical and/or laboratory treatment outcomes. Relapses were studied in 23
out of 32 (72%) patients, whowere able to complete the one year follow
up. Disease activity was evaluated using the Birmingham Vasculitis Ac-
tivity Score version 3 (BVAS.v3) [25].

Clinical response was reported as complete response defined by
absence of any clinical manifestations (purpura, articular, peripheral
neuropathy, constitutional manifestations) at EOT, or partial response:
partial improvement (3 50% decrease, compared to baseline) of the clin-
ical manifestations, while no response was reported for patients who
did not show any improvement compared to their pretreatment status
[26].

Immunological response was reported as complete response (CR)
defined by normalized serum levels of rheumatoid factor (RF) and com-
plement (C4) and disappearance of circulating Cryoglobulins (CGs)
[26], partial response (PR) is a 3 50% decrease “comparedwith baseline”,
and no response (NR) was used when patients did not show any im-
provement compared to their pretreatment status. Owing to absence
of specific renal response criteria for MCV in the literature, we adopted
the American College of Rheumatology (ACR) response criteria for pro-
liferative and membranous renal disease in SLE clinical trials to assess
renal response at EOT on our patients [27].

2.3. Detection of immunological markers

Immunological markers including RF and C4were assayed by Neph-
elometry following established procedures (RF is positive if N15 IU/ml,
C4 is consumed if b10 mg/dl), using BN ProSpec; Siemens, Germany.
The CGs were obtained by cold precipitation (4 °C for one week) (con-
sidered positive if N1%). Briefly, blood samples were incubated at 37 °C
and centrifuged at a warm temp., obtained serum was then incubated
at 4 °C for 7 days until a whitish floccules or precipitate is visually ob-
served. To obtain cryocrit, serum samples were incubated at 4 °C for 7
days,whitish floccules or precipitates could be observed, thenWintrobe
tubeswere centrifuged at 4 °C, 2000 rpm for 10min. To confirm that the
observed precipitates are Cryoglobulins, Wimtrobe tubes were incu-
bated at 37 °C water bath for 30 min, the precipitates became translu-
cent and upon refrigeration for 30 min the whitish precipitates formed
again [28–31] . HCV-RNA was measured by real time polymerase
chain reaction (PCR) and anti-HCV antibodies were detected by
enzyme-linked immunosorbent assay (ELISA).

2.4. Quantification of DSBs in patients-derived PBMCs

PBMCs were isolated from fresh whole blood samples using Ficoll-
Hypaque density gradient centrifugation method. Cell viability was de-
termined by the trypan blue exclusion method. Double strand breaks
were quantified by neutral comet assay as described in [32]. Briefly,
freshly isolated PBMCs were suspended at a concentration of 2 × 105

in pre-chilled phosphate buffered saline (PBS) and mixed with an
equal volume of 1.3% low-gelling-temperature agarose (Sigma, Type
VII), the suspensionwas then immediately casted on pre-chilled frosted
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glass slides (Fisher) pre-coated with 0.6% agarose and were allowed to
set under cover slips on an ice-packs. After solidification, the slides
were incubated at 4 °C in the dark for 1–2 h in the lysing buffer (2.5 M
NaCl, 100 mM EDTA, 10 mMTris–base, pH 10), immediately before use
1% Triton X-100 and 10% dimethylsulphoxide (DMSO) were added to
the buffer and mixed for 20 min. After lysis, the slides were washed
three times with prechilled distilled water and incubated for 30 min in
prechilled electrophoresis buffer (300 mM sodium acetate, 100
mMTris–HCl, pH 8.3). Electrophoresis was conducted at 1 V/cm for 30
min, followed by neutralization in 400mMTris- HCl (pH 7.0). For strand
breaks quantification, DNA was stained with SybrGreen I nucleic
(Sigma) (1:10000, in PBS) for 30 min. Average tail moments from 100
cells/sampleweremeasured using Comet Assay IV software (Perceptive
Instruments, UK) [33].
2.5. RNA isolation

