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Human and animal tissues consist of heterogeneous cell types that organize and interact in
highly structuredmanners. Bulk and single-cell sequencing technologies remove cells from
their original microenvironments, resulting in a loss of spatial information. Spatial
transcriptomics is a recent technological innovation that measures transcriptomic
information while preserving spatial information. Spatial transcriptomic data can be
generated in several ways. RNA molecules are measured by in situ sequencing, in situ
hybridization, or spatial barcoding to recover original spatial coordinates. The inclusion of
spatial information expands the range of possibilities for analysis and visualization, and
spurred the development of numerous novel methods. In this review, we summarize the
core concepts of spatial genomics technology and provide a comprehensive review of
current analysis and visualization methods for spatial transcriptomics.
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1 INTRODUCTION

Quantification of gene expression has important applications across various aspects of biology.
Understanding the spatial distribution of gene expression has helped to answer fundamental
questions in developmental biology (Asp et al., 2019; Rödelsperger et al., 2021), pathology
(Maniatis et al., 2019; Chen et al., 2020), cancer microenvironment (Berglund et al., 2018;
Thrane et al., 2018; Ji et al., 2020; Moncada et al., 2020), and neuroscience (Shah et al., 2016;
Moffitt et al., 2018; Close et al., 2021). Two widely used methods for gene expression quantification
are fluorescent in situ hybridization (FISH) and next-generation sequencing. With FISH,
fluorescently-labeled RNA sequences are used as probes to identify its naturally occurring
complementary sequence in cells while preserving the spatial location of the target sequences
(Schwarzacher and Heslop-Harrison, 2000). Traditionally, the number of target sequences
simultaneously identified by in situ hybridization is restricted by the number of fluorescent
channels, making this method suitable for targeted gene detection. On the other hand, next-
generation sequencing methods use a shotgun approach to quantify RNAmolecules across the entire
transcriptome (Metzker, 2010). To achieve transcriptome-wide quantification, RNA must be first
isolated and purified, which removes RNA molecules from their native microenvironment. Even
with single-cell sequencing, where the cellular origin of RNA molecules is preserved, spatial
information of cells can only be inferred but not directly measured (Shapiro et al., 2013; Gawad
et al., 2016).

Various approaches have been made to measure gene expression while preserving spatial
information. Tomo-seq applied the principle of tomography to measure spatial transcriptomic
information in 3D. In tomo-seq, tissue samples are sliced by cryosection and measured with RNA-
seq. Each measurement corresponds to the average gene expression within a slice. Measurements are
taken along multiple axes to reconstruct pixel-wise 3D gene expression information. (Junker et al.,
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2014). LCM-seq isolates single cells with laser capture microscopy
(LCM) and measures captured cells with single-cell RNA-
sequencing. LCM can capture cells of desired types and with
specific spatial locations of the tissue specimen (Nichterwitz et al.,
2016). While these methods retain the spatial location of RNA-
seq measurements, they suffer from high labor costs and
incomplete spatial coverage. In this review, we cover recent
advances in spatial transcriptomic methods that attempt to
address these challenges. In addition, we provide a
comprehensive review of analysis and visualization techniques
for spatial transcriptomic datasets.

The following sections are organized as follows (Figure 1).
Section 2 discusses the latest developments in experimental
spatial transcriptomic technologies. Section 3 discusses
preprocessing of spatial transcriptomic data, an essential step
prior to any analysis or visualization. Section 4 dissects methods
whose inputs are gene expression without spatial coordinates.
This includes dimensionality reduction, clustering, and cell-type
identification. Section 5 describes methods whose inputs are gene
expression combined with spatial coordinates. This includes
identification of spatially coherent gene expression patterns
and identification of spatial domains. Section 6 describes
methods that analyze the interaction between cells or genes.
All methods reviewed are listed in Table 1. This includes the
identification of cell-to-cell communication and gene interaction.
We note that other reviews on spatial transcriptomic technology

(Dries et al., 2021a) have been published during the peer review of
this article.

2 SPATIAL TRANSCRIPTOMIC
TECHNOLOGIES

Integration of spatial information with transcriptome-wide
quantification has given rise to the emerging field of spatial
transcriptomics. Currently, spatial transcriptome quantification
falls into three broad categories (Table 2). First, spatial barcoding
methods ligate oligonucleotide barcodes with known spatial
locations to RNA molecules prior to sequencing (Ståhl et al.,
2016; Rodriques et al., 2019; Vickovic et al., 2019; Liu et al., 2020;
Chen et al., 2021; Cho et al., 2021; Stickels et al., 2021). Both
barcodes and RNA molecules are jointly sequenced, and spatial
information of sequenced RNA molecules can be recovered from
associated barcodes. Second, in situ hybridization methods
coupled with combinatorial indexing can vastly increase the
number of RNA species identified (Lubeck et al., 2014; Chen
et al., 2015; Moffitt et al., 2016; Eng et al., 2019). The latest in situ
hybridization methods can detect around 10,000 RNA species
from a given sample (Eng et al., 2019). Third, in situ sequencing
method uses fluorescent-based direct sequencing to read out base
pair information from RNA molecules in their original spatial
location (Lee et al., 2014; Wang et al., 2018).

FIGURE 1 | An overview of spatial transcriptomic tasks. (A) Spatial transcriptomic datasets map gene expression measurements to their respective locations. (B) A
spatial transcriptomic dataset can be analyzed in gene expression space, irrespective of spatial locations. Tasks such as clustering and cell-type identification fall into this
category. (C) Spatial information can be used jointly with gene expression to detect spatial expression patterns and spatial domains. (D) These two sources of
information can also be used to detect cell-cell and gene-gene interactions.
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TABLE 1 | Current analysis and visualization tools for spatial transcriptomic datasets (accession date: 12/22/2021).

Task Tool Inputs Description Language Availability

Preprocessing Space Ranger Microscope images and
FASTQ files

Space Ranger is an analysis pipeline for
alignment, tissue and fiducial detection,
barcode/UMI counting, and feature-
spot matrix generation.

Bash
and GUI

https://support.10xgenomics.com/
spatial-gene-expression/software/
pipelines/latest/what-is-space-ranger

Scran (2016); Lun
et al. (2016)

Gene expression Scran uses pool-based and
deconvoluted cell-based size factors for
single-cell gene expression
normalization.

R http://bioconductor.org/packages/
release/bioc/html/scran.html

SCNorm (2017);
Bacher et al. (2017)

Gene expression SCNorm uses double quantile
regression-based model for gene-group
normalization.

R https://www.bioconductor.org/
packages/release/bioc/html/SCnorm.
html

Clustering K-means Gene expression K-means iteratively assigns
observations to the cluster with the
nearest left.

