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Runs of homozygosity (ROH) are pervasive in diploid genomes and expose the effects of deleterious recessive mutations, but how

exactly these regions contribute to variation in fitness remains unclear. Here, we combined empirical analyses and simulations to

explore the deleterious effects of ROH with varying genetic map lengths in wild Soay sheep. Using a long-term dataset of 4879

individuals genotyped at 417K SNPs, we found that inbreeding depression increases with ROH length. A 1% genomic increase

in long ROH (>12.5 cM) reduced the odds of first-year survival by 12.4% compared to only 7.7% for medium ROH (1.56–12.5

cM), whereas short ROH (<1.56 cM) had no effect on survival. We show by forward genetic simulations that this is predicted:

compared to shorter ROH, long ROH will have higher densities of deleterious alleles, with larger average effects on fitness and

lower population frequencies. Taken together, our results are consistent with the idea that the mutation load decreases in older

haplotypes underlying shorter ROH, where purifying selection has hadmore time to purge deleterious mutations. Finally, our study

demonstrates that strong inbreeding depression can persist despite ongoing purging in a historically small population.
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Impact Statement
The harmful consequences of inbreeding have fascinated sci-

entists since Darwin, but only recently have genomic tools al-

lowed us to study the underlying genetic causes. We know

now that the reduction in fitness in inbred individuals, termed

inbreeding depression, is due to increased homozygosity

across the genome. This causes more deleterious recessive

mutations to express their effects, thereby affecting health,

fertility, and survival. Inbreeding depression can be particu-

larly problematic for wild species with small population sizes,

where inbreeding is common and can accelerate extinction.

Yet, the complex relationship between inbreeding depression,

deleterious mutations and their removal by natural selection is

not well understood in wild populations.

Here we studied the genetics of inbreeding depression

in wild Soay sheep, a primitive breed that has lived largely

unmanaged on the Scottish St. Kilda archipelago for thou-

sands of years. All individuals, but in particular inbred indi-

viduals, carried many ROH, which are continuous stretches of

homozygous genotypes. We found that long ROH reduced the

probability of an individual surviving its first winter dispro-

portionately more than short ROH, because long ROH are en-

riched for deleterious mutations. Using detailed genetic sim-

ulations of our population where we tracked every mutation

in each individual, we found that this pattern emerges because

natural selection constantly removes strongly deleterious mu-

tations from the population, leaving older and shorter ROH

with fewer mutations. Overall, our study provides a glimpse

into the complex interplay between individual fitness, delete-

rious mutations and selection against these mutations in a wild

mammal population.

Introduction
The structure of deleterious genetic variation in natural popula-

tions shapes a range of processes in evolutionary biology, such

as the strength of inbreeding depression and the efficiency of
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genetic purging (Charlesworth and Willis, 2009; Hedrick and

Garcia-Dorado, 2016). The role of deleterious mutations is also

increasingly discussed in applied conservation, in particular when

considering genetic rescue of small populations (Kyriazis et al.,

2021; Ralls et al., 2020). To date, studies in wild populations

have mostly focused on average, genome-wide fitness effects

of deleterious recessive alleles through measuring genome-wide

inbreeding coefficients (Hoffman et al., 2014; Bérénos et al.,

2016; Chen et al., 2016; Huisman et al., 2016; Harrisson et al.,

2019; Niskanen et al., 2020), or genome-sequence based predic-

tions of deleterious mutations (Xue et al., 2015; Robinson et al.,

2018; Grossen et al., 2020). Therefore, we still know very little

about how deleterious mutations in different parts of the genome

contribute to inbreeding depression, as these analyses usually

require large samples of individuals with known fitness and

dense genomic data—both of which are scarce in wild nonmodel

organisms.

In populations for which mapped genetic markers are avail-

able, runs of homozygosity (ROH) open up new possibilities for

studying the effects of (partially) recessive deleterious variation.