RNA was extracted from patients PBMCs using QIAamp RNA Blood
Mini Kit (Qiagen, Germany) according to themanufacturer instructions.
Briefly, 500 to 1500 μl of fresh whole blood were washed with EL buffer
with a single incubation on ice for 10–15 min, followed by centrifuga-
tion at 400 xg for 10min at 4 °C. Pelleted leukocytes were resuspended
in 600 μl RLT buffer (supplemented with β-Mercaptoethanol). Samples
were vortexed shortly and loaded directly to QIAshredder column and
centrifuged. An equal amount of ethanol was added to the flowthrough
and was run through the spin column followed by washing. RNA was
eluted in 30 μl RNAae/DNAae free water. RNA purity was assessed
(A260/A280) using a Nanodrop 1000 spectrophotometer (Thermo Sci-
entific, Massachusetts, USA). RNA was stored at−80 °C.
2.6. Reverse transcription

cDNA synthesis was performed using the High Capacity cDNA
Reverse Transcription kit (ABI), with random priming. A concentration
of 100–200 ng RNA/μl was used for cDNA preparation and the reaction
was performed according to the manufacturer instructions to a final re-
action volume of 100 μl. A simultaneous reverse transcription negative
control reaction (without the reverse transcription enzyme) was pre-
pared in parallel to the samples. cDNA was stored at−20 °C until use.
Table 1
Clinical and laboratory improvement at EOT

Clinical and laboratory data Before
treatment

End of
treatment

P value

Purpura N (%) (Number) 31(96.9%) 0(0%) b0.001
Articular manifestations N (%) 29(90.6%) 5 (15.6%) b0.001
Peripheral neuropathy N (%) 27(84.4%) 5(15.6%) b0.001
Constitutional manifestations
N (%)

32(100.0%) 5(15.6%) b0.001

Serum creatinine (mg/dl) 1.69 ± 0.72 1.31 ± 0.91 0.176
Creatinine clearance
(mg/ml/min)

66.71 ± 40.08 92.29 ± 50.67 0.204

24 h urinary protein (mg/day) 1528.20 ± 1665.15 367.60 ± 271.29 0.08
BVAS 13.47 ± 4.56 4.97 ± 2.79 b0.001
Serum RF (IU/ml) 382.45 ± 940.01 727.99 ± 3699.97 b0.001
Serum C4 (mg/dl) 7.85 ± 7.49 11.18 ± 8.06 0.011
Serum Cryoglobulins (%) 8.41 ± 9.06 2.94 ± 5.59 b 0.001

EOT, end of treatment; BVAS, Birmingham vasculitis activity score; RF, rheumatoid factor;
C4, Complement 4; N, Number of cases; mg/dl, milli- grams per deciliter; mg/ml/min,
milli- grams per milli-liter per minute; IU/ml, International unit per milli-liter; %, percent.
Bold denotes statistical significance with p value b 0.01.
2.7. Quantification of gene expression assays using taqman probe assays

The cDNA product from the RT reaction was used for TaqMan PCR
quantification in a final reaction volume of 20 μl, using the SensiFAST
Probe low-ROX master mix (BIOLINE, UK). A 20× mix of primers
and FAM-labeled probe for the human TOP1, TOP2B, TDP1, TDP2,
PARP1, XRCC1, APRIL and BAFF gene expression assays were
purchased through ABI's Gene Expression Assay-on-Demand
(Assay ID: Hs00243257_m1, Hs00172259_m1, Hs00217832_m1,
Hs01099017_m1, Hs00242302_m1, Hs00959834_m1, Hs00601664_g1,
Hs00198106_m1, Hs02758991_g1, respectively). Each assay contains
20× mix of primers and FAM-labeled probe. The housekeeping gene
GAPDH was used for normalization (Assay ID: Hs02758991_g1).
TaqMan qRT-PCR gene expression assays were conducted in 0.1 ml fast
tubes (Applied Biosystems) according to the manufacturer instructions,
in a final volume of 20 μL. All samples were run on Quantstudio
12KFlex (Applied Biosystems) RT-PCR system using standard settings
(thermal profile included 10min incubation at 95 °C followed by 40 cy-
cles of 95 °C for 15 s and 60 °C for 1 min). Each sample was run in tripli-
cates; Cycle Threshold (Ct) valueswere collected automatically using the
QuantStudio 12 k Flex software (Applied Biosystems). gene expression
values were calculated using comparative delta delta CT method, as re-
ported previously [34].
2.8. Statistical analysis