R and
Python

R: https://www.rdocumentation.org/
packages/stats/versions/3.6.2/topics/
kmeans; Python: https://scikit-learn.org/
stable/modules/generated/sklearn.
cluster.KMeans.html

Gaussian mixture
model

Gene expression GMM is similar to K-means but softly
assigns observations to clusters based
on the Gaussian distribution.

R and
Python

R: https://cran.r-project.org/web/
packages/ClusterR/vignettes/the_
clusterR_package.html; Python: https://
scikit-learn.org/stable/modules/mixture.
html

hierarchical clustering Gene expression Hierarchical clustering iteratively merges
closest observations.

R and
Python

R: https://www.rdocumentation.org/
packages/stats/versions/3.6.2/topics/
hclust; Python: https://scikit-learn.org/
stable/modules/clustering.
html#hierarchical-clustering

Louvain (2008);
Blondel et al. (2008)

Gene expression Louvain performs community detection
within networks by iterative optimization
of modularity.

R and
Python

R: https://igraph.org/r/doc/cluster_
louvain.html; Python: https://github.
com/vtraag/louvain-igraph

Leiden (2019); Traag
et al. (2019)

Gene expression Leiden is a variant of the Louvain
algorithm that guarantees well-
connected communities.

R and
Python

R: https://cran.r-project.org/web/
packages/leiden/; Python: https://
github.com/vtraag/leidenalg

SC3 (2017); Kiselev
et al. (2017)

Gene expression SC3 performs consensus clustering of
single-cell RNA-seq data.

R http://bioconductor.org/packages/
release/bioc/html/SC3.html

SIMLR (2017); Wang
et al. (2017)

Gene expression SIMLR is a multi-kernel learning
approach for single-cell RNA-seq
clustering.

R and
MATLAB

MATLAB: https://github.com/
BatzoglouLabSU/SIMLR; R: https://
www.bioconductor.org/packages/
release/bioc/html/SIMLR.html

Cell-specific
marker genes

scran (2016); Lun
et al. (2016)

Gene expression Scran identifies consistently up-
regulated genes through pairwise
comparisons between clusters.

R https://bioconductor.org/packages/
devel/bioc/vignettes/scran/inst/doc/
scran.html#6_Identifying_marker_genes

scGeneFit (2021);
Dumitrascu et al.
(2021)

Gene expression ScGeneFit is a label-aware compressive
classification method to select
informative marker genes.

Python https://github.com/solevillar/scGeneFit-
python

Cell-type
identification

scmap (2018);
Kiselev et al. (2018)

Gene expression Scmap projects single-cell to
References data sets with an
approximate k-nearest-neighbor
search.

R http://bioconductor.org/packages/
release/bioc/html/scmap.html; Web
version: https://www.sanger.ac.uk/tool/
scmap/

SingleR (2019); Aran
et al., 2019

Gene expression SingleR iteratively calculates pairwise
correlation across single cells and
remove lowly correlated cell type for
noise control.

R https://github.com/dviraran/SingleR

Cell-ID (2021); Cortal
et al. (2021)

Gene expression of
References and target
single-cell datasets

Cell-ID performs multiple
correspondence analysis (MCA) based
gene signature extraction and cell
identification

R https://bioconductor.org/packages/
devel/bioc/html/CelliD.html

JSTA (2021); Littman
et al. (2021)

in situ hybridization
dataset

JSTA is a deep-learning-based cell
segmentation and type annotation
method by iteratively adjusting the
assignment of boundary pixels based on
the cell type probabilities for each pixel.

Python https://github.com/wollmanlab/JSTA;
https://github.com/wollmanlab/PySpots

(Continued on following page)
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Several metrics need to be considered when selecting a method
for a specific application (Table 2). Methods employing in situ
hybridization provide subcellular resolution. Leveraging super-
resolution microscopy, in situ hybridization methods can achieve

a resolution of ∼10nm, sufficient to distinguish single RNA
molecules (Schermelleh et al., 2019). In addition, in situ
methods require no PCR amplification of cDNA, thus
avoiding amplification bias. However, the number of RNA

TABLE 1 | (Continued) Current analysis and visualization tools for spatial transcriptomic datasets (accession date: 12/22/2021).

Task Tool Inputs Description Language Availability

Dimensionality
reduction

Principal component
analysis

Gene expression PCA identifies orthogonal vectors that
maximize the variance of projections
from data points.

R and
Python

R: https://www.rdocumentation.org/
packages/stats/versions/3.6.2/topics/
prcomp; Python: https://scikit-learn.org/
stable/modules/generated/sklearn.
decomposition.PCA.html

t-SNE (2008); Van der
Maaten and Hinton.
(2008)

Gene expression T-SNE iteratively refines projections in
the low dimensional space to match
pairwise distances in the high dimension
space.

R and
Python

R: https://cran.r-project.org/web/
packages/Rtsne/; Python: https://scikit-
learn.org/stable/modules/generated/
sklearn.manifold.TSNE.html

UMAP (2018);
McInnes et al. (2018)

Gene expression UMAP is similar to t-SNE but faster and
better preserves high dimensional
structure.

R and
Python

R: https://cran.r-project.org/web/
packages/umap/index.html; Python:
https://umap-learn.readthedocs.io/en/
latest/

Spatially coherent
genes

SpatialDE (2018);
Svensson et al.
(2018)

Gene expression +
spatial coordinates

SpatialDE uses gaussian process
regression to decompose variability into
spatial and non-spatial components.

Python https://github.com/Teichlab/SpatialDE

Trendsceek (2018);
Edsgärd et al. (2018)

Gene expression +
spatial coordinates

Trendsceek uses marked point
processes to identify spatial expression
patterns.

R https://github.com/edsgard/trendsceek

Spark (2018); Sun
et al. (2020)

Gene expression +
spatial coordinates

Spark is a generalized linear spatial
model to identify spatial expression
patterns.

R https://xzhoulab.github.io/SPARK/

Spatial domains Zhu et al. (2018); Zhu
et al. (2018)

Gene expression +
spatial coordinates

Zhu et al. uses a hidden Markov random
field to compare gene expression of
neighboring cells to identify coherent
expression patterns.

R and
Python

R: https://bitbucket.org/qzhudfci/
smfishhmrf-r/src/master/; Python:
https://bitbucket.org/qzhudfci/
smfishhmrf-py/src/master/

SpaGCN (2021); Hu
et al. (2021b)

Gene expression +
spatial coordinates +
histology image

SpaGCN is a graph-convolutional-
network-based method to jointly identify
spatial domains and spatially variable
genes.