These long stretches of homozygous genotypes are ubiquitous in

diploid genomes and commonly arise when individuals inherit

homologous haplotypes which are identical by descent (IBD),

originating from a single copy of the region in a common an-

cestor. Offspring of related parents have more ROH, which in

turn increases the probability that partially recessive deleteri-

ous alleles are expressed, thereby causing inbreeding depression

(Charlesworth and Willis, 2009). The lengths and numbers of

ROH can vary widely between individuals, and have been shown

to contribute to the genetic architecture of complex traits and dis-

eases in humans (Ceballos et al., 2018; Clark et al., 2019) and to

production traits in livestock (Pryce et al., 2014; Ferenčaković

et al., 2017). In wild populations, ROH are increasingly used

to precisely measure individual inbreeding coefficients (Kardos,

Luikart, and Allendorf, 2015; Kardos et al., 2018) and the ef-

fects of inbreeding on fitness (Stoffel et al., 2021b; Bérénos et al.,

2016). Moreover, genome-wide association studies (GWAS) are

starting to uncover associations between ROH at specific loca-

tions in the genome and complex traits or fitness, thereby pro-

viding information about the distribution of effect sizes at loci

causing inbreeding depression (Stoffel et al., 2021b; Pryce et al.,

2014).

The length of an ROH allows one to estimate the time to a

most recent common ancestor (MRCA) of the underlying IBD

haplotypes (Thompson, 2013). In any given generation, DNA

is inherited in physically large chunks with genetic map lengths

of around 100 centimorgan (cM), and recombination breaks up

these segments in successive generations. For example, an initial

segment is broken up into smaller IBD segments with an expected

length of 2 cM after 25 generations, or 50 meioses (Thompson,

2013). The expected genetic map length (L) of an ROH can be

estimated as L = 100/(2 × g) cM, where g is the number of

generations to the MRCA (Thompson, 2013), though the distri-

bution is exponential with high variance due to stochastic effects

of recombination and Mendelian segregation (Thompson, 2013;

Kardos et al., 2016). Long ROH originating from close inbreed-

ing are expected to have a recent ancestor, whereas short ROH

have an ancestor further back in the pedigree. In addition, when

the effective size (Ne) of a population has been small at a given

point in the recent history, ROH with an MRCA at that point will

be more abundant in the current population. The relative frequen-

cies of ROH of different lengths are therefore informative about

recent fluctuations in population sizes (Browning and Browning,

2015; Kardos, Qvarnström, and Ellegren, 2017; Ceballos et al.,

2018).

Considering jointly the fitness effects and sizes of ROH al-

lows us to investigate how ROH lengths (and therefore haplotype

ages) are associated with inbreeding depression and mutation

load. Given that ROH lengths provide an expectation for the

number of generations for which the underlying haplotypes

have been exposed to selection, we hypothesize the following:

Short ROH originating further back in the pedigree should be

depleted of deleterious recessive variation, as purifying selection

has had many generations to remove these mutations. In con-

trast, long ROH emerging from younger haplotypes should on

average carry larger numbers of strongly deleterious recessive

mutations at lower frequencies, and therefore be associated

with stronger effects on fitness. In humans, ROH in general

and especially long ROH are enriched for mutations which

are predicted to be deleterious (Pemberton and Szpiech, 2018;

Szpiech et al., 2019, 2013), but to our knowledge, these pre-

dictions have not been tested using actual fitness data in a wild

population. Quantifying the fitness effects of different ROH

length classes could help to understand the genetic basis of

inbreeding depression and provide a novel way to assess the

efficiency of selection against deleterious mutations in wild

populations.

Here, we combined long-term life-history data for 4879

wild Soay sheep with 417K SNP genotypes and linkage map

information to test whether inbreeding coefficients (FROH) cal-

culated from ROH with long, medium, and short genetic map

lengths differ in their contribution to inbreeding depression

in first-year survival. We then used forward genetic simula-

tions based on the Soay sheep demographic history to quan-

tify the expected differences in the mutation load among ROH

length classes and to explore the underlying causes. We dis-

cuss how our results fit into current knowledge about inbreed-

ing depression and purging in small populations and method-

ological implications for studying the genetic basis of inbreeding

depression.
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Materials and Methods
STUDY POPULATION