Data were coded and entered using the statistical package SPSS
(Statistical Package for the Social Sciences) version 24. Data were sum-
marized using mean, standard deviation, median, minimum and maxi-
mum in quantitative data and using frequency (count) and relative
frequency (%) for categorical data. For comparison of serial measure-
ments of each patient the non-parametric Wilcoxon signed rank test
was used [35]. For comparing categorical data, Chi square ( [2] test
was performed. Exact-test was used instead when the expected fre-
quency was b5 [36]. Correlations between quantitative variables used
Spearman correlation coefficient [37]. P-valuesb.05 were considered
statistically significant. Pretreatment and follow-up values were ana-
lyzed and compared using paired samples t-test, at 95% confidence in-
tervals were calculated using the exact formula. All analyses and
graphs were performed with Graph Pad Prism version 7 (GraphPad
Software, La Jolla California USA).
3. Results

3.1. DAAs antiviral therapy improves Cryoglobulin levels after therapy but
not on the long term

Our study included 32 patients, 25 females (78.1%) and 7 males
(21.9%) with a mean age of (54.9 ± 9.7) years. Fourteen patients had
liver cirrhosis (43.8%), all of whom were Child A class. All patients
(100%) showed negative HCV-RNA as detected by RT-PCR after one
month of treatment and throughout the follow up period. We observed
anoverall significant improvement inmost of the clinical and laboratory
parameters of MCV including purpura, articular, peripheral neuropathy
and constitutional manifestations such as BVAS, C4, RF and Cryocrit at
EOT. Serum levels of creatinine, creatinine clearance, and 24 h urinary
proteins were also improved, although non-significantly. All the ob-
served improvements were independent of treatment protocols
(Table 1).

Overall, HCV-MCV patients showed an initial improvement in clini-
cal and laboratory responses, 87.4% and 81.6%, respectively, at EOT
and BVAS also improved by N50% in 87.5% of the patients. CGs levels
were measured in all patients at four points; baseline (before treat-
ment), 3 months, 6 months and 12 months from treatment start. Base-
line levels of CGs were (8.4% ± 1.6) and decreased to (3.19% ± 1.1),
(1.58% ± 0.32) and, (1.82% ± 0.5) by wk. 12, 24 and 48, respectively.
Overall, CG levels improved in 16/32 patient (50%) at EOT and 7/32 pa-
tients (22%) relapsed after completing the antiviral therapy, either at 3



Table 2
Relapses of clinical and laboratory parameters of HCV-MCV

EOT

Relapses at 1 year follow up Total N P value
Deterioration

Count %

Purpura 22 1 4.5% –
Articular manifestations 17 5 29.4% 0.009
Peripheral neuropathy 15 6 40.0% 1
Constitutional manifestations 19 5 26.3% 0.006
Serum RF (IU/ml) 18 5 27.8% 1
Serum C4 (mg/dl) 17 2 11.8% 0.270
Serum Cryoglobulins (%) 20 5 25.0% 0.002

HCV-MCV, Hepatitis C virus inducedMixed Cryoglobulinemic Vasculitis; EOT, end of ther-
apy; RF, rheumatoid factor; C4, Complement 4; %, percent.
Bold denotes statistical significance with p value b 0.01.

Fig. 2. DNA damage level, measured using single cell electrophoresis (comet assay),in
fresh PBMCs isolated from controls (healthy individuals) (n=9) and HCV-MCV patients
at pretreatment (n= 32), EOT (end of treatment) (n = 32), month 6 (n= 32) and 12
months (n = 23). Data is reported as mean ± SEM. * = p b .05, ** = p b .005. HCV,
hepatitis C virus; EOT, end of treatment; HCV-MCV, Hepatitis C virus induced Mixed
Cryoglobulinemic Vasculitis; N, Number of cases.
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months or 6 months. At end of follow up period (one year after EOT),
five patients (29.4%) relapsed for articular manifestation (P b 0.005),
and five patients (26.3%) also relapsed for constitutional manifestations
(P b 0.005), and CGs levels showed a significant relapse in 5 patients
(25.0%, P b 0.002) (Table 2).
3.2. B cells are hyperactive after receiving DAAs antiviral therapy