Python https://github.com/jianhuupenn/
SpaGCN

Spot
deconvolution

DSTG (2021); Song
and Su (2021)

Gene expression +
spatial coordinates

DSTG builds a graph consisting of real
and pseudo spatial transcriptomic data
and apply graph convolutional network
to predict real data’s cell type
composition with help from pseudo
data’s label.

Python https://github.com/Su-informatics-lab/
DSTG

Super-resolution BayesSpace (2021);
Zhao et al. (2021)

Gene expression +
spatial coordinates

BayesSpace is a Bayesian model to
leverage neighborhood information to
enhance resolution.

R http://www.bioconductor.org/
packages/release/bioc/html/
BayesSpace.html

Cell-cell
interaction

SpaOTsc (2020);
Cang and Nie (2020)

Gene expression +
spatial coordinates

SpaOTsc uses structured optimal
transport between distribution of sender
and receiver cells to identify cell-cell
communication.

Python https://github.com/zcang/SpaOTsc

Receptor-ligand
interaction

GCNG (2020); Yuan
and Bar-Joseph,
(2020)

Gene expression +
spatial coordinates

GCNG is a graph convolutional neural
network to encode the spatial
information as a graph and to predict
whether a gene pair will interact.

Python https://github.com/xiaoyeye/GCNG

Integrative Seurat (2018);
Waltman and Van
Eck. (2013)

Gene expression +
spatial coordinates

Seurat is an R package for integrative
single-cell transcriptomic analysis.

R https://cran.r-project.org/web/
packages/Seurat/index.html

Giotto (2021); Dries
et al. (2021b)

Gene expression +
spatial coordinates

Giotto is an R package for integrative
spatial transcriptomic analysis.

R https://rubd.github.io/Giotto_site/

Scanpy (2018); Wolf
et al. (2018)

Gene expression +
spatial coordinates

Scanpy is a Python package for
integrative single-cell transcriptomic
analysis.

Python https://scanpy.readthedocs.io/en/
latest/

Squidpy (2021); Palla
et al. (2021)

Gene expression +
spatial coordinates

Squidpy is a Python package for
integrative spatial transcriptomic
analysis.

Python https://squidpy.readthedocs.io/en/
stable/

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7852904

Liu et al. Analysis and Visualization for Spatial Transcriptomics

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/prcomp
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://cran.r-project.org/web/packages/Rtsne/
https://cran.r-project.org/web/packages/Rtsne/
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://cran.r-project.org/web/packages/umap/index.html
https://cran.r-project.org/web/packages/umap/index.html
https://umap-learn.readthedocs.io/en/latest/
https://umap-learn.readthedocs.io/en/latest/
https://github.com/Teichlab/SpatialDE
https://github.com/edsgard/trendsceek
https://xzhoulab.github.io/SPARK/
https://bitbucket.org/qzhudfci/smfishhmrf-r/src/master/
https://bitbucket.org/qzhudfci/smfishhmrf-r/src/master/
https://bitbucket.org/qzhudfci/smfishhmrf-py/src/master/
https://bitbucket.org/qzhudfci/smfishhmrf-py/src/master/
https://github.com/jianhuupenn/SpaGCN
https://github.com/jianhuupenn/SpaGCN
https://github.com/Su-informatics-lab/DSTG
https://github.com/Su-informatics-lab/DSTG
http://www.bioconductor.org/packages/release/bioc/html/BayesSpace.html
http://www.bioconductor.org/packages/release/bioc/html/BayesSpace.html
http://www.bioconductor.org/packages/release/bioc/html/BayesSpace.html
https://github.com/zcang/SpaOTsc
https://github.com/xiaoyeye/GCNG
https://cran.r-project.org/web/packages/Seurat/index.html
https://cran.r-project.org/web/packages/Seurat/index.html
https://rubd.github.io/Giotto_site/
https://scanpy.readthedocs.io/en/latest/
https://scanpy.readthedocs.io/en/latest/
https://squidpy.readthedocs.io/en/stable/
https://squidpy.readthedocs.io/en/stable/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


species detected by in situmethods is limited by the indexing scheme.
The current detection limit is∼10,000 genes but will likely improve in
the future. Furthermore, the area examined by in situ methods is
limited by the field-of-view of the microscope objective lens. In
contrast, spatial barcoding followed by shotgun sequencing can in
principle sample the whole transcriptome. This is ideal if the target
molecules are unknown a priori. Spatial barcoding can also examine
larger tissue areas, making it ideal for larger samples such as tissue
slices from the brain. However, the density of measurement spots
limits the spatial resolution of current spatial barcoding methods,
ranging from multicellular to subcellular. In addition, shotgun
sequencing inevitably suffers from PCR amplification bias (Aird
et al., 2011), as well as “dropout” when sequencing read depth is
insufficient (Kim et al., 2020). Thus far, we have provided an overall
picture of different spatial transcriptomic methods and their
characteristics. Because this review focuses on analysis and
visualization of spatial transcriptomics, readers who wish to
understand the experimental details can refer to comprehensive
reviews elsewhere (Crosetto et al., 2015).

3 PREPROCESSING

Spatial transcriptomic datasets add a new dimension to
transcriptomic analyses. Spatial coordinates of cells enable novel
analyses such as spatial differential expression (Svensson et al.,
2018) and cell-cell interaction (Cang and Nie, 2020). Similar to
single-cell RNA-seq datasets, a spatial transcriptomic dataset can
be represented by a gene-by-cell count matrix. A second matrix of
coordinates is attached to the cell dimension of the count matrix to
represent spatial information. Comprehensive toolkits such as Space
Ranger can process raw sequence reads into count matrices. Taking a
microscope image and FASTQ files as input, Space Ranger can
perform alignment, tissue and fiducial detection, barcode/UMI
counting, and feature-spot matrices generation.

Various preprocessing steps may be performed prior to any
analysis. First, genes and cells may be filtered based on a
threshold specific to the dataset. For example, a cell may be
removed if it has 1) less than 1,000 expressed genes or 2) a high
proportion of mitochondria RNA. A gene may be removed if it is
detected in less than ten cells (Wolf et al., 2018; Lun et al., 1000).
Transformation of count data may be performed according to
downstream modeling assumptions. Methods modeling raw

counts do not require any transformation (Sun et al., 2020).
Otherwise, gene expression per cell may be normalized to have
the same total library size such that expression levels are comparable
across cells. The gene expressionmatrixmay then be log-transformed
and be regressed against confounders such as batch effect, percentage
of mitochondria genes, and other technical variations. Although
preprocessing steps mentioned above are widely adopted, the
exact configuration should follow input data modality and
modeling assumptions, and there is no one-size-fits-all strategy.

