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Abstract: We describe the synthesis of silver loaded on zirconia and its use as an efficient catalyst for
a one-pot three-component reaction to synthesize 11 indenopyrimidine derivatives, of which 7 are new
compounds. The procedure involves substituted benzaldehydes, indane-1,3-dione, and guanidinium
hydrochloride, with ethanol as solvent. The proposed green protocol at room temperature is simple
and efficient, giving excellent yields (90–96%) in short reaction times (<30 min). The protocol works
well according to the green chemistry principles with respect to high atom economy, no need for
column separation, and reusability of the catalyst, which are attractive features. XRD, TEM, SEM,
and BET analysis were used to characterize the catalyst materials.

Keywords: indenopyrimidines; no column chromatography; Ag2O/ZrO2; heterogeneous catalysis;
mixed oxides; green chemistry

1. Introduction

Multicomponent reactions (MCRs) are cherished protocols in organic synthesis due to their vast
potential in the fields of medicinal, pharmaceutical, and agro-chemistry [1]. MCRs are different from
the other classical synthesis approaches due to their facile synthesis protocols, high atom efficiency,
high yields, and minimal by-product formation [2]. Further, the efficacy of MCRs when compared
with multistep synthetic protocols lies in the selective formation of several bonds in a single reaction
flask with highly desirable yield over a short interval of time [3].

Currently, heterogeneous catalysts play a key role in organic synthesis because they meet most
of the goals of green and sustainable chemistry [4]. Researchers have made remarkable improvements
in the design of well-defined catalyst materials. Innovative methods have allowed the coherent
design and preparation of very active and selective catalyst materials by governing the structure
and composition of the active particles [5]. Furthermore, heterogeneous catalysts offer many benefits
in synthetic transformations such as outstanding chemical and thermal stability, noncorrosiveness,
nonflammability, eco-friendliness, nontoxicity, ease of separation, reusability, and commercial
availability [6].

In recent years, zirconium oxide (ZrO2) have been effusively revealed as a catalyst or a supported
catalyst in various potential chemical applications due to its extensive properties such as acidic and
basic sites [7], high stability in the presence of redox conditions, active phase support, and chemical
consistency related to other supports like alumina and silica. Further, ZrO2 is low cost, stable,
nonhazardous, reusable, and readily available [8]. Silver salts are widely used as catalysts and
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their efficacy has been demonstrated in terms of being cost-effective, non-toxic, simple to handle,
and appropriate for usage as a one-electron redox system [9]. However, their use in large amounts is
unwarranted, but if used in a green-manner as a recyclable catalyst, it has many advantages. Hence,
the use of silver-loaded zirconia catalysts is a desirable choice for eco-friendly synthesis.

Among the known heterocyclic compounds, N-heterocyclic scaffolds are very important in
medicinal chemistry [10]. In the N-heterocyclic class of scaffolds, pyrimidine and its derivatives play a
prominent role [11]. Being the main constituents of several natural products, these pyrimidines
represent a significant class of molecules which have been of increased interest in recent
years owing to their valuable pharmacological and biological applications in antimicrobial [12],
antifungal [13], anti-tumor [14], anti-HIV [15], anti-tubercular [16], anti-inflammatory [17],
and antimalarial [18] activities. Moreover, aryl-indenopyrimidines have been used as adenosine
A2A receptor antagonists [19], which are useful, and many reports have dealt with the
preparation of different types of pyrimidine derivatives via multicomponent reactions. Owing to
their economic viability and scientific importance, methodologies have been described for
the synthesis of various types of substituted pyrimidines. Diverse catalytic systems such as
NaOH, references [20–22] sodium methoxide [23], 1-sulfonic acid-3-methyl imidazolium ferric
chloride/NaY [24], α-Fe2O3-MCM-41-P [25], and uranyl acetate/succinimide sulfonic acid [26] have
been used in the synthesis of pyrimidine derivatives. However, these protocols invariably demand
expensive reagents, high energy input, and lengthy reaction times. Other limitations are lower yields
and the need for solvents and column separations. There is, thus, a demand for a greener preparation
method for indenopyrimidines. We found no literature reports to date using metal complexes or metal
oxides as catalysts in their synthesis. Although silver-loaded ZrO2 have been reported as a catalyst
for varied reactions [27,28], no protocols have been described for the synthesis of indenopyrimidines
via MCRs.