We measured the expression of two main B cell factors, BAFF
and APRIL in HCV patients receiving different SOF treatment combi-
nations with and without MCV at different time points, before, at
EOT, and at two points after treatment (6 and 12 months). HCV pa-
tients showed increased BAFF expression levels from 3.29± 1.1 (be-
fore treatment) to 7.3 ± 5.9 (at EOT) (p N 0.05). HCV-MCV patients
showed a mild increase in BAFF levels at EOT from 1 (normalization
point) to 1.22± 0.37, p N 0.05. At 6 and 12months follow up points,
BAFF levels spiked to 1.91 ± 0.7, p b 0.05 and 6.08 ± 2.7, p b 0.005,
as compared to their baseline levels (Fig. 1A). The other B cell
marker, APRIL, displayed an increased expression at end of treat-
ment 7.03 ± 3.3 compared to baseline levels of 5.93 ± 1.8 in HCV
patients, p N 0.05. In HCV-MCV patients, APRIL expression increased
at EOT to 2.58± 0.7, which is significantly higher than its pretreat-
ment level (p b 0.05). APRIL expression continued to increase at 6
month (2.83± 1.4) and 12months (3.77± 1.5), P b 0.005 (Fig. 1B).
The increased expression of those two markers indicates a continu-
ous activation of B cells even after completing antiviral therapy and
achieving viral eradication.
Fig. 1. B cellmarkers BAFF and APRIL expression levels inHCV patients with andwithout cryoglo
levelswere higher in cryoglobulinemia and HCV patients compared to patients without cryoglo
(n=32), at the end of treatment (EOT) (n=32), 6 months (n=19) and 12months (n=23)
APRIL, A proliferation-inducing ligand.
3.3. Increased chromosomal breaks in patients receiving Sofosbuvir based
treatments

We employed the single-cell gel electrophoresis (comet assays) to
evaluate DNA damage levels in PBMCs derived fromHCV-MCV patients.
DNA damage levels were also measured in the control groups, HCV pa-
tients without MCV and apparently healthy individuals. DNA damage
levels were assessed at pretreatment (wk0), EOT, 6 and 12 months.
Healthy individuals and HCV patients without MCV showed similar
damage levels. We did not find a difference in baseline damage levels
between HCV patients with and without MCV (P N 0.05). HCV-MCV pa-
tients showed significantly increased damage levels at EOT (2.15 ± 0.2),
compared to pretreatment levels (1.28± 0.1; P b 0.0005). Importantly,
the DNA damage levels at six months were maintained at similar levels
compared to those at EOT (2.10 ± 0.2). However, at 12 months, DNA
damage levels showed a remarkable reduction (1.07 ± 0.2) and
returned back to a baseline levels observed before antiviral therapy
(Fig. 2).
3.4. Increased activity of genome instability markers after DAAs therapy

Wemeasured the expression levels of six DNA damage repair genes.
TOP1, TOP2, TDP1, TDP2, XRCC1 and PARP1, which play key roles in a va-
riety of DNA metabolism and repair processes. Consistent with the in-
creased DNA damage levels, HCV-MCV patients showed reduced
expression for all measured repair genes compared to HCV patients
without MCV, at both points (before and at EOT). The expression of
bulinemia. Gene expressionwas carried out as described in the last figure. BAFF and APRIL
bulinemia. After treatment BAFF and APRIL levels continued to increase until 12 months, in
. Data is reported as mean± SEM, * = p b .05, **= p b .005. BAFF, B-cell activating factor;



Fig. 3. Increased expression of major DNA instability markers in HCV-MCV after receiving DAAs therapy. At baseline, HCV-MCV patients are showing reduced expression of DNA repair
proteins but at EOT their activity starts to improve. At 3 and 6 months from treatment start the activity of repair proteins increases to reach its peak at 12 months. RNA was isolated
from patients leucocytes and expression levels of six repair genes was measured at the indicated points using taqman probe assays and GAPDH was used a house keeping gene, HCV
mRNA levels were normalized to health individuals and patients post treatment levels were normalized to their pretreatment levels. Repair genes expression levels were calculated
using delta deltact method in, before treatment (n= 32), at the end of treatment (EOT) (n= 32), 6 months (n=19) and 12months (n= 23). Data is reported as mean± SEM, * =
p b .05, ** = p b .005. HCV-MCV, Hepatitis C virus induced Mixed Cryoglobulinemic Vasculitis; TDP1, Tyrosyl- DNA phosphodiesterase 1; TOP1, Topoisomerase 1; PARP1, poly (ADP-
ribose) polymerase 1; XRCC1, X-ray repair cross-complementing protein 1; N, Number of cases.
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DNA repair genes showed a high level at EOT, after viral eradication, and
subsequently their expression continued to increase at 6 and 12
months. Furthermore, DNA single-strand break repair markers such as
TOP1, TDP1 and XRCC1 showed higher expression levels at EOT, 6 and
12months follow up, compared to pre-treatment levels (Fig. 3).