3.1 Gene Expression Normalization
Current spatial transcriptomic techniques introduce unwanted
technical artifacts. Raw data commonly exhibit spot-to-spot
variation and high dropout rates, which may impact downstream
analyses. Several normalization strategies have been created to
address these challenges. Due to the similarity between spatial
transcriptomics and scRNA-seq, many normalization methods for
spatial transcriptomics data are inspired by scRNA-seq studies.

A widely-used normalization tool is scran, a method based on
the summation of expression values and deconvolution of pooled
size factors (Lun et al., 2016). In the first step, expression values of
all cells in the data set are averaged to serve as a reference. The
cells are then partitioned into different pools, where the
summation of expression values in each pool is normalized
against the reference to generate a pool-based size factor. A
linear system can be constructed by repeating the above
normalization over multiple pools. Finally, the normalized
cell-based counterparts can be calculated by solving the linear
system with standard least-squares methods, i.e., deconvolving
the pool-based size factor to individual cells. By representing the
individual cells with multiple pools of cells, scran is capable of
avoiding estimation inaccuracy in the presence of stochastic
zeroes and is robust to differentially expressed genes. Similar
to scran, a number of methods adopt the global scale factor
strategy, where one normalization factor is applied to each cell,
and all genes in this cell share the same factor. When the
relationship between transcript-specific expression and
sequencing depth is not shared across genes, such strategy will
likely lead to overcorrection for weakly and moderately expressed
genes. To address the problem, Bacher et al. proposed SCnorm, a
quantile-regression based method that can estimate the
dependence of expression on sequencing depth for each gene
(Bacher et al., 2017). Then genes are grouped based on the

TABLE 2 | Current experimental methods for spatial transcriptomic profiling.

Method Type Resolution Genes References

Visium Spatial barcoding 55 μm Whole transcriptome Ståhl et al. (2016)
Slide-seq Spatial barcoding 10 μm Whole transcriptome Rodriques et al. (2019), Stickels et al. (2021)
HDST Spatial barcoding 2 μm Whole transcriptome Vickovic et al. (2019)
DBiT-Seq Spatial barcoding 10 μm Whole transcriptome Liu et al. (2020)
Seq-scope Spatial barcoding 0.5-0.8 μm Whole transcriptome Cho et al. (2021)
Stereo-seq Spatial barcoding 0.5 or 0.715 μm Whole transcriptome Chen et al. (2021)
SeqFISH in situ hybridization single-molecule >10,000 Lubeck et al. (2014), Eng et al. (2019)
MerFISH in situ hybridization single-molecule 100–1,000 Chen et al. (2015), Moffitt et al. (2016)
STARmap in situ sequencing single-cell 160–1,020 Wang et al. (2018)
FISSEQ in situ sequencing subcellular ∼8,000 Lee et al. (2014)
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similarity of dependence, and a second quantile regression is used
to estimate a shared scale factor within each group.

Lytal et al. conducted an empirical survey to evaluate the
effectiveness of seven single-cell normalization methods. Based
on the experimental results over several real and simulated data
sets, the study concludes that there is no “one-size-fits-all”
normalization technique for every data set (Lytal et al., 2020).
Further, Saiselet et al. investigated whether normalization is
warranted for spatial transcriptomic datasets. They discovered
that variation of total read counts is related to morphology and
local cell density. Therefore, total counts per spot are biologically
informative and do not necessarily need to be normalized out
(Saiselet et al., 2020).

4 ANALYSIS AND VISUALIZATION IN THE
EXPRESSION DOMAIN

A first step in the spatial transcriptomic analysis is to identify the
cell type (for datasets of single-cell resolution) or cell mixture (for
datasets of multicellular resolution) of each spatial unit or spot.
Cell type identification usually starts with the dimensionality
reduction technique to reduce time and space complexity for
downstream analysis. The reduced representations are used to
cluster cells based on the assumption that cells of the same type
fall into the same cluster.

4.1 Clustering
The selection of clustering techniques is critical for obtaining
good clustering results. Certain methods with assumptions about
cluster shapes may not be suitable for spatial genomic data. For
example, K-means clustering assumes that the shapes of clusters
are spherical and that clusters are of similar size (Kanungo et al.,
2002), and Gaussian mixture models assume that points with
each cluster follow a Gaussian distribution (Reynolds, 2009).
These assumptions are rarely satisfied by spatial
transcriptomic data.

Agglomerative clustering methods are a class of methods that
iteratively aggregate data points into clusters. These methods do
not carry assumptions about the shape and size of clusters. At
each iteration, data points are aggregated to optimize a pre-
defined metric. Popular agglomerative clustering methods
include hierarchical agglomerative clustering (Johnson, 1967)
and community detection methods such as Louvain (Blondel
et al., 2008) and Leiden (Traag et al., 2019) algorithms.
Hierarchical agglomerative clustering is initialized by treating
each point as its own cluster. Each iteration aggregates two
clusters with the closest distance to form a new cluster until
no clusters can be merged. Community detection methods,
i.e., Louvain (Blondel et al., 2008) and Leiden (Traag et al.,
2019) algorithms, have seen wide adoption in the single-cell
and the spatial transcriptomics community. Both algorithms
try to iteratively maximize the modularity, which can be
understood as the difference between the number of observed
and expected edges. Intuitively, a tightly connected community or
cluster should have a large number of observed edges relative to
the expected number of edges. The Louvain algorithm is

initialized by assigning each node to its own community. At
each iteration, each node moves from its own community to all
neighboring communities, and changes in modularity are
calculated. The node is moved to the community, which
results in the largest increase in H. At the end of each
iteration, a new network is built by aggregating all nodes
within the same community, and a new iteration begins. The
procedure will terminate when the increase inH can no longer be
achieved.

These general-purpose methods can be combined into more
sophisticated pipelines tailored towards single-cell clustering. SC3
is an ensemble clustering method in which multiple clustering
outcomes are merged into a consensus. SC3 first calculates
distance matrices using the Euclidean distance, as well as
Pearson and Spearman correlations. Spectral clustering is
performed on these distance matrices with a varying number
of eigenvectors. These results were combined to assign a
consensus cluster membership to each point (Kiselev et al.,
2017). Seurat uses a smart local moving (SLM) algorithm
(Waltman and Van Eck, 2013) to perform modularity-based
clustering. Seurat first constructs a distance matrix based on
canonical correlation vectors and a shared nearest neighbor
(SNN) graph based on the distance matrix. The SNN graph is
used as an input to the SLM algorithm to find clusters (Butler
et al., 2018). SIMLR calculates a distance matrix as a weighted
sum of multiple distance kernels and solves for a similarity
matrix to minimize the product between the distance and
similarity matrices. To ensure a fixed number of connected
components, SIMLR uses constrained optimization to
encourage a block diagonal structure in the similarity matrix
(Wang et al., 2017).