Soay sheep are descendants of primitive European domestic

sheep and have lived unmanaged on the St. Kilda archipelago,

Scotland, for thousands of years (Clutton-Brock and Pemberton,

2004). A part of the population in the Village Bay area on the

island of Hirta (57°49’N, 8°34’W) has been the focus of a long-

term individual-based study since 1985 (Clutton-Brock and Pem-

berton, 2004). More than 95% of individuals in the study area are

ear-tagged within a week after birth during the lambing season

from March to May, and DNA samples are obtained from either

blood samples or ear punches. Routine mortality checks, in par-

ticular during peak mortality at the end of winter, usually find

around 80% of deceased animals (Bérénos et al., 2016). Here, we

focused on the fitness trait “first-year survival”, where every in-

dividual was given a 1 if it survived from birth (March to May) to

the April 30 of the next year, and a 0 if it did not, with measures

available for 4879 individuals born from 1979 to 2018. To impute

genotypes, we assembled a pedigree based on 438 unlinked SNP

markers from the Ovine SNP50 BeadChip using the R package

Sequoia (Huisman, 2017). In the few cases where no SNP geno-

types were available, we used either observations from the field or

microsatellite markers (Morrissey et al., 2012). All animal works

were carried out according to UK Home Office procedures and

were licensed under the UK Animals (Scientific Procedures) Act

of 1986 (Project License no. PPL70/8818).

GENOTYPING

We genotyped a total of 7700 Soay sheep on the Illumina Ovine

SNP50 BeadChip. We used the check�marker function in Gen-

ABEL version 1.8-0 (Aulchenko et al., 2007) for quality control,

filtering for SNPs with minor allele frequency >0.001, SNP locus

genotyping success >0.99, individual genotyping success >0.95,

and identity by state with another individual <0.9. We also geno-

typed 189 sheep on the Ovine Infinium HD SNP BeadChip, re-

sulting in 430,702 polymorphic SNPs for 188 individuals, after

removing monomorphic SNPs, and filtering for SNPs with SNP

locus genotyping success >0.99 and individual sheep with geno-

typing success >0.95. These sheep were specifically selected to

maximize the genetic diversity represented in the full popula-

tion (for full details, see Johnston et al., 2016). All SNP posi-

tions were based on the Oar_version 3.1 sheep reference genome,

a chromosomal-level assembly with 26 autosomes, one X chro-

mosome, and a scaffold N50 of 100 Mb (GenBank assembly ID

GCA_000298735.1; Jiang et al., 2014).

GENOTYPE IMPUTATION

The detailed genotype imputation methods are presented else-

where (Stoffel et al., 2021b). Briefly, we first merged the datasets

from the 50k SNP chip and from the HD SNP chip with—bmerge

in PLINK version 1.90b6.12 (Purcell et al., 2007), resulting in

a dataset with 436,117 SNPs including 33,068 SNPs genotyped

on both SNP chips. We then discarded SNPs on the X chromo-

some and focused on the 419,281 SNPs located on autosomes.

To impute SNPs with genotypes missing in individuals geno-

typed at the lower SNP density, we used AlphaImpute version

1.98 (Hickey et al., 2012), which uses both genomic and pedi-

gree information for phasing and subsequent imputation of miss-

ing genotypes. After imputation, we filtered SNPs with call rates

below 95%. Overall, this resulted in a dataset with 7691 individu-

als, 417,373 SNPs, and a mean genotyping rate per individual of

99.5% (range 94.8%–100%). We evaluated the accuracy of geno-

type imputation using 10-fold leave-one-out cross-validation. In

each iteration, we randomly chose one individual genotyped on

the high-density (HD) SNP chip, masked genotypes unique to the

HD chip, and imputed the masked genotypes. This allowed us to

compare the imputed genotypes to the true genotypes and to eval-

uate the accuracy of the imputation. Overall, 99.3% of genotypes

were imputed correctly. Moreover, the distribution of inbreeding

coefficients FROH was very similar for individuals genotyped on

the HD chip and individuals with imputed SNPs, indicating little

difference in inferred ROH between the two groups and hence no

obvious bias in ROH calling based on imputed genotypes (Stoffel

et al., 2021b).