4. Discussion

The introduction of DAAs had greatly alteredHCV therapy in the past
few years [38]. Most of the available studies included patients receiving
SOF-based treatment combinations [14, 15, 17] but there is a lack of fol-
low up studies that can rule out the efficacy and safety of DAAs treat-
ment regimen. HCV-MCV results from B-cell expansion and B cell
activating factors such as BAFF and APRIL, which are predicted to play
a role in disease progression and treatment outcomes [6–11]. HCV has
been reported by several studies to interfere with DNA damage re-
sponse [19, 20, 39–41]; also increased DNA damage levels were re-
ported in patients with HCV-related manifestations such as cirrhosis
and carcinoma [23]. Here we report, for the first time, the effect of SOF
based treatment combinations on B cell activation, DNA damage accu-
mulation and genome stability markers in the landscape of HCV-MCV
patients. We also evaluated their long term efficacy in reducing MCV-
related immunological burden in HCV-MCV patients.

Our data show that constitutional manifestations (100%), purpura
(96.9%), articular manifestations (90.6%), peripheral neuropathy
(84.4%) and renal manifestations (21.9%) to be the most frequent clini-
calmanifestations of HCV-MCV. This is consistentwith rates reported by
other groups [18, 42]. Since HCV-MCV is an antigen driven disease, viral
eradication is expected to be themost effective therapy [43]. After initial
improvement at EOT, as shown by the significant reduction in BVAS
score (From 13.47 ± 4.56 to 4.97 ± 2.79, P b 0.001) and SVR through
the one year follow up, MCV relapses were significantly evident in our
patients, as shown by the articular and constitutional manifestations,
and elevated serum cryoglobulins (Table 2). The observed variation in
the clinical response to antiviral therapy showed by our patients
(Table 1) does not seem to be dependent on viral clearance only. This
variation could be attributed to the difference in viral genotypes, genetic
and environmental factors. Another explanation could be the difference
in duration between viral infection and the onset of viral infection or
MCV manifestations, especially that the efficacy of IFNα was attributed
to its anti-proliferative and immune-modulatory properties in addition
to its antiviral activity [44]. Moreover, the high rates of DAAs SVR, N90%,
were argued not to achieve equivalent rates in HCV-MCV patients,
maybe due to their inability to suppress the immune-mediated process
once it has been triggered [45]. Despite the previous findings, patients
who received IFN treatment regimens did not showan improved immu-
nological response or lower relapse rates compared to patients who re-
ceived interferon free regimens (P N 0.05). Overall, 12.6% of the patients
were immunological non-responders and suffered a relapse rate of
24.6% at one year follow up,which shedsmore light into the importance
of long follow-ups after completing antiviral therapy.

BAFF and APRIL activity is under a tight cellular control in order to
maintain B-cell homeostasis [46]. Dysregulated BAFF and APRIL expres-
sion is related to different autoimmune diseases such as SLE and
Sjogren's syndrome [6, 10, 47, 48]. In mice, ectopic expression of BAFF
caused excessive B-cell expansion, BAFF transgenic mice suffered dys-
regulated immunity and exhibited circulating autoantibodies [49, 50].
At EOT, BAFF levels were higher in HCV-MCV patients compared to pa-
tients with HCV infection only; decreased BAFF levels are associated
with better IFN treatment outcome [51, 52]. Our results showed an in-
creased expression of BAFF and APRIL in HCV-MCV patients at EOT com-
pared to their pre-treatment levels. BAFF and APRIL levels continued to
increase throughout the follow up points (Fig. 1). These high levels of
BAFF and APRIL seemed to stimulate B cell survival and could be an
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explanation to the recurrence or relapse of cryoglobulinemia, which
indicates that despite the observed initial improvement in
cryoglobulinemia and viral clearance self-reactive B cells remained ac-
tive. Blocking BAFF signaling was suggested to attenuate SLE in
disease-prone mice and enhance mice survival [10, 53] and our results
recommend using BAFF and APRIL blocking agents to improve MCV
treatment outcome after antiviral therapy.

