metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraethylammonium dibromidotricarbonyl(o-toluidine)rhenate(I)

Alice Brink,* Hendrik G. Visser and Andreas Roodt

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

Correspondence e-mail: alice.brink@gmail.com

Received 23 November 2010; accepted 30 November 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.032; wR factor = 0.086; data-to-parameter ratio = 19.9.

In the title compound, $(C_8H_{20}N)[ReBr_2(C_7H_9N)(CO)_3]$, the Re^I atom is octahedrally surrounded by three carbonyl ligands orientated in a facial arrangement, two bromide ligands and an *o*-toluidine ligand. The amine lies *trans* to the carbonyl ligand and is substitutionally disordered over two positions in a 0.66 (1):0.34 (1) ratio. An array of C-H···O, C-H···Br and N-H···Br hydrogen-bonding interactions between the cations and the surrounding rhenate anions stabilize the crystal structure.

Related literature

For the synthesis of the Re^I-tricarbonyl synthon, see: Alberto *et al.* (1996); Brink *et al.* (2009). For related rhenium-tricarbonyl complexes, see: Mundwiler *et al.* (2004); Wang *et al.* (2003); Saw *et al.* (2006); Schutte *et al.* (2008, 2009, 2010); Wei *et al.* (2003); Schibli *et al.* (2000). For kinetic studies of related Re compounds, see: Smith *et al.* (1996); Abou-Hamdan *et al.* (1998). For related dibromido structures, see: Alberto *et al.* (1999); Abram *et al.* (1998).

a = 10.776 (2) Å

b = 18.466 (4) Å

c = 11.745 (2) Å

Experimental

Crystal data $(C_8H_{20}N)[\text{ReBr}_2(C_7H_9N)(\text{CO})_3]$ $M_r = 667.45$ Monoclinic, $P2_1/c$

Data collection

Bruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.116, \ T_{\max} = 0.532$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ 270 parameters $wR(F^2) = 0.086$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 2.5$ e Å $^{-3}$ 5371 reflections $\Delta \rho_{min} = -2.99$ e Å $^{-3}$

 $\mu = 9.02 \text{ mm}^{-1}$

 $0.42 \times 0.32 \times 0.08 \text{ mm}$

45095 measured reflections

5371 independent reflections 4411 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.072$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1C \cdots Br2^i$	0.92	2.7	3.542 (4)	153
$N1 - H1B \cdot \cdot \cdot Br1^{i}$	0.92	2.75	3.594 (4)	153
$C121 - H12C \cdot \cdot \cdot O03^{ii}$	0.98	2.5	3.139 (10)	123
C35−H35B···O03 ⁱⁱⁱ	0.99	2.39	3.196 (7)	138
$C37-H37A\cdots Br1^{iv}$	0.99	2.92	3.911 (6)	174
Symmetry codes: (i)	-x + 2, -y + 2	2, -z + 2; (ii	-x + 1, -y + 2	2, -z + 2; (iii)

 $-x + 1, -y + 2, -z + 1; (iv) x, -y + \frac{3}{2}, z - \frac{1}{2}.$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2004); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the University of the Free State (UFS), the UFS Advanced Biomolecular Cluster, SASOL and the South African National Research Foundation (SA-NRF/THRIP) is gratefully acknowledged. Part of this material is based on work supported by the SA–NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA–NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5421).

References

- Abou-Hamdan, A., Roodt, A. & Merbach, A. E. (1998). Inorg. Chem. 37, 1278–1288.
- Abram, U., Abram, S., Schibli, R., Alberto, R. & Dilworth, J. R. (1998). Polyhedron, 17, 1303–1309.
- Alberto, R., Schibli, R. & Schubiger, P. A. (1996). *Polyhedron*, **15**, 1079–1089. Alberto, R., Schibli, R., Waibel, R., Abram, U. & Schubiger, A. P. (1999).
- Coord. Chem. Rev. 190, 901–919. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C.,
- Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. **32**, 115–119.
- Brandenburg, K. & Putz, H. (2004). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brink, A., Roodt, A. & Visser, H. G. (2009). Acta Cryst. E65, o3175-o3176.

- Bruker (2004). SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328.
- Saw, M. M., Kurz, P., Agorastos, N., Hor, T. S. A., Sundram, F. X., Yan, Y. K. & Alberto, R. (2006). *Inorg. Chim. Acta*, **359**, 4087–4094.
- Schibli, R., La Bella, R., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U. & Schubiger, P. A. (2000). *Bioconjug. Chem.* 11, 345–351.
- Schutte, M., Visser, H. G. & Brink, A. (2009). *Acta Cryst.* E65, m1575–m1576. Schutte, M., Visser, H. G. & Roodt, A. (2008). *Acta Cryst.* E64, m1610–m1611. Schutte, M., Visser, H. G. & Roodt, A. (2010). *Acta Cryst.* E66, m859–m860.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, J., Purcell, W., Lamprecht, G. J. & Roodt, A. (1996). Polyhedron, 15, 1389–1395.
- Wang, W., Spingler, B. & Alberto, R. (2003). *Inorg. Chim. Acta*, 355, 386–393.
 Wei, L., Banerjee, S. R., Levadala, M. K., Babich, J. & Zubieta, J. (2003). *Inorg. Chem. Commun.* 6, 1099–1103.