We recently reported several green synthetic approaches of various medicinally interesting
heterocyclic scaffolds [29–37]. Encouraged by those favorable results with different substituted
heterocyclic scaffolds, here we describe the synthesis and characterization of silver loaded on zirconia
and its efficiency in the one-pot synthesis of functionalized indenopyrimidines via a three-component
reaction at room temperature (RT).

2. Experimental Section

2.1. Catalyst Preparation

Supported catalysts with different wt % (weight percentage) of silver-loaded zirconia (1, 2.5,
and 5.0 wt %) were synthesized following a wet impregnation process [38,39]. The solid heterogeneous
catalyst was prepared by combining zirconia (ZrO2, 3 g, Alfa Aesar, Ward Hill, MA, USA) and a suitable
quantity of silver chloride (AgCl2, Alfa Aesar) dissolved in distillated water (60 mL). The mixture
was stirred at room temperature (RT) for 5–7 h. After this time, the ensuing slurry was filtered under
vacuum. It was dried in an oven at 120–130 ◦C for 6 h and calcined in the presence of air at 450 ◦C for
5 h to afford the (1.0, 2.5, and 5.0 wt %) silver on zirconia.

2.2. General Procedure for the Synthesis of Indenopyrimidine Derivatives

In a typical reaction, an equimolar mixture of aldehydes (1 mmol), indane-1,3-dione (1 mmol),
and guanidinium hydrochloride (1 mmol) were dissolved in ethanol (5 mL) at RT, followed by the
addition of Ag2O–ZrO2 (60 mg) as a catalyst. The reaction mixture was held at RT for 30 min under
stirring (Scheme 1), while the reaction progress was monitored by TLC at regular time intervals.
When the reaction was complete, the mixture was filtered, and ethyl acetate was used to extract the
filtrate which was then evaporated under reduced pressure to obtain the crude product and washed
with ethanol. The reaction product was recrystallized in ethanol to obtain the pure target compound.
The yields reported are the weighed values after recrystallization and isolation. The products were
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further characterized by 1H-NMR, 13C-NMR, HRMS, and FT-IR analysis. The related details and
spectra are given in the Supplementary Information File (SI-II & III).Molecules 2018, 23, 1648 3 of 15 
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2-Amino-4-(2-methoxyphenyl)-5H-indeno[1,2–d]-pyrimidine-5-one (4a). 1H-NMR (DMSO-d6, 400 MHz)
δ = 3.83 (s, 3H, -OCH3), 7.09 (d, J = 7.6 Hz, 1H, Ar-H), 7.16 (d, J = 8.16 Hz, 1H, Ar-H), 7.61 (t, J = 1.2 Hz,
1H, Ar-H), 7.92–7.95 (m, 4H, Ar-H), 8.22 (s, 2H, -NH2), 8.77–8.79 (m, 1H, Ar-H). 13C-NMR δ = 56.03,
111.56, 120.10, 121.00, 122.94, 122.98, 128.16, 133.09, 135.69, 135.78, 135.86, 138.96, 139.32, 141.79, 160.05,
188.50, 189.61; FT-IR: 3269.10 (-NH), 2957.02 (-CH), 1710 (-C=O), 1593.28 (-C=C), 1483.73 (-C=N),
733.81 (-CH).

2-Amino-4-(4-methoxyphenyl)-5H-indeno[1,2-d]-pyrimidine-5-one (4b). 1H-NMR (DMSO-d6, 400 MHz)
δ = 3.89 (s, 3H, -OCH3), 7.13 (d, J = 8.92 Hz, 2H, Ar-H), 7.80 (s, 2H, -NH2), 7.71 (s, 2H, NH2), 7.93–7.95
(m, 4H, Ar-H), 8.60 (d, J = 8.92 Hz, 2H, Ar-H). 13C-NMR δ = 55.72, 114.49, 122.86, 125.86, 126.28,
135.54, 135.69, 136.98, 139.27, 141.69, 145.72, 163.77, 188.96, 189.80; FT-IR: 3010.13 (-NH), 2941.01 (-CH),
1712.14 (-C=O), 1673.42 (-C=C), 1468.81 (-C=N), 771.95 (-CH); HRMS of [C18H13N3O2 + H]+ (m/z):
304.0766; Calcd: 304.0763.