4.2 Identification of Cell Types
Identification of cell types starts by defining cell-type specific
genes or marker genes. A straightforward approach is to perform
differential expression analysis (McCarthy et al., 2012; Love et al.,
2014) between all pairs of clusters. Genes that are consistently
over-expressed in one cluster are considered the cluster’s marker
genes. This is the approach implemented in scran (Lun et al.,
1000) and Mast (Finak et al., 2015).

Another method, scGeneFit, uses a label-aware compression
method to find marker genes (Dumitrascu et al., 2021). Given
cell-by-gene expression matrix and corresponding cell labels
inferred from clustering results, scGeneFit finds a projection
onto a lower-dimensional space, in which cells with the same
labels are closer in the lower-dimensional space than cells with
different labels. The projection is constrained such that the axes in
the lower-dimensional space align with a single gene. Therefore,
the marker genes will be the set of axes in the lower-dimensional
space that best conserves label structures. The marker genes can
then be matched with an expert-curated list of cell-type specific
genes to infer cell types (Kim and Volsky, 2005; Subramanian
et al., 2005). Other methods directly map unknown cell types
onto a reference dataset, bypassing the target gene identification
step. Scmap projects the query cells onto the reference cell types
from other experiments and datasets (Kiselev et al., 2018). The
known reference cluster is represented by its centroid, and the
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projection is carried out by a fast approximate k-nearest-neighbor
(KNN) search by cluster using product quantization (Jégou et al.,
2010), where a similarity matrix between the query cell and
reference clusters is used as the distance in KNN search.
Another reference-based method is SingleR (Aran et al., 2019).
The method proceeds by first identifying variable genes among
cell types in the reference set. Next, SingleR calculates the
Spearman correlation between each single cell and the
reference variable genes. Multiple correlation coefficients
within each cell type are aggregated to form one correlation
per reference cell type per single cell. Only the top 80% of
correlation values are selected to remove random noise. In the
fine-tuning step, the correlation analysis is iteratively re-run but
only for the top cell types from the previous step, and the lowly
correlated cell types are removed. Eventually, the cell type with
the top correlation is assigned to the query single-cell. Using
SingleR, the authors identified a novel disease-associated
macrophage subgroup between monocyte-derived and alveolar
macrophages. Cortal et al. proposed a clustering-free multivariate
statistical method named Cell-ID for gene signature extraction
and cell identification (Cortal et al., 2021). Cell-ID first performs a
dimensionality reduction on the cell-by-gene expression matrix
using the multiple correspondence analysis (MCA). Both cells
and genes are simultaneously projected in a common low-
dimensional space, where the distance between a gene and a
cell represents the specific degree between them. According to the
distance, Cell-ID can build up a gene-rank for each cell, and the
top-ranked genes are defined as the cell’s gene signature. With the
gene signature of the query cell, Cell-ID can perform automatic
cell type and functional annotation via the hypergeometric tests
against reference marker gene lists and/or gene signatures of
reference single-cell datasets. The authors demonstrated the
consistently reproducible gene signatures across diverse
benchmarks, which helps to improve biological interpretation
at the individual cell level. Unlike the above approaches, JSTA
uses deep learning for cell-type identification and incorporates
three distinct and interactive components: a segmentation map
and two deep neural network-based cell type classifiers for pixel-
level and cell-level classification (Littman et al., 2021). JSTA first
trains a taxonomy-based cell-level classifier with the external data
from the Neocortical Cell Type Taxonomy (NCTT) set (Yuste
et al., 2020). Then the segmentation map and pixel-level classifier
are iteratively refined with an expectation-maximization (EM)
algorithm. Specifically, the segmentation map is initialized by a
classical image segmentation algorithm watershed (Roerdink and
Meijster, 2000) and paired with the trained cell-level type
classifier to predict the current cell (sub)types. Given the local
mRNA density at each pixel as the input, the pixel-level classifier
is optimized to closely match each pixel’s current cell type
assignment. Next, the updated pixel-level classifier reclassifies
the cell types of all border pixels, and the resulting segmentation
map requires an update of the cell-level classification, which
further triggers an update of pixel-level classifier training. This
learning process is repeated until convergence. The eventual
segmentation map tends to maximize consistency between
local RNA density and cell-type expression priors. Abdellaal
et al. benchmarked 22 broadly used cell identification methods

on 27 publicly available single-cell RNA data. Interested readers
are referred to (Abdelaal et al., 2019).

4.3 Visualization of Gene Expression in Low
Dimensions
The identified clusters can be visualized to ensure cells assigned to
the same cluster are close in expression space. Dimensionality
reduction techniques are necessary to project the high
dimensional data into 2D or 3D. Principal component analysis
(PCA) is widely adopted in the single-cell and spatial
transcriptomic literature (Wold et al., 1987). This method
identifies linear combinations of the original dimensions, or
principal components (PC), that maximize the projection
variance from data points onto the principal components
(Figure 2A). The principal components can be computed in
an iterative way: the first PC can point in any direction to
maximize the variance of projections, and each subsequent PC
is orthogonal to previous PCs (Tsuyuzaki et al., 2020).

In contrast to PCA, manifold learning is a class of non-linear
dimensionality reduction techniques that aims to project the data
to a lower dimension while maintaining the distance relations in
the original high-dimension space; points close to each other in
the original space will be close in the low-dimensional space
(Figure 2B). Uniform manifold approximate and projection
(UMAP) and t-distributed stochastic neighbor embedding
(t-SNE) are two manifold learning methods widely adopted in
single-cell and spatial transcriptomic literature (Van der Maaten
and Hinton, 2008; McInnes et al., 2018). Both methods follow a
two-step procedure. In the first step, a similarity matrix is
computed based on a pre-defined distance metric. In the
second step, all data points are placed in a low-dimensional
Euclidean space such that the structure of the similarity
matrix is preserved. This step is initialized by randomly
placing data points in the low-dimensional space. At each
iteration, data points are moved according to the similarity
matrix from the high-dimensional space; points with high
similarity in the high-dimensional space will attract, and those
with low similarity will repel. Because optimization is done
iteratively, UMAP and t-SNE results are stochastic and vary
between runs. Random seeds are needed for reproducibility.
The two methods differ in their construction of similarity
matrix. In t-SNE, a distance matrix is calculated according to
probability density functions (PDF) of the Gaussian distribution
in the high-dimension space and PDFs of the t-distribution in the
low-dimension embedding. In UMAP, an adjacency matrix is
constructed by extending a sphere whose radius depends on the
local density of nearby points; two points are connected if their
spheres overlap. In practice, UMAP is faster than t-SNE and tends
to preserve the high-dimensional structure better.