Acta Cryst. (2011). E67, m32-m33 [doi:10.1107/S1600536810050038]

Tetraethylammonium dibromidotricarbonyl(o-toluidine)rhenate(I)

A. Brink, H. G. Visser and A. Roodt

Comment

The structure forms part of an ongoing investigation aimed at determining the structural and kinetic behaviour of *fac*-rhenium tricarbonyl complexes. Various rhenium bi- and tridentate tricarbonyl ligands have been synthesized (Mundwiler *et al.*, 2004, Wang *et al.*, 2003, Saw *et al.*, 2006, Schutte *et al.*, 2009, 2008, 2010, Wei *et al.*, 2003, Schibli *et al.*, 2000). A few crystallographic studies on dibromido monodentate rhenium compounds have been reported in literature (Alberto *et al.*, 1999, Abram *et al.*, 1998).

The title complex crystallized as a distorted octahedral anionic Re^{I} compound with one tetraethylammonium counter ion in the asymmetric unit (Fig. 1). The coordinated amine lies in an axial position below the equatorial plane, defined as Br1—Br2—C02—C03, and *trans* to a carbonyl ligand. It is disordered over two positions and the plane through the aromatic carbons lies at an angle of 35.2 (2)° to the equatorial plane. The Re—N bond distance (2.241 (4) Å) is longer than for the rhenium acetonitrile analogue (2.150 (6) Å) (Abram *et al.*, 1998).

The longer Re—Br bond lengths (2.6390 (7) Å and 2.6370 (8) Å) are induced by the facially coordinated carbonyl ligands and compares well with related structures (Abram *et al.*, 1998, Schutte *et al.*, 2010). Intermolecular C—H···O, C—H···Br and N—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations.

Experimental

 $[NEt_4]_2[Re(CO)_3Br_3]$ (0.13 mmol) (synthesized according to Alberto *et al.* (1996)) was dissolved in 6 ml methanol. The ligand 2-(*o*-tolyliminomethyl)phenol (0.14 mmol) (for related synthesis see Brink *et al.*, 2009), containing 10% *o*-toluidine as byproduct, was dissolved in 6 ml MeOH and slowly added. The reaction mixture was stirred for 2 h at room temperature. Crystals of the title complex whereby the Re bonded preferentially to the amine were obtained by the slow evaporation of the solvent at 4°C.

Refinement

The aromatic and aliphatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5_{eq}(C_{methyl})$. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The highest peak in the final difference map are located 0.81Å from Re1. The minor occupied atoms were refined isotropically.

Figures

Fig. 1. Representation of the molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

Fig. 2. Representation of the hydrogen-bonding interactions (only one complete molecular structure (symm. op.: x, y, z) is shown).

Tetraethylammonium dibromidotricarbonyl(o-toluidine)rhenate(l)

Crystal data

$(C_8H_{20}N)[ReBr_2(C_7H_9N)(CO)_3]$	F(000) = 1280
$M_r = 667.45$	$D_{\rm x} = 1.981 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9885 reflections
a = 10.776 (2) Å	$\theta = 3.2 - 28.3^{\circ}$
b = 18.466 (4) Å	$\mu = 9.02 \text{ mm}^{-1}$
c = 11.745 (2) Å	T = 100 K
$\beta = 106.74 \ (3)^{\circ}$	Plate, yellow
$V = 2238.2 (8) \text{ Å}^3$	$0.42 \times 0.32 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer	5371 independent reflections
Radiation source: sealed tube	4411 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.072$
Detector resolution: 512 pixels mm ⁻¹	$\theta_{\text{max}} = 28^\circ, \ \theta_{\text{min}} = 3.2^\circ$
ω and ϕ scans	$h = -14 \rightarrow 13$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)	$k = -24 \rightarrow 24$
$T_{\min} = 0.116, \ T_{\max} = 0.532$	$l = -15 \rightarrow 15$
45095 measured reflections	

Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_0^2) + (0.0446P)^2 + 2.6175P]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.086$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{\text{max}} = 2.5 \text{ e} \text{ Å}^{-3}$
5371 reflections	$\Delta \rho_{\rm min} = -2.99 \ {\rm e} \ {\rm \AA}^{-3}$
270 parameters	

Special details

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 30 s/frame. A total of 1977 frames were collected with a frame width of 0.5° covering up to $\theta = 28.0^{\circ}$ with 99.4% completeness accomplished