2-Amino-4-(2,3-dimethoxyphenyl)-5H-indeno[1,2-d]-pyrimidine-5-one (4c). 1H-NMR (DMSO-d6, 400 MHz)
δ = 3.91 (s, 6H, -OCH3), 7.21 (t, J = 8.08 Hz, 1H, Ar-H), 7.32–7.34 (m, 1H, Ar-H), 7.94–8.14 (m, 4H, Ar-H),
8.36 (s, 2H, -NH2), 8.38 (t, J = 1.04 Hz, 1H, Ar-H). 13C-NMR δ = 55.95, 61.49, 118.22, 123.05, 123.10, 123.61,
124.23, 126.21, 129.53, 136.02, 139.00, 139.42, 141.89, 150.23, 152.19; FT-IR: 3087.99 (-NH), 2939.24 (-CH),
1711.98 (-C=O), 1673.55 (-C=C), 1469.79 (-C=N), 771.94 (-CH); HRMS of [C19H15N3O3 + H]+ (m/z):
334.0992; Calcd: 334.1008.

2-Amino-4-(2,5-dimethoxyphenyl)-5H-indeno[1,2-d]-pyrimidine-5-one (4d). 1H-NMR (DMSO-d6, 400 MHz)
δ = 3.82 (s, 3H, -OCH3), 3.89 (s, 3H, -OCH3), 7.11 (d, J = 9.12 Hz, 1H, Ar-H), 7.21 (d, J = 3.12 Hz, 1H,
Ar-H), 7.93–7.97 (m, 4H, Ar-H), 8.23 (s, 2H, -NH2), 8.64 (d, J = 3.2 Hz, 1H, ArH). 13C-NMR δ = 55.51,
56.38, 112.72, 116.49, 121.32, 123.07, 128.11, 135.75, 135.89, 138.84, 139.29, 141.87, 152.29, 154.92, 188.82,
189.64, 206.58; FT-IR: 3087.87 (-NH), 2950.12 (-CH), 1746.67 (-C=O), 1683.90 (-C=C), 1588.60 (-C=N),
780.18 (-CH); HRMS of [C19H15N3O3 + H]+ (m/z): 334.0434; Calcd: 334.0441.

2-Amino-4-(2-bromophenyl)-5H-indeno[1,2-d]-pyrimidine-5-one (4e). 1H-NMR (DMSO-d6, 400 MHz)
δ = 7.52–7.59 (m, 2H, NH2), 7.89–7.98 (m, 7H, Ar-H), 8.00 (s, 1H, Ar-H). 13C-NMR δ = 122.83, 122.91,
124.36, 130.67, 132.12, 132.32, 135.70, 135.92, 140.42, 141.20, 141.35, 141.67, 142.03, 142.98, 197.19, 198.68;
FT-IR: 3089.08 (-NH), 2941.43 (-CH), 1745.65 (-C=O), 1673.02 (-C=C), 1564.46 (-C=N), 771.47 (-CH),
619.03 (-C-Br); HRMS of [C17H10BrN3O + H]+ (m/z): 353.1042; Calcd: 353.1042.

2-Amino-4-(2-fluorophenyl)-5H-indeno[1,2-d]-pyrimidine-5-one (4f). 1H-NMR (DMSO-d6, 400 MHz)
δ = 7.39 (s, 1H, NH2), 7.68 (t, J = 1.08 Hz, 2H, Ar-H), 7.92–7.99 (m, 6H, Ar-H). 13C-NMR δ = 115.65,
115.86, 123.24, 124.49, 124.52, 133.07, 136.07, 136.21, 139.60, 141.99, 160.66, 188.07, 188.85, 197.56, 198.69;
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FT-IR: 3275.94 (-NH), 2956.87 (-CH), 1740.56 (-C=O), 1620.19 (-C=C), 1485.01 (-C=N), 1008.10 (-C-F),
757.33 (-CH); HRMS of [C17H10BrN3O + H]+ (m/z): 292.0732; Calcd: 292.0732.