INFERRING LINKAGE MAP POSITIONS

We used a dense, sex-averaged Soay sheep linkage map with

36,972 autosomal markers (Johnston et al., 2016) to infer the ge-

netic map positions in cM for each SNP in the imputed dataset.

As the imputed SNP dataset used here had a higher SNP den-

sity than the linkage map SNP dataset, we interpolated the ge-

netic positions of SNPs that were not present in the linkage map

dataset by assuming a constant recombination rate in genomic re-

gions between linkage mapped SNPs (Kardos et al., 2017, 2018).

If two flanking SNPs had the same coordinates on the genetic

map, all imputed SNPs in between were assigned the same ge-

netic map position. If two flanking SNPs had different genetic

map positions, the SNPs in between were assigned increasing ge-

netic map positions depending on the physical distance to each

of the two SNPs. For example, if the two flanking SNPs had

cM positions 3 and 4, an imputed SNP half way between these

SNPs on the physical map got assigned a cM position 3.5. Im-

puted SNPs occurring before the first linkage mapped SNP on a

chromosome were assigned a genetic map position of 0 cM, and

SNPs occurring after the last linkage mapped SNP on a chromo-

some were assigned the same genetic position as the last linkage

mapped SNP.
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ROH CALLING AND INDIVIDUAL INBREEDING

COEFFICIENTS FROH

We focused on ROH quantified by their genetic map lengths

rather than physical map lengths as this accounts for the effects

of recombination rate variation on detected ROH lengths (Kardos

et al., 2017) and allows us to infer an expected time of coales-

cence for each ROH more precisely, assuming ROH are true IBD

segments (Thompson, 2013). To call ROH based on their genetic

map lengths in cM, we used PLINK (Purcell et al., 2007), replac-

ing physical with genetic map positions in the input .map file. To

keep the parameter arguments on a comparable scale to running

PLINK with base-pair positions, we multiplied cM positions by

1 × 106. We then called ROH with a minimum length of 0.39

cM containing at least 25 SNPs while allowing a maximum gap

of 0.25 cM between SNPs and one heterozygote genotype per

ROH using the command “–homozyg –homozyg-window-snp

25 –homozyg-snp 25 –homozyg-kb 390 –homozyg-gap 250 –

homozyg-density 100 –homozyg-window-missing 2 –homozyg-

het 2 –homozyg-window-het 2.” We semi-arbitrarily chose 0.39

cM as the minimum ROH length, which is the expected length of

an ROH when the underlying haplotypes have a MRCA 128 gen-

erations ago as calculated with 100/(2g) cM (Thompson, 2013).

Based on our SNP density, a stretch of genome with length 0.39

cM will contain on average ∼50 SNPs, which, together with a

slow LD decay in Soay sheep (Stoffel et al., 2021b) should be

sufficient to reliably call ROH of that length and above. To cap-

ture biologically interesting time horizons, we qualitatively as-

sessed the distribution of ROH lengths in the population (Fig.

S1), and subsequently clustered ROH into three length classes:

long ROH (>12.5 cM) with an expected MRCA up to four gen-

erations ago and therefore likely to have originated from close

inbreeding, medium ROH (1.56–12.5 cM) originating between

4 and 32 generations ago and reflecting the recent demographic

history of the population and short ROH (0.39–1.56 cM) with an

expected MRCA between 32 and 128 generations ago, reflect-

ing deeper processes in the population history. For each length

class, we calculated individual inbreeding coefficients FROH by

summing up their total ROH length in each individual and divid-

ing this value by the total sex-averaged autosomal map length of

3146 cM. This can be thought of as a genetic map equivalent to

the usual physical map based inbreeding coefficient FROH (Kar-

dos et al., 2018). This resulted in three inbreeding coefficients

per individual, FROHlong, FROHmedium, and FROHshort, each ranging

between 0 and 1.