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Re1 0.735442 (18) 0.985810 (11) 0.808028 (15) 0.01480 (7) Br1 0.81038 (5) 0.89501 (3) 0.98836 (4) 0.01871 (12) Br2 0.95834 (5) 0.96560 (3) 0.76184 (4) 0.01895 (12) N1 0.8495 (4) 1.0651 (2) 0.9422 (3) 0.0174 (9) H1A 0.8563 1.0468 1.0166 0.021* 0.659 (10) H1B 0.932 1.0671 0.9343 0.021* 0.341 (10) H1C 0.888 1.0409 1.0119 0.021* 0.341 (10) N2 0.8171 (4) 0.8488 (2) 0.3722 (3) 0.0165 (8) 0.001 O02 0.6462 (4) 1.0930 (2) 0.6027 (3) 0.0294 (9) 0.002 O03 0.4809 (4) 1.0153 (2) 0.8640 (4) 0.0363 (11) 0.002 0.6823 (5) 0.9121 (3) 0.7010 (4) 0.0227 (11) 0.002 0.6823 (5) 0.9121 (3) 0.6816 (4) 0.0211 (11) 0.003 0.5790 (5) 1.0036 (3) 0.8445 (5) 0.0227 (11) 0.0159 (10) <th>)</th>)
Brl 0.81038 (5) 0.89501 (3) 0.98836 (4) 0.01871 (12) Br2 0.95834 (5) 0.96660 (3) 0.76184 (4) 0.01895 (12) N1 0.8495 (4) 1.0651 (2) 0.9422 (3) 0.0174 (9) H1A 0.8563 1.0468 1.0166 0.021* 0.659 (10) H1B 0.932 1.0671 0.9343 0.021* 0.341 (10) H1D 0.9145 1.0842 0.9148 0.021* 0.341 (10) N2 0.8171 (4) 0.8488 (2) 0.3722 (3) 0.0165 (8) 0.001 0.0021 (4) 0.8662 (2) 0.6363 (3) 0.0324 (10) 0.002 0.6462 (4) 1.0930 (2) 0.6027 (3) 0.0294 (9) 0.003 0.4809 (4) 1.0153 (2) 0.8640 (4) 0.0363 (11) 0.002 0.6823 (5) 0.9121 (3) 0.7010 (4) 0.0208 (11) 0.0208 (11) 0.0203 0.5790 (5) 1.0036 (3) 0.8445 (5) 0.0227 (11) 0.021 (11) 0.0200 (19) 0.659 (10) 0.159 (10) 0.021 (11) 0.021 (11) 0.021 (11) 0.021 (11)	
Br2 0.95834 (5) 0.96560 (3) 0.76184 (4) 0.01895 (12) N1 0.8495 (4) 1.0651 (2) 0.9422 (3) 0.0174 (9) H1A 0.8563 1.0468 1.0166 0.021* 0.659 (10) H1B 0.932 1.0671 0.9343 0.021* 0.659 (10) H1C 0.888 1.0409 1.0119 0.021* 0.341 (10) H1D 0.9145 1.0842 0.9148 0.021* 0.341 (10) N2 0.8171 (4) 0.8488 (2) 0.3722 (3) 0.0165 (8) 0.021 O01 0.6021 (4) 0.8662 (2) 0.6363 (3) 0.0324 (10) 0.022 0.6462 (4) 1.0930 (2) 0.6027 (3) 0.0294 (9) 0.020 0.014 (9) 0.0208 (11) 0.0208 (11) 0.0208 (11) 0.0200 (10) 0.659 (10) 0.021 (11) 0.0208 (11) 0.0200 (19) 0.659 (10) 0.021 (11) 0.0200 (19) 0.659 (10) 0.021 (11) 0.021 (11) 0.021 (11) 0.021 (11) 0.021 (11) 0.021 (11) 0.021 (11) 0.021 (11) 0	
N1 0.8495 (4) 1.0651 (2) 0.9422 (3) 0.0174 (9) H1A 0.8563 1.0468 1.0166 0.021* 0.659 (10) H1B 0.932 1.0671 0.9343 0.021* 0.659 (10) H1C 0.888 1.0409 1.0119 0.021* 0.341 (10) H1D 0.9145 1.0842 0.9148 0.021* 0.341 (10) N2 0.8171 (4) 0.8488 (2) 0.3722 (3) 0.0165 (8) 001 0.6021 (4) 0.8662 (2) 0.6363 (3) 0.0294 (9) 002 0.6462 (4) 1.0930 (2) 0.6027 (3) 0.0294 (9) 003 0.4809 (4) 1.0153 (2) 0.8640 (4) 0.0363 (11) 0.0028 (11) 0.0028 (11) 0.0028 (11) 0.0028 (11) 0.0028 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11) 0.0021 (11)	
H1A0.85631.04681.01660.021*0.659 (10H1B0.9321.06710.93430.021*0.659 (10H1C0.8881.04091.01190.021*0.341 (10H1D0.91451.08420.91480.021*0.341 (10N20.8171 (4)0.8488 (2)0.3722 (3)0.0165 (8)0010010.6021 (4)0.8662 (2)0.6363 (3)0.0324 (10)0020020.6462 (4)1.0930 (2)0.6027 (3)0.0294 (9)0030030.4809 (4)1.0153 (2)0.8640 (4)0.0363 (11)0.0208 (11)C010.6523 (5)0.9121 (3)0.7010 (4)0.0208 (11)0.0211 (11)C030.5790 (5)1.0036 (3)0.8445 (5)0.0227 (11)0.659 (10C110.8014 (8)1.1388 (5)0.9379 (8)0.0200 (19)0.659 (10C120.7270 (8)1.1603 (5)1.0104 (7)0.022 (2)0.659 (10C130.6778 (8)1.2305 (5)0.9964 (9)0.025 (2)0.659 (10H130.6271.24651.04560.03*0.659 (10C140.7005 (8)1.2773 (6)0.9139 (8)0.025 (2)0.659 (10H140.66481.32470.90580.03*0.659 (10	
H1B0.9321.06710.93430.021*0.659 (10H1C0.8881.04091.01190.021*0.341 (10H1D0.91451.08420.91480.021*0.341 (10N20.8171 (4)0.8488 (2)0.3722 (3)0.0165 (8)0010010.6021 (4)0.8662 (2)0.6363 (3)0.0324 (10)0020020.6462 (4)1.0930 (2)0.6027 (3)0.0294 (9)0030030.4809 (4)1.0153 (2)0.8640 (4)0.0363 (11)0.0208 (11)C010.6523 (5)0.9121 (3)0.7010 (4)0.0208 (11)0.0208 (11)C020.6823 (5)1.0544 (3)0.6816 (4)0.0211 (11)0.0599 (10C110.8014 (8)1.1388 (5)0.9379 (8)0.0200 (19)0.659 (10C120.7270 (8)1.1603 (5)1.0104 (7)0.022 (2)0.659 (10C130.6778 (8)1.2305 (5)0.9964 (9)0.025 (2)0.659 (10H130.6271.24651.04560.03*0.659 (10H140.66481.32470.90580.03*0.659 (10))
H1C0.8881.04091.01190.021*0.341 (10)H1D0.91451.08420.91480.021*0.341 (10)N20.8171 (4)0.8488 (2)0.3722 (3)0.0165 (8)O010.6021 (4)0.8662 (2)0.6363 (3)0.0324 (10)O020.6462 (4)1.0930 (2)0.6027 (3)0.0294 (9)O030.4809 (4)1.0153 (2)0.8640 (4)0.0363 (11)C010.6523 (5)0.9121 (3)0.7010 (4)0.0208 (11)C020.6823 (5)1.0544 (3)0.6816 (4)0.0211 (11)C030.5790 (5)1.0036 (3)0.8445 (5)0.0227 (11)C110.8014 (8)1.1388 (5)0.9379 (8)0.0200 (19)0.659 (10)C120.7270 (8)1.1603 (5)1.0104 (7)0.022 (2)0.659 (10)H130.6271.24651.04560.03*0.659 (10)H140.66481.32470.90580.03*0.659 (10)))
H1D0.91451.08420.91480.021*0.341 (10)N20.8171 (4)0.8488 (2)0.3722 (3)0.0165 (8)O010.6021 (4)0.8662 (2)0.6363 (3)0.0324 (10)O020.6462 (4)1.0930 (2)0.6027 (3)0.0294 (9)O030.4809 (4)1.0153 (2)0.8640 (4)0.0363 (11)C010.6523 (5)0.9121 (3)0.7010 (4)0.0208 (11)C020.6823 (5)1.0544 (3)0.6816 (4)0.0217 (11)C030.5790 (5)1.0036 (3)0.8445 (5)0.0227 (11)C110.8014 (8)1.1388 (5)0.9379 (8)0.0200 (19)0.659 (10)C120.7270 (8)1.1603 (5)1.0104 (7)0.022 (2)0.659 (10)C130.6271.24651.04560.03*0.659 (10)H130.6271.24651.04560.03*0.659 (10)H140.66481.32470.90580.03*0.659 (10)))