2-Amino-4-(3,4-dimethoxyphenyl)-5H-indeno[1,2-d]-pyrimidine-5-one (4g). 1H-NMR (DMSO-d6, 400 MHz)
δ = 3.90 (d, J = 3.84 Hz, 6H, -OCH3), 7.16 (d, J = 8.52 Hz, 1H, Ar-H), 7.80 (s, 1H, NH2), 7.92–7.97 (m,
4H, Ar-H), 8.02–8.04 (m, 1H, Ar-H), 8.68 (d, J = 1.92 Hz, 1H, ArH). 13C-NMR δ = 55.18, 111.53, 115.74,
122.78, 122.91, 126.09, 131.08, 135.56, 135.69, 139.22, 146.43, 148.31, 153.91, 189.85; FT-IR: 3088.10 (-NH),
2942.06 (-CH), 1712.66 (-C=O), 1673.31 (-C=C), 1468.88 (-C=N), 772.61 (-CH), 801.96 (-CH).

2-Amino-4-(3-hydroxyphenyl)-5H-indeno[1,2-d]-pyrimidine-5-one (4h). 1H-NMR (DMSO-d6, 400 MHz)
δ = 7.01–7.04 (m, 1H, Ar-H), 7.35 (t, J = 7.88 Hz, 1H, Ar-H), 7.71 (s, 2H, NH2), 7.82 (d, J = 7.72 Hz,
1H, Ar-H), 7.92–7.96 (m, 5H, Ar-H), 9.86 (s, 1H, -OH). 13C-NMR δ = 119.61, 120.67, 123.00, 123.04,
125.46, 128.94, 129.69, 133.84, 135.77, 135.93, 139.33, 141.89, 145.82, 157.33, 188.45, 189.43; FT-IR:
3241.25 (-OH), 3088.13 (-NH), 1745.77 (-C=O), 1665.42 (-C=C), 1484.83 (-C=N), 780.62 (-CH); HRMS of
[C17H11N3O2 + H]+ (m/z): 290.0732; Calcd: 290.0732.

2-Amino-4-(4-bromophenyl)-5H-indeno[1,2-d]-pyrimidine-5-one (4i). 1H-NMR (DMSO-d6, 400 MHz)
δ = 7.77 (d, J = 8.52 Hz, 2H, Ar-H), 7.81 (s, J = 8.56 Hz, 2H, -NH2), 7.95–7.99 (m, 4H, Ar-H), 8.41 (d,
J = 8.52 Hz, 2H, Ar-H). 13C-NMR δ = 103.27, 109.58, 110.67, 112.60, 116.48, 136.51, 143.42, 151.63,
151.95, 152.67, 167.34, 194.19; FT-IR: 3087.96 (-NH), 1724.92 (-C=O), 1685.17 (-C=C), 1485.31 (-C=N),
828.42 (-CH), 606.46 (-C-Br).

2-Amino-4-(4-chlorophenyl)-5H-indeno[1,2-d]-pyrimidine-5-one (4j). 1H-NMR (DMSO-d6, 400 MHz)
δ = 7.36 (d, J = 8.52 Hz, 2H, -NH2), 7.64 (d, J = 8.56 Hz, 1H, Ar-H), 7.85–7.97 (m, 6H, Ar-H),
7.82 (d, J = 7.72 Hz, 1H, Ar-H), 8.51 (d, J = 8.6 Hz, 1H, Ar-H). 13C-NMR δ = 122.57, 122.79, 123.13,
127.74, 127.82, 128.85, 130.79, 135.36, 135.59, 137.85, 141.51, 143.73, 197.94, 198.14, 199.07; FT-IR:
3089.02 (-NH), 1712.07 (-C=O), 1673.33 (-C=C), 1469.06 (-C=N), 802.02 (-CH), 702.10 (-C-Cl); HRMS of
[C17H10ClN3O + H]+ (m/z): 308.1139; Calcd: 308.114.