Although the interplay between HCV infection and genomic stability
has been reported by few studies, the role of DNA repair in HCV-MCV
patients receiving SOF treatment remains largely unknown. HCV repli-
cation induces oxidative stress resulting in DNA damage [39, 40],
which is thought to be playing a pathogenic role in HCV infection [54].
HCV has also been reported to impair multiple DNA repair activities,
leading to chromosomal rearrangements and deletions, which results
in cancer predisposition and immune dysfunction [19]. In addition,
HCV core proteins inhibit the repair function of p53 in HCV related car-
cinoma [41]. Increased DNA breaks were observed in HCV infected
HepG2 cells as shown by high γH2AX [55]. In the light of this, we ex-
pected HCV-MCV patients to display a higher DNA damage levels than
patients withoutMCV. However, we did not find a difference in baseline
DNA damage levels between both groups (P N 0.05). In contrast, and to
our surprise, we found an elevated DNA breaks at EOT, in HCV-MCV pa-
tients compared to pretreatment levels (2.15 ± 0.21 and 1.28± 0.13, P
b 0.005). This increased DNA damage levels persisted for 6 months and
returned to normal levels only after 12months. These results are consis-
tent with previous reports showing high rate of tumor recurrence in pa-
tients treated with DAAs and failure of DAAs to reduce hepatocellular
carcinoma (HCC) in HCV patients [56–58]. It is worth noting that an-
other study did not find higher carcinoma risk among patients receiving
DAAs [59]. Compared to HCV patients, pretreatment and EOT levels of
DNA repair genes were reduced suggesting an inhibition of DNA repair
in HCV-MCV patients. After EOT, repair genes expression increased to
show its highest level at 12 months, the point at which most of HCV-
MCV showed high relapse rate. In this regard, our findings of reduced
baseline topoisomerases 1 and 2 (TOPs) expression in MCV patients
are consistent with other studies of decreased TOP1 activity in patients
with autoimmune diseases [60]. Unfaithful TOPs activity is involved in
developing several human diseases [61–63]. Furthermore, TOP1 inhibi-
tion was suggested to suppress microbial activated genes [64] and thus
our data suggest a role for TOPs in driving host inflammation in the con-
text of HCV-MCV.

PARP1 is a DNA damage sensor that regulates transcription in sev-
eral immune cells and affects their stimulatory ability and antibody pro-
duction [65]. PARP1 deficient cells are compromised for the genome
master kinase caretaker, ataxia telangiectasia mutated (ATM) activity
and shows reduced repair in response to irradiation [66]. Insufficient
ATM activity leads to DNA damage accumulation and T-cells death
[67]. PARP1 inhibition decreases pro-inflammatory cytokines secretions
and enhances autoimmune disease outcomes [68]. Consistent with this,
our results suggest that PARP1 is implicated in another autoimmune
disease, MCV. TDPs (TDP1 and TDP2) function to release trapped TOPs
from the DNA [69, 70]. Interestingly, simultaneous inhibition of TOP1
and TDP1 was suggested as a promising approach for SLE treatment
[71]. Although they are playing an important role in removing TOPs co-
valent complexes, which are implicated in several immune diseases,
TDPs role remains poorly studied in autoimmune diseases and viral in-
fections. Our results suggest that TDPs could be valuable tools to deter-
mine the clinical outcome of MCV after antiviral therapy. XRCC1
functions as a scaffold for several repair proteins [72]. XRCC1 also partic-
ipates alongwith TDP1 in repairing TOP1-DNA covalent complexes [73].
Polymorphisms in XRCC1 gene have been linked to SLE susceptibility
and clinical symptoms [74, 75]. Overall, the high expression of DNA re-
pair genes that are involved in driving host inflammation could be im-
plicated in long- term cryoglobulinemia relapses. Our data is
consistent with work by Obata et al., 2017 showing complete remission
of MCV after receiving DAA therapy without immunosuppressant,
which was followed by cryoglobulinemia recurrence after 17 months
from treatment initiation [76].

In conclusion, this work reinforces the utility of DAAs as promising
treatments for HCV-MCV with proven efficacy and safety. Notably, our
patients displayed cryoglobulinemia relapses despite viral clearance.
This work suggests that increased B cell activation and DNA damage
are important determinants of treatment outcome in HCV-MCV pa-
tients. The elevated B cell activation and reduced DNA repair capacity
followingDAAs treatment highlight the need for comprehensive studies
that could better address the long-term safety of DAAs therapy, espe-
cially with the increasing reports of increased hepatocellular carcinoma
rates in HCV patients following DAAs therapy. Our data show that the
cellular DNA damage response is an important determinant of not
only the outcome of HCV infection but also its related pathogenesis.
We suggest that pharmacologic manipulation of the DNA repair pro-
teins could be a promising approach for improving treatment outcomes
of HCV and MCV.
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