N2 0.8171 (4) 0.8488 (2) 0.3722 (3) 0.0165 (8) O01 0.6021 (4) 0.8662 (2) 0.6363 (3) 0.0324 (10) O02 0.6462 (4) 1.0930 (2) 0.6027 (3) 0.0294 (9) O03 0.4809 (4) 1.0153 (2) 0.8640 (4) 0.0363 (11) C01 0.6523 (5) 0.9121 (3) 0.7010 (4) 0.0208 (11) C02 0.6823 (5) 1.0544 (3) 0.6816 (4) 0.0211 (11) C03 0.5790 (5) 1.0036 (3) 0.8445 (5) 0.0227 (11) C11 0.8014 (8) 1.1388 (5) 0.9379 (8) 0.0200 (19) 0.659 (10) C12 0.7270 (8) 1.1603 (5) 1.0104 (7) 0.022 (2) 0.659 (10) C13 0.6778 (8) 1.2305 (5) 0.9964 (9) 0.025 (2) 0.659 (10) H13 0.627 1.2465 1.0456 0.03* 0.659 (10) C14 0.7005 (8) 1.2773 (6) 0.9139 (8) 0.025 (2) 0.659 (10) H14 0.6648 1.3247 0.9058))
O01 0.6021 (4) 0.8662 (2) 0.6363 (3) 0.0324 (10) O02 0.6462 (4) 1.0930 (2) 0.6027 (3) 0.0294 (9) O03 0.4809 (4) 1.0153 (2) 0.8640 (4) 0.0363 (11) C01 0.6523 (5) 0.9121 (3) 0.7010 (4) 0.0208 (11) C02 0.6823 (5) 1.0544 (3) 0.6816 (4) 0.0211 (11) C03 0.5790 (5) 1.0036 (3) 0.8445 (5) 0.0227 (11) C11 0.8014 (8) 1.1388 (5) 0.9379 (8) 0.0200 (19) 0.659 (10) C12 0.7270 (8) 1.1603 (5) 1.0104 (7) 0.022 (2) 0.659 (10) C13 0.6778 (8) 1.2305 (5) 0.9964 (9) 0.025 (2) 0.659 (10) H13 0.627 1.2465 1.0456 0.03* 0.659 (10) C14 0.7005 (8) 1.2773 (6) 0.9139 (8) 0.025 (2) 0.659 (10) H14 0.6648 1.3247 0.9058 0.03* 0.659 (10)	
O02 0.6462 (4) 1.0930 (2) 0.6027 (3) 0.0294 (9) O03 0.4809 (4) 1.0153 (2) 0.8640 (4) 0.0363 (11) C01 0.6523 (5) 0.9121 (3) 0.7010 (4) 0.0208 (11) C02 0.6823 (5) 1.0544 (3) 0.6816 (4) 0.0211 (11) C03 0.5790 (5) 1.0036 (3) 0.8445 (5) 0.0227 (11) C11 0.8014 (8) 1.1388 (5) 0.9379 (8) 0.0200 (19) 0.659 (10) C12 0.7270 (8) 1.1603 (5) 1.0104 (7) 0.022 (2) 0.659 (10) C13 0.6778 (8) 1.2305 (5) 0.9964 (9) 0.025 (2) 0.659 (10) H13 0.627 1.2465 1.0456 0.03* 0.659 (10) C14 0.7005 (8) 1.2773 (6) 0.9139 (8) 0.025 (2) 0.659 (10) H14 0.6648 1.3247 0.9058 0.03* 0.659 (10)	
O03 0.4809 (4) 1.0153 (2) 0.8640 (4) 0.0363 (11) C01 0.6523 (5) 0.9121 (3) 0.7010 (4) 0.0208 (11) C02 0.6823 (5) 1.0544 (3) 0.6816 (4) 0.0211 (11) C03 0.5790 (5) 1.0036 (3) 0.8445 (5) 0.0227 (11) C11 0.8014 (8) 1.1388 (5) 0.9379 (8) 0.0200 (19) 0.659 (10) C12 0.7270 (8) 1.1603 (5) 1.0104 (7) 0.022 (2) 0.659 (10) C13 0.6778 (8) 1.2305 (5) 0.9964 (9) 0.025 (2) 0.659 (10) H13 0.627 1.2465 1.0456 0.03* 0.659 (10) H14 0.6648 1.3247 0.9058 0.03* 0.659 (10)	
C01 0.6523 (5) 0.9121 (3) 0.7010 (4) 0.0208 (11) C02 0.6823 (5) 1.0544 (3) 0.6816 (4) 0.0211 (11) C03 0.5790 (5) 1.0036 (3) 0.8445 (5) 0.0227 (11) C11 0.8014 (8) 1.1388 (5) 0.9379 (8) 0.0200 (19) 0.659 (10) C12 0.7270 (8) 1.1603 (5) 1.0104 (7) 0.022 (2) 0.659 (10) C13 0.6778 (8) 1.2305 (5) 0.9964 (9) 0.025 (2) 0.659 (10) H13 0.627 1.2465 1.0456 0.03* 0.659 (10) C14 0.7005 (8) 1.2773 (6) 0.9139 (8) 0.025 (2) 0.659 (10) H14 0.6648 1.3247 0.9058 0.03* 0.659 (10)	
C02 0.6823 (5) 1.0544 (3) 0.6816 (4) 0.0211 (11) C03 0.5790 (5) 1.0036 (3) 0.8445 (5) 0.0227 (11) C11 0.8014 (8) 1.1388 (5) 0.9379 (8) 0.0200 (19) 0.659 (10) C12 0.7270 (8) 1.1603 (5) 1.0104 (7) 0.022 (2) 0.659 (10) C13 0.6778 (8) 1.2305 (5) 0.9964 (9) 0.025 (2) 0.659 (10) H13 0.627 1.2465 1.0456 0.03* 0.659 (10) C14 0.7005 (8) 1.2773 (6) 0.9139 (8) 0.025 (2) 0.659 (10) H14 0.6648 1.3247 0.9058 0.03* 0.659 (10)	
C030.5790 (5)1.0036 (3)0.8445 (5)0.0227 (11)C110.8014 (8)1.1388 (5)0.9379 (8)0.0200 (19)0.659 (10)C120.7270 (8)1.1603 (5)1.0104 (7)0.022 (2)0.659 (10)C130.6778 (8)1.2305 (5)0.9964 (9)0.025 (2)0.659 (10)H130.6271.24651.04560.03*0.659 (10)C140.7005 (8)1.2773 (6)0.9139 (8)0.025 (2)0.659 (10)H140.66481.32470.90580.03*0.659 (10)	
C110.8014 (8)1.1388 (5)0.9379 (8)0.0200 (19)0.659 (10)C120.7270 (8)1.1603 (5)1.0104 (7)0.022 (2)0.659 (10)C130.6778 (8)1.2305 (5)0.9964 (9)0.025 (2)0.659 (10)H130.6271.24651.04560.03*0.659 (10)C140.7005 (8)1.2773 (6)0.9139 (8)0.025 (2)0.659 (10)H140.66481.32470.90580.03*0.659 (10)	
C120.7270 (8)1.1603 (5)1.0104 (7)0.022 (2)0.659 (10C130.6778 (8)1.2305 (5)0.9964 (9)0.025 (2)0.659 (10H130.6271.24651.04560.03*0.659 (10C140.7005 (8)1.2773 (6)0.9139 (8)0.025 (2)0.659 (10H140.66481.32470.90580.03*0.659 (10))
C130.6778 (8)1.2305 (5)0.9964 (9)0.025 (2)0.659 (10H130.6271.24651.04560.03*0.659 (10C140.7005 (8)1.2773 (6)0.9139 (8)0.025 (2)0.659 (10H140.66481.32470.90580.03*0.659 (10))
H130.6271.24651.04560.03*0.659 (10C140.7005 (8)1.2773 (6)0.9139 (8)0.025 (2)0.659 (10H140.66481.32470.90580.03*0.659 (10))
C140.7005 (8)1.2773 (6)0.9139 (8)0.025 (2)0.659 (10H140.66481.32470.90580.03*0.659 (10))
H14 0.6648 1.3247 0.9058 0.03* 0.659 (10))
))
C15 0.7754 (8) 1.2551 (5) 0.8425 (7) 0.025 (2) 0.659 (10))
H15 0.7924 1.2871 0.7854 0.03* 0.659 (10))
C16 0.8250 (9) 1.1859 (6) 0.8557 (8) 0.023 (2) 0.659 (10))
H16 0.8766 1.1703 0.807 0.027* 0.659 (10))
C121 0.7031 (9) 1.1098 (5) 1.1036 (9) 0.032 (2) 0.659 (10))
H12A 0.638 1.1311 1.1371 0.048* 0.659 (10))
H12B 0.7841 1.1025 1.167 0.048* 0.659 (10	9)