2-Amino-4-(4-ethylphenyl)-5H-indeno[1,2-d]-pyrimidine-5-one (4k). 1H-NMR (DMSO-d6, 400 MHz)
δ = 1.22 (t, J = 7.56 Hz, 3H, -CH3), 2.68–2.79 (m, 2H, -CH2), 7.42 (d, J = 8.2 Hz, 2H, Ar-H), 7.83 (s, 2H,
-NH2), 7.93–7.96 (m, 4H, Ar-H), 8.46 (d, J = 8.24 Hz, 2H, Ar-H). 13C-NMR δ = 15.03, 28.42, 30.63, 122.56,
122.98, 123.04, 128.30, 130.48, 134.22, 135.57, 135.75, 135.90, 139.39, 141.86, 142.99, 145.64, 150.32, 188.69,
189.56, 206.47; FT-IR: 3088.40 (-NH), 2941.60 (-CH), 1712.33 (-C=O), 1673.31 (-C=C), 1469.87 (-C=N),
802.02 (-CH).

3. Results and Discussion

3.1. Crystallinity by Powder XRD (PXRD) Studies

Figure 1 illustrates the crystalline phases of calcined silver oxide–zirconia catalyst material.
The PXRD patterns of the catalytic sample display the major 2θ peak values at 24.2◦, 28.2◦, 31.3◦, 35.4◦,
40.5◦, 45.0◦, 50.3◦, 55.4◦, and 60.1◦ corresponding to zirconia; the peak values were correlated with
the international standard file (JCPDS file no. 37-1484). In addition, the catalyst material revealed
diffraction patterns at 2θ angles of 38.1◦, 44.3◦, 64.4◦, and 77.4◦ corresponding to the Ag2O (JCPDS
file no 72-2108). The peaks recognized in the diffractogram indicate the polycrystalline nature of
the catalyst materials. Further, the average crystallite size of the catalyst was measured by the
Debye–Scherrer formula using the strongest maximum-intensity diffraction peak, about 9.2 nm for
2.5% Ag2O/ZrO2.
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Figure 1. Powder X-ray diffractogram of 2.5% Ag2O–ZrO2 catalyst.

3.2. TEM Analysis

The transition electron microscopy images (Figure 2) provide the morphology of prepared
Ag2O/ZrO2 of different wt %. In this image, the silver oxide particle dimensions are mostly in
the range between 10 and 16 nm, with black spherical shapes and seemingly well distributed. Further,
zirconia is revealed as white globular-shaped particles. It is clearly observed that 1% has a lesser
dispersion of Ag, whereas 5% has more Ag agglomerated on the surface of Zr, which fails to provide
more active sites to facilitate the reaction. Changes in the morphology of the recovered catalyst after
reaction were marginal.
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Figure 2. TEM micrographs of 1%, 2.5%, and 5% Ag2O–ZrO2 catalyst.

3.3. SEM Analysis

The morphology and size dispersion of the catalyst material were determined with SEM analysis.
In Figure 3, a large number of white and irregular shapes are observed for 2.5% Ag2O loaded on
ZrO2. Small silver oxide particles were revealed as white irregular aggregates on the zirconia surface.
The micrographs from SEM–EDX validate the even distribution of silver oxide on the zirconia surface.
Results also confirm the data from ICP elemental analysis. The mapping also shows the presence
of Ag on ZrO2. Furthermore, the morphology of the catalyst from the SEM images also shows the
crystallinity and homogeneity of the sample.
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Figure 3. (A) SEM micrograph; (B) SEM mapping; (C) EDS spectra of 2.5% Ag2O–ZrO2 catalyst.

3.4. BET Surface Area Analysis

The nitrogen adsorption/desorption isotherm and resulting pore size dispersion of the 2.5%
Ag2O/ZrO2 catalyst material is shown in Figure 4. The catalyst material exhibits a type IV isotherm
with the presence of a typical H2 hysteresis loop, which designates the mesoporous nature of the
material as per the IUPAC classification. The Barrett-Joyner-Halenda (BJH) pore size distribution
describes a mesoporous texture for the material, and the isotherm P/Po range was 0.61–0.98. The BET
surface area was measured at 89.52 m2/g with a pore volume of 0.330 cm3/g and pore size of 10.3 nm.
The ICP study indicates the presence of >1.98 wt % of silver in the catalyst material.