GENETIC SIMULATIONS

We used simulations to generate baseline expectations for how

ROH length classes are expected to differ in their mutation load,

and how this is influenced by different selection and dominance

coefficients underlying new deleterious mutations. Specifically,

we used forward genetic Wright-Fisher simulations in SLiM 3

(Haller and Messer, 2019) to simulate deleterious mutations and

overlaid neutral mutations using msprime (Kelleher, Etheridge,

and McVean, 2016) and pyslim (Haller et al., 2019).

The Soay sheep were transferred to the St. Kilda archipelago

around 4000 years or roughly 1000 generations ago (Clutton-

Brock and Pemberton, 2004), and their recent Ne has been esti-

mated at 194 (Kijas et al., 2012). We simulated a population with

a demographic history close to that estimated for Soay sheep,

with a larger ancestral population size Nanc = 1000 for a pe-

riod of 10,000 generations, followed by an instantaneous change

to 200 individuals (after arrival on St. Kilda) for 1000 genera-

tions. Starting 30 generations in the past (at generation 10,970),

we simulated an instantaneous bottleneck down to 10 individuals

followed by an exponential recovery to 200 individuals within 20

generations to reflect the bottleneck due to the recent transfer of

107 sheep (22 of which were castrates) from the island of Soay

to the island of Hirta in 1932, and their rapid population increase

to between 600 and 2200 individuals nowadays. This broadly as-

sumes a ratio of effective to census population size of 1:10, which

is in line with Soay sheep Ne estimated from genomic data (Kijas

et al., 2012).

We modeled 100 Mb diploid genomes with a uniformly dis-

tributed recombination rate of 1 × 10−8 per base pair per gener-

ation, so that the physical distance between two SNPs in Mb was

on average equal to their genetic map distance in cM. In each

generation, mutations were simulated at a rate of 1 × 10−8 per

site, with 30% neutral mutations and 70% deleterious mutations

(Kim, Huber, and Lohmueller, 2017). We explored the impact

of different parameters underlying the distribution of fitness ef-

fects (DFE) for new deleterious mutations by simulating a range

of selection and dominance coefficients. Specifically, selection

coefficients s were drawn from gamma distributions with vary-

ing mean s ∈ {−0.01, −0.03, −0.05} and a shape parameter of

0.2, based on values estimated in humans (Eyre-Walker, Woolfit,

and Phelps, 2006). We also varied the dominance coefficients h

for deleterious alleles from fully to partially recessive with h ∈
{0, 0.05, 0.2}. SLiM defines a mutation’s fitness effect when ho-

mozygous as 1 + s and when heterozygous as h(1 + hs). Overall,

we ran nine simulations for all combinations of s and h, with 50

replicates each.

At the end of each SLiM simulation, we generated a list

of segregating deleterious mutations for the 200 individuals and

saved the full tree sequence of the simulation (Haller et al., 2019).

Neutral mutations were then added using the coalescent simulator

msprime (Kelleher et al., 2016) and pyslim (Haller et al., 2019)

and the results for each simulation were saved as vcf files. Be-

fore adding neutral mutations, we used recapitation, a technique

which runs a coalescent simulation back in time to ensure the co-

alescence of all samples (Haller et al., 2019). We then called ROH
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in PLINK with the same parameters as in the empirical data anal-

ysis above, and clustered ROH into the same three ROH length

classes.

Lastly, we combined ROH information with the deleterious

mutation data and calculated the following three statistics, all of

them as averages across all individuals within a given simulation:

(1) The mutation load per cM ROH length. We defined the muta-

tion load per unit length (in cM) for each ROH length class within

an individual with
∑n

1 s∑m
1 ROH (cM) , where the numerator sums up the

selection coefficients s for all n deleterious mutations found in the

respective ROH class, and the denominator sums up the genetic

map lengths of all m ROH segments in the relevant class within

an individual. This measure of mutation load therefore quantifies

the average expected fitness decline per cM of ROH; (2) the aver-

age number of deleterious mutations within each ROH class, per

cM length; (3) the average allele frequency of deleterious muta-

tions within each ROH class in the population. Lastly, in addition

to mutation load, we also calculated a measure of inbreeding load

across ROH classes, for which the general patterns were same as

for mutation load (Supporting Information Analysis 1). We there-

fore report only the mutation load results in the main text.