Re1	0.01788 (12)	0.01279 (12)	0.01337 (10)	-0.00031 (8)	0.00393 (8)	0.00151 (7)
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Atomic displacer	nent parameters	$(Å^2)$				
H38C	0.5502	0.8451	0.2599	0.0	56*	
H38B	0.6167	0.7782	0.2134	0.0	56*	
H38A	0.5259	0.7642	0.2977	0.0	56*	
C38	0.5894 (6)	0.7972 (3)	0.2804	(6) 0.0	370 (15)	
H37B	0.6777	0.8244	0.4546	0.0	3*	
H37A	0.7392	0.7541	0.4133	0.0	3*	
C37	0.7062 (5)	0.8034 (3)	0.3888	(5) 0.0	249 (12)	
H36C	0.6294	0.941	0.4153	0.0	42*	
H36B	0.7693	0.9687	0.4918	0.0	42*	
H36A	0.6865	1.0151	0.3807	0.0	42*	
C36	0.7084 (6)	0.9660 (3)	0.4118	(5) 0.0	281 (12)	
H35B	0.7065	0.9212	0.2513	0.0	26*	
H35A	0.8448	0.9532	0.3222	0.0	26*	
C35	0.7702 (5)	0.9248 (3)	0.3309	(4) 0.0	217 (11)	
H34C	1.0907	0.865	0.4478	0.0	5*	
H34B	1.0181	0.9396	0.4558	0.0	5*	
H34A	1.0957	0.8983	0.5748	0.0	5*	
C34	1.0420 (5)	0.8920 (4)	0.4925	(5) 0.0	336 (14)	
H33B	0.9455	0.8003	0.5165	0.0	26*	
H33A	0.8832	0.8725	0.5508	0.0	26*	
C33	0.9209 (5)	0.8507 (3)	0.4913	(4) 0.0	215 (11)	
H32C	1.0075	0.7462	0.3743	0.0	48*	
H32B	0.8686	0.7095	0.3192	0.0	48*	
H32A	0.9594	0.7263	0.2359	0.0	48*	
C32	0.9320 (6)	0.7433 (3)	0.3040	(5) 0.0	321 (14)	
H31B	0.937	0.8514	0.2639	0.0	29*	
H31A	0.8	0.8148	0.2015	0.0	29*	
C31	0.8711 (5)	0.8176 (3)	0.2768	(4) 0.0	240 (11)	
H22C	0.9355	1.1947	0.8694	0.0	27*	0.341 (10)
H22B	0.8145	1.1692	0.7622	0.0	27*	0.341 (10)
H22A	0.8303	1.2526	0.8002	0.0	27*	0.341 (10)
C221	0.8433 (19)	1.2027 (11)	0.8293	(17) 0.0	18 (5)*	0.341 (10)
H26	0.6955	1.0653	1.0859	0.0	23*	0.341 (10)
C26	0.6933 (16)	1.1111 (10)	1.0483	(16) 0.0	19 (4)*	0.341 (10)
C21	0.7704 (18)	1.1241 (11)	0.9674	(16) 0.0	20 (5)*	0.341 (10)
H23	0.6782	1.2906	0.9013	0.0	25*	0.341 (10)
C23	0.6844 (18)	1.2448 (12)	0.9392	(19) 0.0	20 (4)*	0.341 (10)
H24	0.5629	1.2698	1.0328	0.0	39*	0.341 (10)
C24	0.615 (2)	1.2320 (11)	1.0160	(16) 0.0	32 (4)*	0.341 (10)
C22	0.7679 (15)	1.1900 (9)	0.9138	(13) 0.0	21 (4)*	0.341 (10)
H25	0.5649	1.1593	1.1224	0.0	35*	0.341 (10)
C25	0.6163 (16)	1.1668 (10)	1.0700	(14) 0.0	29 (4)*	0.341 (10)
H12C	0.6717	1.0631	1.0669	0.0	48*	0.659 (10)