3.5. Pyridine Adsorbed FT-IR Spectroscopy

The nature of acidic sites on the 2.5% Ag2O-loaded ZrO2 surface was examined by employing ex
situ pyridine FT-IR spectroscopy (Figure 5) [40]. Infrared (IR) spectra were recorded on a Perkin Elmer
Precisely equipped with a Universal ATR sampling accessory using a diamond crystal. The powdered
material was placed on the crystal and a force of 120 psi was applied to ensure proper contact between
the material and the crystal. The spectra were analyzed using Spectrum 100 software. Before recording
the IR spectra, pyridine was adsorbed by placing a drop of pyridine on 10 mg of the sample followed
by evacuation in air for 1 h at room temperature to remove reversibly adsorbed pyridine on the surface
of the catalyst. The IR band at 1540 cm−1 confirmed the presence of Brønsted acidic sites (B). The peak
observed at 1485 cm−1 is attributed to both Brønsted and Lewis acidic sites (B + L). The prominent
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absorption band at 1450 cm−1 is due to the pyridine adsorbed on Lewis acidic sites (L) of the catalyst.
The presence of more Lewis acidic sites on the catalyst surface than Brønsted acidic sites is shown
in Figure 5. Generally, more Lewis acidic sites are anticipated in the Ag2O–ZrO2 catalyst due to the
availability of vacant metal orbitals on the surface of the catalyst, which are capable of accepting
electron pairs from the electron-rich species [41]. Except for the assigned peaks, the other IR bands are
mostly less intensive, mainly due to the signal-to-noise ratio, which was unavoidable.
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4. Reaction Optimization

For optimization of the reaction conditions for a one-pot, three-component reaction involving
2-methoxy benzaldehyde (1 mmol), indane-1,3-dione (1 mmol), and guanidinium hydrochloride
(1 mmol), various reaction conditions such as effect of temperature, solvents, and catalysts were
investigated. In the absence of solvent and catalyst, no product occurred at RT or under reflux
conditions, even after 10 h of reaction (Table 1, entries 1 and 2). The reaction was carried out in
ethanol in the presence of various basic catalysts like TEA, pyridine, NaOH, and K2CO3 at RT;
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only trace amounts of material were obtained (Table 1, entries 3–6). Reactions with ionic liquids
such as (Bmim) BF4 or L-proline (Table 1, entries 7 and 8) as a catalyst gave low yields. When the
reaction was conducted using acidic catalysts such as AcOH, FeCl3, and PTSA, moderate yields of
product were attained after 4 h (Table 1, entries 9–11). Consequently, reaction was attempted in
presence of pure metal oxide catalysts, such as SiO2, ZrO2, and Al2O3, and the reaction showed good
yields after 2.0–3.0 h reaction time (Table 1, entries 12–14). Based on the promising outcome with
zirconia oxide, to enhance the reaction performance, the efficiencies of different metal oxides loaded on
zirconia, such as 2.5% CuO/ZrO2, MnO2/ZrO2, and Ag2O/ZrO2, were examined. These mixed-oxide
heterogeneous catalysts gave very good to excellent yields (82–96%) (Table 1, entries 15–17), while the
best result was obtained with Ag2O/ZrO2 (96% yield, 30 min). Bimetallic metal oxides showed higher
activity than their parent metal oxides, presumably due to a better distribution of the active metal on
the support and the synergistic activity between the loaded and support materials, providing optimum
distribution and increased number of active sites compared to their oxide homologues.

Table 1. Effect of catalysts on the synthesis of 4a a.