STATISTICAL ANALYSES

To estimate the effects of the three inbreeding coefficients

FROHlong, FROHmedium, and FROHshort on survival, we fitted a bi-

nomial Bayesian generalized linear mixed model with logit link,

using brms (Bürkner, 2017), a high-level R interface to Stan (Car-

penter et al., 2017). The response variable was first-year survival,

with a value of 1 if a sheep survived to April 30 in the year after it

was born and a value of 0 if it died. We used the following model

structure:

Pr (survi = 1) = logit−1(β0 + FROHlongiβ1

+FROHmediumiβ2 + FROHshortiβ3 + sexiβ4 + twiniβ5

+α
birth year
k + αmother id

l

α
birth year
k ∼ N

(
0, σ2

birth year

)
, for k = 1, . . . , 39

αmother id
l ∼ N

(
0, σ2

mother id

)
, for l = 1, . . . , 1118.

The probability of survival for observation i

(Pr( survi = 1)) was modeled with an intercept β0, the three

population level (fixed) effects for individual inbreeding coef-

ficients FROH calculated from long ROH (>12.5 cM), medium

ROH (between 1.56 and 12.5 cM), and short ROH (<1.56 cM),

and two further population level effects to take into account the

sex of the individual (female = 0, male = 1) and whether it was a

twin (no = 0, yes = 1). The model also included two group-level

(random) intercept effects for birth year and maternal identity to

model environmental variation across years and maternal effects,

respectively. The three FROH variables were multiplied by 100,

such that the model estimates the change in the odds of survival

for a 1% increase in genomic ROH of the respective class. We

used a normal prior with mean = 0 and SD = 5 for population-

level effects and the default half Student-t prior for the standard

deviation of group-level parameters. We ran four MCMC chains

with the NUTS sampler with 10,000 iterations each, a warmup

of 5000 iterations and no thinning. All chains were visually

checked for convergence and the Gelman-Rubin criterion was

<1.1 for all predictors, indicating good convergence (Gelman

and Rubin, 1992). We present model estimates as odds ratios

(ORs), which represent the predicted multiplicative change in

the odds of survival for a unit increase in a given predictor, and

95% credible intervals based on the 2.5th and 97.5th percentile

in the posterior distribution.

Results
ROH IN SOAY SHEEP

Overall, we quantified a total of 4,806,614 ROH across all 4879

Soay sheep, with a mean and maximum genetic map lengths of

1.68 and 80.55 cM, respectively. Individual sheep had on aver-

age 625 ROH (range 470–839) spanning 33.3% (range 27.8%–

58.4%) of the autosomal genetic map. Initially, we visually

assessed the distribution of ROH lengths over many classes

(Fig. S1), and eventually clustered them into long, medium,

and short ROH suitable for modeling (Fig. 1A). We calculated

three individual inbreeding coefficients FROHlong, FROHmedium,

and FROHshort based on these three ROH classes, which var-

ied markedly in their means and distribution in the population

(Figs. 1A and S1). Long ROH made up only 1.3% of the average

Soay sheep genome (mean FROHlong = 0.013), though the distri-

bution is right skewed and shows that long ROH added up to over

20% of the genome in the most inbred individuals. Medium ROH

were the most common class in Soay sheep and made up 21.3%

of the average autosomal genome, whereas short ROH made up

10.7% on average. A comparison between FROH based on the

genetic map and FROH based on the physical map across indi-

viduals showed that the overall Pearson correlation was high (R

= 0.96) and decreased for shorter ROH (R (FROHlong) = 0.92, R

(FROHmedium) = 0.77, R (FROHshort) = 0.64; Fig. 2).