Br1	0.0253 (3)	0.0146 (2)	0.0156 (2)	-0.0011 (2)	0.00488 (19)	0.00306 (17)
Br2	0.0216 (3)	0.0210 (3)	0.0157 (2)	-0.0011 (2)	0.00766 (19)	-0.00174 (18)
N1	0.023 (2)	0.012 (2)	0.0162 (19)	-0.0010 (17)	0.0056 (16)	0.0001 (15)
N2	0.021 (2)	0.015 (2)	0.0133 (18)	0.0006 (17)	0.0048 (16)	0.0014 (15)
O01	0.041 (2)	0.025 (2)	0.026 (2)	-0.0135 (19)	0.0027 (17)	-0.0051 (17)
O02	0.044 (2)	0.020 (2)	0.0220 (19)	0.0010 (18)	0.0058 (17)	0.0058 (16)
O03	0.025 (2)	0.055 (3)	0.033 (2)	0.008 (2)	0.0136 (18)	0.014 (2)
C01	0.023 (3)	0.018 (3)	0.020 (2)	-0.004 (2)	0.005 (2)	0.008 (2)
C02	0.025 (3)	0.020 (3)	0.019 (2)	-0.001 (2)	0.008 (2)	-0.001 (2)
C03	0.024 (3)	0.022 (3)	0.021 (3)	0.000 (2)	0.006 (2)	0.007 (2)
C11	0.012 (4)	0.027 (5)	0.017 (4)	-0.004 (4)	-0.002 (3)	-0.003 (3)
C12	0.023 (4)	0.020 (4)	0.022 (4)	0.004 (3)	0.005 (3)	-0.005 (3)
C13	0.018 (5)	0.028 (5)	0.029 (5)	0.001 (4)	0.008 (4)	-0.008 (4)
C14	0.023 (5)	0.022 (5)	0.026 (4)	-0.002 (4)	0.001 (3)	-0.004 (4)
C15	0.023 (4)	0.022 (5)	0.026 (4)	-0.006 (4)	-0.002 (3)	0.006 (3)
C16	0.027 (5)	0.028 (5)	0.016 (4)	-0.004 (4)	0.009 (4)	0.000 (4)
C121	0.039 (6)	0.035 (6)	0.026 (5)	-0.006 (4)	0.016 (4)	0.001 (4)
C31	0.033 (3)	0.025 (3)	0.016 (2)	0.003 (2)	0.011 (2)	-0.001 (2)
C32	0.050 (4)	0.022 (3)	0.029 (3)	0.000 (3)	0.019 (3)	-0.004 (2)
C33	0.031 (3)	0.018 (3)	0.012 (2)	0.008 (2)	0.001 (2)	0.0021 (18)
C34	0.023 (3)	0.041 (4)	0.032 (3)	0.001 (3)	0.001 (2)	-0.004 (3)
C35	0.023 (3)	0.015 (3)	0.023 (2)	0.000 (2)	0.001 (2)	0.006 (2)
C36	0.033 (3)	0.020 (3)	0.030 (3)	0.007 (2)	0.007 (2)	-0.003 (2)
C37	0.027 (3)	0.020 (3)	0.031 (3)	-0.004 (2)	0.013 (2)	-0.003 (2)
C38	0.028 (3)	0.029 (4)	0.052 (4)	-0.010(3)	0.008 (3)	-0.011(3)