Entry Catalyst Solvent Condition Time (h) Yield (%) b

1 – – RT 10 –
2 – – Reflux 10 –
3 TEA EtOH RT 8.0 9
4 Pyridine EtOH RT 8.5 13
5 NaOH EtOH RT 7.5 25
6 K2CO3 EtOH RT 7.0 19
7 (Bmim)BF4 EtOH RT 10 23
8 L-proline EtOH RT 10 27
9 AcOH EtOH RT 5.0 43

10 FeCl3 EtOH RT 4.5 50
11 PTSA EtOH RT 5.0 45
12 SiO2 EtOH RT 2.5 62
13 ZrO2 EtOH RT 2.0 79
14 Al2O3 EtOH RT 3.0 59
15 2.5% CuO/ZrO2 EtOH RT 1.5 82
16 2.5% MnO2/ZrO2 EtOH RT 1.0 87
17 2.5% Ag2O/ZrO2 EtOH RT 0.20 96

a All products were characterized by 1H-NMR, 13C-NMR, HRMS, and FT-IR spectral analysis. b Isolated yields after
recrystallization. – No reaction.

The effect of solvents on the title reaction was investigated in the presence of varied nonpolar
solvents. No reaction occurred in n-hexane or toluene. When the reaction was performed in polar
aprotic solvents such as THF, DMF, and MeCN, the yield of product was low. In the polar protic
solvent MeOH, the yield was good, but lower than that with EtOH. Hence, EtOH was chosen as the
solvent for the remainder of the studies. The optimized results are shown in Table 2 (entries 1–8).

Table 2. Optimization of various solvent conditions for the model reaction a.

Entry Solvent Time (min) Yield (%)

1 No solvent 120 –
2 n-hexane 120 –
3 toluene 90 –
4 THF 75 10
5 DMF 65 18
6 MeCN 60 25
7 MeOH 45 81
8 EtOH 30 96

a Reaction conditions: arylaldehyde (1), (1 mmol), 1,3-Indandione (1 mmol) (2), and guanidinium hydrochloride
(3) (1 mmol) and solvent (5 mL) were stirred at room temperature. – No isolated yields.
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Assuming silver oxide loaded on zirconia as the ideal model catalyst, the contribution of % silver
loading on zirconia was investigated at 1.0%, 2.5%, and 5.0% Ag2O/ZrO2. While 1% Ag loading gave
a 90% yield in 45 min, relative to the 2.5% Ag, the 5% Ag neither improved the yield nor decreased
the reaction time. The best activity was observed with 2.5% Ag2O/ZrO2; hence, this was taken as the
optimum loading. This could be due to the optimum dispersion of Ag2O on ZrO2, when compared to
5% Ag2O//ZrO2, where dispersion was less uniform due to the possible aggregation of silver particles.
Hence, catalytic activity was lower compared to the 2.5% loading. The 2.5% loading recorded greater
activity than 1% Ag2O//ZrO2. Possibly, the former had more active sites than the latter (Figure 2).
A discussion on the role of the Lewis acidic sites in the reaction is part of the mechanism section
(Scheme 2). The efficacy of the reaction, including yield and reaction times for 2.5 wt % Ag2O/ZrO2,
is summarized in Table 3. An increase in catalyst amount from 20 mg to 60 mg improved the yield
from 52% to 96% and reduced the reaction time. The increase in the product may be attributed to
the comparative increase in the number of available active sites, possibly accelerating the reaction.
An increase in the amount of catalyst from 60 mg to 120 mg registered no significant change in the
yield of product or reaction time. Hence, 60 mg of the catalyst was considered the ideal amount for the
chosen synthesis.

Table 3. Optimization of various weight % for the model reaction with 2.5% Ag2O/ZrO2 catalyst a.

Entry Catalyst (mg) Time (min) Yield (%)

1 20 100 56
2 40 50 79
3 60 30 96
4 80 30 96
5 100 30 96
6 120 40 96

a Reaction conditions: arylaldehyde (1) (1 mmol), 1,3-indanedione (2) (1 mmol), and guanidine hydrochloride
(3) (1 mmol) and catalyst and solvent (5 mL) were stirred at room temperature.

Encouraged by the results, we further explored the applicability of the protocol for other
substituted aldehydes under the optimized reaction conditions, by using 10 other substituted
aldehydes. The corresponding indenopyrimidines afforded excellent yields in similar reaction
times (30 min) (Table 4, entries 1–11). All the reactions, irrespective of electron-withdrawing or
electron-donating groups at ortho, meta, or para positions, generally gave excellent yields. All the
product molecules were fully characterized by employing 1H-NMR, 13C-NMR, FT-IR, and HRMS
spectral analysis.