INBREEDING DEPRESSION IN SURVIVAL BY ROH

LENGTH

Inbreeding depression was stronger when FROH was based on

longer ROH (Fig. 1B and Table S1). The posterior mean OR for

FROHlong was 0.876 (95% CI [0.827-0.927]), or an estimated 12.4

% reduction in the odds of survival for a 1% increase in the pro-

portion of the genome found within long ROH. For FROHmedium,
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Figure 1. Distribution and fitness effects of inbreeding coefficients FROH based on different ROH lengths in Soay sheep. Panel (A) shows

the distribution of FROHlong, FROHmedium, and FROHshort in the population, which were multiplied by 100 to represent the percentage of the

genome in the respective ROH length class. Panel (B) shows the model estimates for the effects of the three inbreeding coefficients on

first-year survival. The effects are presented as odds ratios, which show the estimated multiplicative change in the odds of survival for a

1% genomic increase in the respective ROH class. The three classes were clustered by their genetic map length in cM, which is associated

with the expected time to a MRCA in generations (g).

the OR was 0.923 (95% CI [0.875-0.973]), corresponding to

only a 7.7% reduction in the odds of survival for the same

increase in ROH, and FROHshort were not associated with differ-

ences in survival (OR 0.977, 95% CI [0.850-1.125]). In addition,

the posterior distributions of the differences in model estimates

for FROHlong, FROHmedium, and FROHshort are also reflecting differ-

ences in the estimated effects of inbreeding depression among

ROH length classes; Fig. S3). Lastly, we fitted an alternative

model, replacing the three FROH predictors with the overall in-

breeding coefficient FROH and a second predictor quantifying the

mean ROH length per individual. For a given overall inbreeding

coefficient FROH, a 1 cM increase in mean ROH length led to an

estimated reduction in the odds of survival by 71% (OR 0.287,

95% CI [0.094-0.874]), again reflecting stronger inbreeding de-

pression in longer ROH (Table S2).

GENETIC SIMULATIONS

To generate baseline expectations and insights into the reasons for

differences in inbreeding depression between ROH length classes

we used forward genetic simulations. The overall patterns were

qualitatively similar for a range of selection and dominance coef-

ficients for new deleterious mutations (Figs. S4−S6). Therefore,

we focus here on the results of simulations based on deleteri-

ous mutations following a gamma DFE, with mean s = −0.03

and shape parameter ß = 0.2, where all mutations were par-

tially recessive with a dominance coefficient h = 0.05 (Fig. 2).

Long ROH had the highest overall mutation load per cM length,

which was on average 26% lower in medium ROH and 56%

lower in short ROH (Fig. 2A). The average frequency of deleteri-

ous mutations was lower in long compared to short ROH, show-

ing that longer ROH are enriched for rarer deleterious mutations

(Fig. 2C). The simulations also reveal a more nuanced pattern:

Although the overall mutation load per cM was 26% lower in

medium compared to long ROH, the average number of dele-

terious mutations was only 10% lower (Fig. 2B). This pattern

emerges because rare, strongly deleterious mutations are quickly

removed by purifying selection, leading to a substantially lower

mutation load in haplotypes originating 4–32 generations ago

compared to haplotypes originating less than four generations

ago. Short ROH (<1.56 cM), with a MRCA more than 32 gener-

ations ago had the lowest mutation load and contained substan-

tially fewer deleterious mutation with higher average frequencies

(Fig. 2).

Discussion
Long ROH originating from young haplotypes caused stronger

inbreeding depression and had a higher mutation load than

shorter ROH, which is expected when purifying selection acting

over more generations has had more time to purge deleterious

variation in older haplotypes. A substantial part of the mutation

load is purged within tens of generations, causing a difference

in inbreeding depression estimated from medium and long ROH,

respectively. Our simulations suggest that this is likely due to se-

lection against strongly deleterious mutations present at low fre-

quencies. While this is theoretically expected in small popula-

tions (Kimura, Maruyama, and Crow, 1963; Wang et al., 1999;

Hedrick and Garcia-Dorado, 2016), empirical evidence based on

actual fitness data is rare. However, deleterious mutations can be

predicted from genome-sequence data, which has revealed pat-

terns of population-wide purging due to bottlenecks and small

population sizes in Mountain Gorillas, Isle Royale Wolves and
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Figure 2. Patterns of deleterious mutations in long, medium, and short ROH. Each point represents the mean of 200 individuals of a

simulation run. Panel (A) shows the mean selection coefficient of ROH per cM length, with lower values translating into a larger reduction

in individual fitness and therefore representing a higher mutation load. Panel (B) shows the mean number of deleterious mutations per

cM ROH length. Panel (C) shows the average population frequencies of deleterious mutations.