5 ANALYSIS AND VISUALIZATION IN THE
SPATIAL DOMAIN

An important question in spatial transcriptomic data analysis is
to identify genes whose expression follow coherent spatial
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patterns. Genes with spatial expression patterns are critical
determinants of polarity and anatomical structures. For
example, the gene wingless is a member of the wnt family that
plays a central role in anterior-posterior pattern generation
during the embryonic development of Drosophila
melanogaster. It is expressed in alternating stripes across the
entire embryo (van den Heuvel et al., 1989). Another example is
the neocortex of mammalian brains, which contain six distinct
layers. Each layer consists of different types of neurons and glial
cells that express cell-type specific marker genes (Lui et al., 2011).
Spatial transcriptomic data enables unbiased transcriptome-wide
identification of spatially expressed genes, but it is excessively
labor-intensive to visually examine all genes. This prompted the
development methods including SpatialDE (Svensson et al.,
2018), trendsceek (Edsgärd et al., 2018), and Spark (Sun et al.,
2020).

5.1 Identification of Genes with Spatial
Expression Patterns
SpatialDE (Svensson et al., 2018) uses a Gaussian process to
model gene expression levels. Intuitively, a Gaussian process
model treats all data points as observations from a random
variable that follows a multivariate Gaussian (MVN)
distribution (Wang, 2020). To test whether expression levels
follow a spatial pattern, the authors specify a null model, in
which the covariance matrix is diagonal, and an alternative
model, in which the covariance matrix follows a radial basis
function kernel:

K(xi, xj) � exp( − γ‖xi − xj‖2) (1)

where K(xi, xj) is the covariance between ith and jth
measurement; xi and xj represent the spatial coordinates of the
ith and the jth measurement; γ is a scale factor. Intuitively, the
Gaussian kernel describes a spatial relationship in which nearby

points have similar expression values. This kernel assumes that
cells of similar origins tend to neighbor each other in space. A
likelihood ratio test can be done by comparing the likelihood of
the null and the alternative model. Because SpatialDE is a
Gaussian process model, the expression values must be log-
transformed which decreases power.

Trendsceek (Edsgärd et al., 2018) uses a marked point process
model in which each point of measurement, or a spot, is treated as
a point process, and each point is marked with a gene expression
value. To decide whether a gene whose expression follows a
spatial pattern, trendsceek test whether the probability of finding
two marks given the distance between two points deviates from
what would be expected if the marks were randomly distributed
over points. To calculate the null distribution given no spatial
pattern, trendsceek implements a sampling procedure in which
marks are permuted with the location of points fixed. In practice,
such sampling procedure is computationally expensive and
makes trendsceek only suitable for small datasets.

Spark (Sun et al., 2020) uses a generalized linear spatial model
(GLSM) to directly model count data (McCullagh and Nelder,
1983; Gotway and Stroup, 1997), which results in better power
than SpatialDE. A simplified model is presented below:

y(s) ∼ Poisson(λ(s)) (2)

log(λ(s)) � x(s)Tβ + b(s) + ϵ (3)

b(s) ∼ MVN(0, τK(s)) (4)

Where y(s) is the gene expression of sample s. λ is a Poisson rate
parameter, which is modeled as a linear combination of three
terms. The first term x(s) represents covariates such as batch
effect and library size for sample s. The second term b(s) is the
spatial correlation pattern modeled as a Gaussian process. The
last term ϵ is random noise. To determine whether a gene follows
a spatial pattern, Spark tests whether τ � 0. Parameter estimation
is difficult due to the random effects. Monte Carlo methods are
the gold standard for parameter estimation for GLSM but are

FIGURE 2 | Comparison between principal component analysis and t-SNE. (A) Principal component analysis iteratively identifies vectors that minimize the sum of
squared distances to the direction of the vector. Each vector is orthogonal to all previously selected vectors. (B) t-SNE calculates a pairwise similarity based on the
probability density function of the Gaussian distribution in the original high dimension space. The points are randomly projected to a low dimensional space and iteratively
refined so that the similarity in low dimension matches that in high dimension. At each iteration, similar pairs attract, and dissimilar pairs repel each other.
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computationally expensive. Instead, the authors developed a
penalized quasi-likelihood (PQL) estimation procedure to
make computation tractable for large datasets (Wedderburn,
1974; McCullagh and Nelder, 1983; Breslow and Clayton,
1993). Spark produces well-calibrated p-values and is more
powerful than trendsceek and SpatialDE through a series of
simulation experiments.

5.2 Identification of Spatial Domains
Spatially coherent domains often underly important anatomical
regions (Figure 3A). A motivating example is the histological
staining of cancer tissue slides. Cancer regions and normal tissues
can be visually distinguished due to differential affinities to staining
agents. This enables pathologists to grade and stage individual
cancer tissue slides according to the location and size of the cancer
regions (Fletcher, 2007). Spatial transcriptomics enables histology-
like identification of spatial domains. Regular histology slides can
be visualized conveniently with RGB pixels. In contrast, spatial
transcriptomic data cannot be directly visualized because each spot
(i.e., pixel) in spatial transcriptomic data has a dimension equal to
the number of genes. This prompts the development of methods to
detect spatial domains, including BayesSpace (Zhao et al., 2021),
SpatialDE (Svensson et al., 2018), and a hidden Markov random
field (HMRF) method (Zhu et al., 2018).

The three methods share a common assumption that hidden
spatial domains can be described by latent variables, which are not
directly observed but can be inferred from observed gene
expression values. However, these methods use different
modeling assumptions to infer latent variables. Zhu et al. (Zhu
et al., 2018) developed an HMRF-based method, a widely adopted
model in the image processing community to identify patterns in
2D images (Li, 2000; Blake et al., 2011), to identify spatial domains.
An HMRF has two components: it uses a Markov random field to
describe the joint distribution of latent variables and a set of
observed examples that depends on them. The latent variables
are assumed to satisfy the Markov property, in which any node in
the network is conditionally independent of other nodes given its
neighbors. Following this assumption, a Markov random field of
latent variables can be decomposed into a set of subgraphs, called
cliques, which gives rise to the observed gene expression. The
parameters of the model by Zhu et al. are estimated with an EM
algorithm (Dempster et al., 1977; Moon, 1996).