Table 4. Synthesis of novel functionalized pyridine derivatives by 2.5% Ag2O/ZrO2 catalyst a.

Entry R Product Yield * (%) m.p. (◦C) Lit. m.p. (◦C)

1 2-OMe 4a 94 119–121 -
2 4-OMe 4b 93 136–137 100 [20]
3 2,3-(OMe)2 4c 94 183–184 -
4 2,5-(OMe)2 4d 92 200–201 -
5 2-Br 4e 94 197–198 -
6 2-F 4f 92 239–241 -
7 3,4-(OMe)2 4g 96 176–178 178 [20]
8 3-OH 4h 95 246–248 -
9 4-Br 4i 94 221–223 210 [20]

10 4-Cl 4j 90 239–241 244 [20]
11 4-Et 4k 94 204–206 -

a Reaction conditions: arylaldehyde (1) (1 mmol), 1,3-indanedione (2) (1 mmol), and guanidine hydrochloride
(3) (1 mmol), catalyst (60 mg), and ethanol solvent (5 mL) were stirred at room temperature. R = substituted
benzaldehydes. - New compounds/no literature (lit.) data. * = Isolated yields after recrystallization.
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A proposed mechanism for the one-pot three-component reaction is outlined in Scheme 2.
The presence of Lewis acidic sites on the catalyst surface facilitates the reactants to undergo reaction
in a shorter time. It is assumed that in the first step, the Lewis acidic sites with the carbonyl
oxygen generate the carbonium ion (a) [42]. In a fast reaction with the carbonium ion, the active
methylene group affords intermediate (b), which desorbs from the catalyst surface by abstracting
a proton from the protic solvent, EtOH (b), to form (c). On further dehydration (c), it produces
the condensation product (A). Next, a Michael addition occurs between the intermediate (A) and the
guanidinium, followed by cyclization and aromatization, and the transient intermediate yields the target
compound—the substituted pyrimidine-5-one derivative. The catalytic efficiency of the Ag2O/ZrO2 on
the title reaction in comparison with other reported catalysts is summarized in the Table 5.Molecules 2018, 23, 1648 11 of 15 
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Table 5. A comparison table with various other catalysts for synthesizing pyrimidine derivatives.

Catalyst Solvent Reaction Condition Yield (%) [Ref]

NaOH EtOH Reflux, 6–10 h 81–94 [20]
NaOH EtOH Reflux, 7–8.4 h 75–86 [21]
NaOH EtOH Reflux, 0.5–1 h 85–94 [22]

NaOMe EtOH Reflux, 10–14 h 60–70 [23]
α-Fe2O3-MCM-41-P Solvent free 80 ◦C, 1 h 82–95 [25]

Uranyl acetate/succinimide sulfonic acid Solvent free 90 ◦C, 4 h 75–96 [26]
2.5% Ag2O–ZrO2 EtOH RT, 30 min 90–96 [Present Work]

5. Reusability of Catalyst

The main objective and attraction of heterogeneous catalysts are its reusability. We thus examined
the recovery and reusability of the Ag2O/ZrO2 catalyst. The solid catalyst from the reaction mixture
was separated by simple filtration under vacuum, followed by washing with acetone solvent and
drying at 100 ◦C for 3 h. The recovered catalyst was reused in subsequent reactions. Six runs in
successive reactions gave yields without significant loss in product yield (Figure 6).
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6. Conclusions

In conclusion, we report a simple and green protocol for the synthesis of indenopyrimidines
by a three-component reaction. All the reactions involving the reaction of 11 different aromatic
aldehydes with 1,3-indandione and guanidinium hydrochloride using (2.5%) silver loaded on a zirconia
catalyst gave excellent yields (90–96%). The proposed catalyst proved efficient, stable, and reusable.
This method offers easy workup, excellent selectivity, and high yields in short reaction times at room
temperature using ethanol, a green solvent. All the products were purified by recrystallization from
ethanol. This method needs no chromatographic separation. Consequently, the use of volatile and
hazardous solvents has been evaded. This method is useful for synthesizing various privileged
pyrimidine scaffolds in short times in a one-pot strategy under green conditions.
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