Alpine Ibex (Xue et al., 2015; Robinson et al., 2019; Grossen

et al., 2020). In Soay sheep, the difference in inbreeding depres-

sion between long and short ROH despite thousands of years of

isolation as a small population suggests that intermediate and

strongly deleterious mutations are unlikely to have been com-

pletely purged from the population. Instead, these differences

probably reflect a haplotype-level snapshot of the ongoing bal-

ance between newly arising strongly deleterious mutations ex-

pressed in long ROH, and selection against these mutations leav-

ing shorter ROH with a lower mutation load.

Our findings have methodological implications for quantify-

ing inbreeding depression and understanding its genetic architec-

ture. Studies of wild animal population commonly use reduced

representation methods such as SNP arrays or RAD sequenc-

ing for genotyping individuals. SNP densities might therefore

not be high enough to reliably detect short ROH. In Soay sheep,

most variation in inbreeding depression was captured by medium

and long ROH, which can usually be reliably detected with in-

termediate SNP densities. Accordingly, we found that the effect

of overall FROH on survival was similar when ROH were called

from the original 38k SNPs compared to 417k imputed SNPs

(Table S3). In studies of inbreeding depression in wild organisms

with low Ne and high linkage disequilibrium, resources might

therefore be better allocated into increasing the number of in-

dividuals rather than increasing SNP densities from tens of thou-

sands of SNPs to whole-genome sequencing. When studying the

genetic basis of inbreeding depression, ROH can also be used to

map the underlying loci in GWAS (Pryce et al., 2014; Kardos

et al., 2016; Stoffel et al., 2021b). Our results suggest that the

minimum ROH length is important when mapping ROH-fitness

relationships. When comparing the fitness of individuals with and

without ROH at a given genomic location, the statistical power

will be highest when only longer ROH are included, as these are

more likely to harbor strongly deleterious recessive alleles. Anal-

yses of the effects of different ROH length classes on fitness prior

to GWAS analyses could therefore help to determine an optimal

minimum ROH length.

Finally, our analyses provide some fundamental insights into

the relationship between deleterious variation, inbreeding de-

pression and purging in a small, wild population. At the hap-

lotype level, we showed that purifying selection constantly re-

moves deleterious variation, causing a difference in the mutation

load of IBD haplotypes with different coalescent times. Strongly

deleterious mutations are purged relatively quickly, probably be-

cause they frequently occur as homozygotes in small popula-

tions, which facilitate purging of mutations with large fitness

effects despite a relatively low efficiency of selection due to

drift (Hedrick and Garcia-Dorado, 2016; Kyriazis, Wayne, and

Lohmueller, 2021). Yet, inbreeding depression is strong in Soay

sheep, and highly inbred individuals are very unlikely to sur-

vive their first winter (Fig. 1B, Table S3a, 2021b). Consequently,

inbreeding depression in Soay sheep is probably largely a

consequence of the combined effects of many weakly recessive

deleterious alleles, which is consistent with a GWAS on the ge-

netic basis of inbreeding depression in Soay sheep (Stoffel et al.,

2021b). In small populations, theory predicts weakly deleterious

mutations will drift more often to higher frequencies and fixation,

thereby increasing the mutation load and decreasing mean fitness

(Kimura et al., 1963). However, this also decreases the variance

in deleterious mutations between individuals and therefore the

expected strength of inbreeding depression (Hedrick and Garcia-

Dorado, 2016), which is why larger populations are predicted to

experience even stronger inbreeding depression than for exam-

ple Soay sheep. Combining subgenome level information such as
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ROH with fitness data is key to assess these theoretical predic-

tions and to gain a deeper understanding of the genetic basis and

strength of inbreeding depression in wild populations.
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