Geometric parameters (Å, °)

Re1—C03	1.884 (6)	C22—C21	1.37 (2)
Re1—C01	1.895 (5)	C22—C23	1.44 (2)
Re1—C02	1.909 (5)	C22—C221	1.47 (2)
Re1—N1	2.241 (4)	C24—C23	1.35 (3)
Re1—Br2	2.6370 (8)	C24—H24	0.95
Re1—Br1	2.6389 (7)	С23—Н23	0.95
N1—C11	1.452 (10)	C21—C26	1.45 (3)
N1—C21	1.47 (2)	С26—Н26	0.95
N1—H1A	0.92	C221—H22A	0.98
N1—H1B	0.92	C221—H22B	0.98
N1—H1C	0.92	C221—H22C	0.98
N1—H1D	0.92	C31—C32	1.514 (8)
N2—C31	1.518 (6)	C31—H31A	0.99
N2—C37	1.518 (6)	C31—H31B	0.99
N2—C33	1.518 (6)	C32—H32A	0.98
N2—C35	1.523 (6)	С32—Н32В	0.98
O01—C01	1.162 (6)	С32—Н32С	0.98
O02—C02	1.145 (6)	C33—C34	1.508 (8)
O03—C03	1.164 (7)	С33—Н33А	0.99
C11—C16	1.377 (14)	С33—Н33В	0.99
C11—C12	1.385 (12)	C34—H34A	0.98

C12—C13	1.392 (12)	C34—H34B	0.98
C12—C121	1.516 (12)	C34—H34C	0.98
C13—C14	1.372 (13)	C35—C36	1.513 (7)
С13—Н13	0.95	С35—Н35А	0.99
C14—C15	1.383 (12)	С35—Н35В	0.99
C14—H14	0.95	С36—Н36А	0.98
C15—C16	1.377 (13)	С36—Н36В	0.98
С15—Н15	0.95	С36—Н36С	0.98
С16—Н16	0.95	C37—C38	1.515 (7)
C121—H12A	0.98	С37—Н37А	0.99
C121—H12B	0.98	С37—Н37В	0.99
C121—H12C	0.98	С38—Н38А	0.98
C25—C24	1.36 (3)	C38—H38B	0.98
C25—C26	1.39 (2)	C38—H38C	0.98
С25—Н25	0.95		
C03—Re1—C01	89.6 (2)	C23—C24—C25	122 (2)
C03—Re1—C02	88.5 (2)	C23—C24—H24	118.9
C01—Re1—C02	89.0 (2)	C25—C24—H24	118.9
C03—Re1—N1	94.1 (2)	C24—C23—C22	121 (2)
C01—Re1—N1	174.31 (19)	C24—C23—H23	119.5
C02—Re1—N1	95.41 (19)	С22—С23—Н23	119.5
C03—Re1—Br2	177.68 (17)	C22—C21—C26	120.7 (17)
C01—Re1—Br2	92.67 (16)	C22—C21—N1	120.3 (15)
C02—Re1—Br2	91.17 (16)	C26—C21—N1	119.0 (15)
N1—Re1—Br2	83.64 (11)	C25—C26—C21	118.8 (17)
C03—Re1—Br1	90.87 (16)	C25—C26—H26	120.6
C01—Re1—Br1	93.02 (15)	C21—C26—H26	120.6
C02—Re1—Br1	177.91 (15)	C22—C221—H22A	109.5
N1—Re1—Br1	82.64 (11)	C22—C221—H22B	109.5
Br2—Re1—Br1	89.37 (3)	H22A—C221—H22B	109.5
C11—N1—Re1	118.0 (4)	C22—C221—H22C	109.5
C21—N1—Re1	113.2 (8)	H22A—C221—H22C	109.5
C11—N1—H1A	107.8	H22B—C221—H22C	109.5
C21—N1—H1A	88.4	C32—C31—N2	115.1 (4)
Re1—N1—H1A	107.8	C32—C31—H31A	108.5
C11—N1—H1B	107.8	N2—C31—H31A	108.5
C21—N1—H1B	128.7	C32—C31—H31B	108.5
Re1—N1—H1B	107.8	N2—C31—H31B	108.5
H1A—N1—H1B	107.1	H31A—C31—H31B	107.5
C11—N1—H1C	123.4	C31—C32—H32A	109.5
C21—N1—H1C	108.7	C31—C32—H32B	109.5
Re1—N1—H1C	108.9	H32A—C32—H32B	109.5
H1B—N1—H1C	84.8	C31—C32—H32C	109.5
C11—N1—H1D	86	H32A—C32—H32C	109.5
C21—N1—H1D	109.3	H32B—C32—H32C	109.5
Re1—N1—H1D	108.9	C34—C33—N2	115.2 (4)
H1A—N1—H1D	127.7	С34—С33—Н33А	108.5
H1C—N1—H1D	107.7	N2—C33—H33A	108.5
C31—N2—C37	111.6 (4)	С34—С33—Н33В	108.5
	· /		