Both SpatialDE (Svensson et al., 2018) and BayesSpace (Zhao
et al., 2021) model observed gene expression values as a mixture
of Gaussian random variables. The means of the Gaussian
random variables are determined by the spatial domain
membership. In SpatialDE, the mean expression value of each
spatial domain is described by a Gaussian process, whose

FIGURE 3 | Visualization of gene expression in the Euclidean space. (A) Spatially coherent genes and spatial domains can be visualized as 2D images. (B) Spot
deconvolution methods estimate the proportion of each cell type within each spot. Pie charts are routinely used to represent cell type proportions within each spot. (C)
Spot super-resolution methods estimate the cell type of sub-pixels based on correlation with neighbor spots. In this case, each spot of the original dataset is divided into
nine spots in the super-resolved dataset.
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covariance follows a radial basis function kernel. The observed
expression follows a Gaussian distribution centered around the
mean expression value of a given spatial domain. The posterior
distribution of parameters and the latent spatial domain
membership is estimated by variational inference. Different
from SpatialDE, BayesSpace uses a diagonal matrix to model
the covariance of the mean expression of each spatial domain.
The observed gene expression is modeled as a Gaussian random
variable centered around the mean expression and has a diagonal
covariance matrix modeled as a Wishart random variable.
BayesSpace uses a Markov chain Monte Carlo (MCMC)
method to estimate model parameters (Geyer, 1992).

While the above methods consider spatial genes and spatial
domain as two separate tasks, SpaGCN proposed a graph
convolutional network-based (GCN) approach to address these
two tasks jointly (Hu et al., 2021b). With the integration of gene
expression, spatial location, and histology information, SpaGCN
models spatial dependency of gene expression for clustering
analysis of spatial domains and identification of domain
enriched spatial variable genes (SVG) or meta genes. SpaGCN
first converts the spatial transcriptomics data into an undirected
weighted graph of spots, and the graph structure represents the
spatial dependency of the data. Next, a GCN (Kipf and Welling,
2016) is utilized to aggregate gene expression information from
the neighboring spots and update every spot’s representation.
Then, SpaGCN adopts an unsupervised clustering algorithm (Xie
et al., 2016) to cluster the spots iteratively, and each identified
cluster will be considered as a spatial domain. The resulting
domains guide the differential expression analysis to detect the
SVG or meta genes with enriched expression patterns in the
identified domains.

5.3 Spot Deconvolution and
Super-resolution
Because spots in the spatial transcriptomic dataset may not
correspond to cell boundaries, several additional features can
be included when plotting on the spatial domain. When the
spatial transcriptomic measurement technology has a
multicellular resolution, spots can be decomposed into
constituent cell types. A 2D array of pie charts can be used to
represent the cell types’ percentages of spots, as demonstrated in
DSTG (Figure 3B). To enable the investigation of cellular
architecture at higher resolution, DSTG uses a GCN to
uncover the cellular compositions within each spot (Song and
Su, 2021). DSTG first leverages single-cell RNA-seq data to
construct pseudo spatial transcriptomic (pseudo-ST) data by
selecting two to eight single cells from the same tissue and
combining their transcriptomic profiles. This pseudo-ST data
is designed to mimic the cell mixture in the real spatial
transcriptomic data and provide the basis for model training.
Via canonical correlation analysis, DSTG identifies a link graph of
spots with the integration of the pseudo-ST data and the real
spatial transcriptomic data. A GCN (Kipf and Welling, 2016)
iteratively updates the representation of each spot by aggregating
its neighborhoods’ information. The GCN model is trained in a
semi-supervised manner, where the known cell compositions of

the pseudo-ST nodes are served as the labeled data, and the real
spatial transcriptomic nodes are the prediction targets. The
resulting cell type proportions can be displayed as a pie chart
at each spot (Figure 3B).

While cell type deconvolution provides an estimation of
cellular constituents, it does not directly increase the
resolution of the dataset. BayesSpace uses a Bayesian model to
increase the resolution to the subspot level, which approaches
single-cell resolution with the Visium platform (Figure 3C). The
model specification is similar to the spatial domain detection
model described above, except that unit of analysis is the subspot
rather than the spot. Since gene expression is not observed at the
subspot level, BayesSpace models it as another latent variable and
estimates it using MCMC. The increase in resolution is different
across measurement technology. For square spots (Ståhl et al.,
2016), BayesSpace by default divides each spot into nine subspots.
For hexagonal spots like Visium, they are divided into six
subspots by default. The subspots can be visualized in
Euclidean space similar to regular spots.

5.4 Visualization in Euclidean Space
After obtaining spatial genes and domains, visualization in the
Euclidean space is relatively straightforward. Spatial genes can be
visualized by plotting their log-transformed expression values.
Spatial domains can be colored by mean expression values or by
their identities. Several packages such as Giotto (Dries et al.,
2021b), Scanpy (Wolf et al., 2018), Seurat (Hao et al., 2021), and
Squidpy (Palla et al., 2021) provide functionalities to plot spatial
transcriptomic data in Euclidean space.

6 ANALYSIS AND VISUALIZATION IN THE
INTERACTION DOMAIN

Cell signaling describes the process in which cells send, receive,
process, and transmit signals within the environment and with
themselves. Based on the signaling distance and the sender-
receiver identities, cell signaling can be classified into
autocrine, paracrine, endocrine, intracrine, and juxtacrine
(Bradshaw and Dennis, 2009). It serves critical functions in
development (Wei et al., 2004), immunity (Dustin and Chan,
2000), and homeostasis (Taguchi and White, 2008) across all
organisms. For example, the Hedgehog signaling pathway is
involved in tissue patterning and orientation, and aberrant
activations of hedgehog signaling lead to several types of
cancers (Taipale and Beachy, 2001). Single-cell datasets enable
correlation analysis to unravel cell-to-cell interaction
(Krishnaswamy et al., 2014; Friedman et al., 2018; Wirka
et al., 2019). Due to the lack of spatial information, single-cell
analysis cannot distinguish short-distance (juxtacrine and
paracrine) and long-distance (endocrine) signaling. Spatial
transcriptomic datasets provide the spatial coordinate of each
cell or spot and enable spatial dissection of cell signaling.

6.1 Cell-to-Cell Interaction
Cell signaling frequently occurs between cells in spatial
proximity. Giotto takes spatial proximity into consideration to
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identify cell-to-cell interaction. It first constructs a spatial
neighborhood network to identify cell types that occur in
spatial proximity. Each node of the network represents a cell,
and pair of neighboring cells are connected through an edge. The
neighbors of each cell can be determined by extending a circle of a
predefined radius, selecting the k-nearest neighbors, or
constructing a Delaunay network (Chen and Xu, 2004). Cell
types connected in the network more than expected are
considered interacting. Giotto permutes the cell type labels
without changing the topology of the network and calculates
the expected frequencies between every pair of cell types. p-values
are derived based on where the observed frequency falls on the
distribution of expected frequencies.