C31—N2—C33	110.6 (4)	N2—C33—H33B	108.5
C37—N2—C33	107.0 (4)	H33A—C33—H33B	107.5
C31—N2—C35	106.1 (4)	С33—С34—Н34А	109.5
C37—N2—C35	110.4 (4)	С33—С34—Н34В	109.5
C33—N2—C35	111.2 (4)	H34A—C34—H34B	109.5
O01-C01-Re1	179.1 (5)	С33—С34—Н34С	109.5
O02-C02-Re1	176.6 (5)	H34A—C34—H34C	109.5
O03—C03—Re1	178.2 (5)	H34B—C34—H34C	109.5
C16—C11—C12	120.4 (9)	C36—C35—N2	115.4 (4)
C16-C11-N1	118.6 (8)	С36—С35—Н35А	108.4
C12-C11-N1	120.9 (8)	N2—C35—H35A	108.4
C11—C12—C13	117.6 (9)	С36—С35—Н35В	108.4
C11—C12—C121	121.0 (8)	N2—C35—H35B	108.4
C13—C12—C121	121.3 (8)	H35A—C35—H35B	107.5
C14—C13—C12	122.0 (9)	С35—С36—Н36А	109.5
C14—C13—H13	119	С35—С36—Н36В	109.5
С12—С13—Н13	119	H36A—C36—H36B	109.5
C13—C14—C15	119.8 (9)	С35—С36—Н36С	109.5
C13—C14—H14	120.1	H36A—C36—H36C	109.5
C15-C14-H14	120.1	H36B—C36—H36C	109.5
C16—C15—C14	118.8 (8)	C38—C37—N2	115.4 (4)
C16-C15-H15	120.6	С38—С37—Н37А	108.4
C14—C15—H15	120.6	N2—C37—H37A	108.4
C11—C16—C15	121.4 (9)	С38—С37—Н37В	108.4
C11—C16—H16	119.3	N2—C37—H37B	108.4
C15—C16—H16	119.3	Н37А—С37—Н37В	107.5
C24—C25—C26	119.9 (17)	C37—C38—H38A	109.5
С24—С25—Н25	120.1	С37—С38—Н38В	109.5
С26—С25—Н25	120.1	H38A—C38—H38B	109.5
C21—C22—C23	117.4 (17)	С37—С38—Н38С	109.5
C21—C22—C221	120.7 (16)	H38A—C38—H38C	109.5
C23—C22—C221	121.8 (17)	H38B—C38—H38C	109.5
C03—Re1—N1—C11	-53.5 (5)	C21—C22—C23—C24	2(3)
C02—Re1—N1—C11	35.4 (5)	C221—C22—C23—C24	179.3 (18)
Br2—Re1—N1—C11	126.0 (5)	C23—C22—C21—C26	-1(2)
Br1-Re1-N1-C11	-143.8 (5)	C221—C22—C21—C26	-178.4 (16)
C03—Re1—N1—C21	-27.2 (8)	C23—C22—C21—N1	177.8 (14)
C02—Re1—N1—C21	61.6 (8)	C221—C22—C21—N1	1(2)
Br2—Re1—N1—C21	152.2 (8)	C11—N1—C21—C22	8.0 (12)
Br1—Re1—N1—C21	-117.6 (8)	Re1—N1—C21—C22	-99.0 (15)
C21—N1—C11—C16	-165 (2)	C11—N1—C21—C26	-173 (3)
Re1—N1—C11—C16	-80.3 (8)	Re1-N1-C21-C26	79.9 (15)
C21—N1—C11—C12	11.7 (19)	C24—C25—C26—C21	0(3)
Re1-N1-C11-C12	96.2 (7)	C22-C21-C26-C25	0(3)
C16-C11-C12-C13	0.2 (12)	N1-C21-C26-C25	-178.6 (14)
N1-C11-C12-C13	-176.2 (7)	C37—N2—C31—C32	-63.7 (6)
C16—C11—C12—C121	-178.4 (8)	C33—N2—C31—C32	55.3 (6)
N1-C11-C12-C121	5.2 (12)	C35—N2—C31—C32	176.0 (5)
C11—C12—C13—C14	0.4 (12)	C31—N2—C33—C34	56.7 (6)

C121—C12—C13—C14	178.9 (8)	C37—N2—C33—C34	178.4 (5)
C12-C13-C14-C15	-0.7 (13)	C35—N2—C33—C34	-60.9 (6)
C13-C14-C15-C16	0.5 (13)	C31—N2—C35—C36	178.4 (4)
C12-C11-C16-C15	-0.4 (13)	C37—N2—C35—C36	57.3 (6)
N1-C11-C16-C15	176.1 (7)	C33—N2—C35—C36	-61.3 (6)
C14-C15-C16-C11	0.0 (13)	C31—N2—C37—C38	-61.2 (6)
C26—C25—C24—C23	1(3)	C33—N2—C37—C38	177.7 (5)
C25—C24—C23—C22	-2(3)	C35—N2—C37—C38	56.6 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1C…Br2 ⁱ	0.92	2.7	3.542 (4)	153
N1—H1B…Br1 ⁱ	0.92	2.75	3.594 (4)	153
C121—H12C····O03 ⁱⁱ	0.98	2.5	3.139 (10)	123
C35—H35B…O03 ⁱⁱⁱ	0.99	2.39	3.196 (7)	138
C37—H37A···Br1 ^{iv}	0.99	2.92	3.911 (6)	174
	1			

Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+1, -y+2, -z+2; (iii) -x+1, -y+2, -z+1; (iv) x, -y+3/2, z-1/2.

Fig. 1