Another method, SpaOTsc, leverages both single-cell and
spatial transcriptomic data for a comprehensive profile of
spatial interaction (Cang and Nie, 2020). It uses an optimal
transport algorithm to map single-cell to spatial transcriptomic
data. An optimal transport is a function that maps a source
distribution to a target distribution while minimizing the amount
of effort with respect to a predefined cost function (Villani, 2009).
SpaOTsc generates a cost function based on the expression profile
dissimilarity of shared genes across the single-cell and the spatial
transcriptomic datasets. The optimal transport plan maps single
cells onto spatial locations. SpaOTsc then formulates cell-to-cell
communication as a second optimal transport problem between
sender and receiver cells. The expression of ligand and receptor
genes are used to estimate sender and receiver cells, and the
spatial distance is the cost function. The resultant optimal
transport plan represents the likelihood of cell-to-cell
communication.

6.2 Ligand-Receptor Pairing
Another aspect of cell signaling is the pairings between ligands
and receptors. Giotto identifies ligand-receptor pairs whose mean
expression is higher than expected. To obtain the observed
expression of ligand-receptor pairs for a pair of cell types,
Giotto averages the expression of ligand in all sender cells and
the expression of receptors in all receiver cells in proximity of the
sender cells. Giotto then permutes the location of cells to obtain
an expected expression of the ligand-receptor pair. A p-value can
be obtained by mapping the observed expression onto the
distribution of expected expression. Different from Giotto,
SpaOTsc uses a partial information decomposition (PID)
approach to determine gene-to-gene interaction. Intuitively,
PID decomposes the mutual information between multiple
source variables and a target variable into unique information
contributed by each source variable, redundant information
shared by many source variables, and synergistic information
contributed by the combination of source variables (Kunert-Graf
et al., 2020). SpaOTsc estimates the unique information from a
source gene to a target gene that is within a predefined spatial
distance, taking into consideration all other genes. Yuan et al.
proposed a method called GCNG (Yuan and Bar-Joseph, 2020) to
infer the extracellular gene relationship using Graph
convolutional neural networks (GCN). Single-cell spatial
expression data is represented as a graph of cells. Cell
locations are encoded as a binary cell adjacency matrix with a

selected distance threshold, and expression of gene pairs within
each cell is encoded as corresponding node features. A GCN is
used to combine the graph structure and node information as
input and predict whether the studied gene pair can interact. The
deep learning model is trained in a supervised manner, where
positive samples are built from known ligand-receptor pairs, and
negative samples are randomly selected from non-interacting
genes. In addition to the methods specifically designed to utilize
the spatial expression information for cell-to-cell interaction,
many other tools developed for expression data without spatial
information can also be applied to the spatial transcriptomic data.
Interested readers can refer to a recent review of these methods
(Armingol et al., 2021).

6.3 Visualization of Interactions Between
Cells and Genes
Cell-to-cell and gene-to-gene interactions are naturally
represented as networks and correlation matrices (Figure 4).
Integrative packages such as Giotto (Dries et al., 2021b) provide
functions to visualize cell-to-cell and gene-to-gene interactions as
heatmaps, dot plots, or networks. A heatmap is a visual depiction
of a matrix whose values are represented as colored boxes on a
grid. With heatmaps, large blocks of highly connected cells or
genes can be visually identified. A dot plot is similar to a heatmap,
except that the boxes are replaced by dots of varying sizes. A dot
plot can use both the size and the color of each dot to represent
values in each interaction. Different from heatmaps and dot plots,
networks use nodes to represent cells or genes and edges to
represent their interactions. The widths and colors of edges can be
used to describe the strength of interactions. Besides Giotto, the
igraph package is widely adopted for network visualization and
provides programming interfaces in R, python, C/C++, and
Mathematica (Csardi and Nepusz, 2006). Cytoscape is another
widely used package to visualize complex network interaction. Its
graphical user interface makes it easy to manipulate and examine
nodes and edges in the network (Shannon et al., 2003).

7 DISCUSSIONS

Spatial transcriptomic technologies have made tremendous
progress in recent years. Although earlier technologies are
restricted by the number of profiled genes (Chen et al., 2015;
Moffitt et al., 2016; Shah et al., 2016) or the spatial resolution
(Ståhl et al., 2016), current methods can profile the whole
transcriptome at single-cell or subcellular resolution (Liu et al.,
2020; Chen et al., 2021; Cho et al., 2021). While available
commercialized methods (Visium) cannot achieve cellular
resolution, we believe newer technologies will soon be
production-ready. As commercial platforms become more
affordable, we believe the speed at which spatial
transcriptomic datasets become publicly available will only
accelerate. For example, phase two of the Brain Initiative Cell
Census Network (BICCN) will map the spatial organization of
more than 300,000 cells from the mouse’s primary motor cortex
(Marx, 2021). Large-scale projects to comprehensively profile
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spatial gene expression are currently limited, but we envision that
these projects will expand in three directions. First, more model
organisms will be profiled, enabling comparative analysis of cell
types and their spatial organizations across evolution. Second,
more organ and tissue types will be profiled for a comprehensive
understanding of spatial expression architecture. Third, cell states
(e.g., stimulated vs resting) and disease states (cancer vs normal)
will be profiled to understand cellular activation and disease
pathology.

As spatial transcriptomic datasets become more abundant,
meta-analysis across published datasets will become
commonplace. Methods to remove batch effects are needed to
account for technical confounders across datasets. Unlike bulk
and single-cell sequencing, batch effects in spatial transcriptomic
data must account for correlation across space. Further, the batch
effect may also occur on companion histology images, and
methods to jointly analyze histology image and spatial
transcriptomic data are required. Although several methods
have been developed for batch effect removal in bulk (Leek
et al., 2012; Stegle et al., 2012) and single-cell (Korsunsky
et al., 2019; Li et al., 2020) sequencing, it is still an under-
explored area for spatial transcriptomics.

Histopathology is widely adopted across various domains of
medicine and is considered the gold standard for certain
diagnoses such as cancer staging (Edge et al., 2010). However,
histology is limited by the type and number of cellular features

delineated by staining agents. Spatial transcriptomics extends
histology to test for both imaging andmolecular features and may
enable testing for oncogenic driver mutations critical for
determining cancer subtypes. A recent method named SpaCell
integrates both histology and spatial transcriptomic information
to predict cancer staging (Tan et al., 2020). In this method,
histological images are tiled into patches, where each patch
corresponds to a spatial transcriptomic spot in a tissue. A
convolutional neural network is used to extract image features
from each patch, and combine the features with the spot gene
count. A subsequent deep network is applied to predict the
disease stages. We envision that spatial transcriptomics will
become a diagnostic routine as it becomes more affordable
and the clinical interpretation becomes more streamlined.

In this review, we surveyed state-of-the-art methods for spatial
transcriptomic data analysis and visualization, and categorized
them into three main categories according to the way their output
is visualized. It is unlikely that we covered all available methods
for spatial transcriptomics, but we hope this review will serve as a
stepping stone and attract more researchers to this field.
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