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A B S T R A C T   

Background: In cardiac rehabilitation programs, cardiorespiratory fitness is commonly estimated (eCRF) from the 
maximum workload achieved on a graded exercise test. This study compared four well-established eCRF equa-
tions in their ability to predict mortality in patients with cardiovascular disease (CVD). 
Methods: A total of 7269 individuals with CVD were studied (81% male; age 59.4 ± 10.3yr). eCRF was calculated 
using equations from the American College of Sports Medicine, Bruce et al., the Fitness Registry and the 
Importance of Exercise International Database, and McConnell and Clark. The eCRF from each equation was 
compared with a RMANOVA. Cox proportional hazard models assessed the relationship between the eCRF 
equations and mortality risk. The predictive ability of the models was compared using the concordance index. 
Results: There were 284 deaths (85% male) over a follow-up period of 5.8 ± 2.8yr. Although differences in eCRF 
were observed between each equation (P < 0.05), the eCRF from each of the four equations was predictive of 
mortality (P < 0.05). The concordance index values for each of the models were the same (0.77) indicating 
similar predictive performance. 
Conclusions: The four well-established eCRF equations did not differ in their ability to predict mortality in pa-
tients with CVD, indicating any could be used for this purpose. However, the differences in eCRF from each of the 
equations suggest potential differences in their ability to guide clinical care and should be the focus of future 
research.   

1. Introduction 

Cardiorespiratory fitness (CRF) is a singular measure of whole-body 
physiological function that is associated with health and quality of life. 
In patients with cardiovascular disease (CVD), lower CRF is associated 
with greater risk for mortality, future CVD events, and higher healthcare 
costs [1–5]. Accordingly, recommendations suggest CRF should be 
assessed to stratify patient risk and guide clinical care [6–8]. The most 
accurate determination of CRF involves exercise testing with direct 
measurement of ventilatory expired gas (i.e., cardiopulmonary exercise 
testing) [4]. In cardiac rehabilitation (CR) programs, though, if CRF is 

assessed, it is commonly indirectly estimated (eCRF) from the peak 
workload or total test time of a graded exercise stress test. 

Previous research has demonstrated that eCRF is predictive of mor-
tality risk [9–11]. However, the equations used to determine eCRF differ 
in their accuracy compared to direct assessment of CRF [12]. These 
sources of error are due to a variety of factors that can subsequently 
influence risk classification and treatment plans. Equations from the 
American College of Sports Medicine (ACSM) [13] assume individuals 
are exercising at a steady state, yet this assumption is not met at the end 
of a maximal exercise stress test, leading to overestimations of CRF and 
inaccurate classifications of risk [12]. Other eCRF equations utilizing 
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total test duration, such as the Bruce equation [14], can have errors as 
they do not account for the potential plateau in oxygen uptake at 
maximal intensity. 

While differences exist in the accuracy of eCRF equations, whether 
these differences also lead to different predictions of health outcomes (e. 
g., mortality) still needs to be examined. This is particularly important in 
patients with CVD since estimating CRF from an exercise stress test is 
common in CR. Thus, the aim of this study was to compare four well- 
established CRF equations in their ability to predict all-cause mortality 
in patients with CVD participating in CR. We hypothesized that eCRF 
would be predictive of all-cause mortality, yet significant differences 
would be observed in the predictive ability of the different eCRF 
equations. 

2. Methods 

2.1. Study design and cohort 

This study was a secondary analysis of data from a retrospective 
cohort. The cohort consisted of adults aged 20–90yr with CVD who were 
referred to CR through TotalCardiology™ Rehabilitation in Calgary, 
Alberta between January 1, 2009 and December 31, 2019. Additional 
inclusion criteria included performing a symptom-limited Bruce tread-
mill stress test protocol upon intake to CR, having an exercise stress test 
duration >1min, data available in the Alberta Provincial Project for 
Outcome Assessment in Coronary Heart Disease (APPROACH) database, 
and ≥1yr of follow-up from intake. The protocol for this study conforms 
to the ethical guidelines of the 1975 Declaration of Helsinki as reflected 
in a priori approval by the Conjoint Health Research Ethics Board of the 
University of Calgary. 

2.2. Assessment of eCRF 

Each patient performed a symptom-limited Bruce treadmill protocol. 
The eCRF for each patient was then calculated using equations from the 
ACSM [13], Bruce et al. [14], the Fitness Registry and the Importance of 
Exercise International Database (FRIEND) [15], and McConnell and 
Clark [16]. Variables within the eCRF equations included the following: 
sex, peak treadmill speed and grade, and/or test duration (Table 1). The 
two equations from the ACSM were designed to be used during walking 
(<3.7mph [6.0 km/hr]) or running (>5.0mph [8.0 km/hr]). However, 
the Bruce protocol involves stages at 4.2mph (6.8 km/hr) and 5.0mph 
(8.0 km/hr). Since the walk/run transition was not known for each 
patient, and with the goal of maximizing the study sample size, the 
walking equation was used when test duration was ≤11.5min (30sec left 
of the stage at 4.2mph [6.8 km/hr]) and the running equation was used 
for a test duration >11.5min. Lastly, each equation estimated relative 
CRF (mL/kg/min), which was then converted to metabolic equivalents 
(METs) by dividing by 3.5 13. 

2.3. Assessment of clinical risk factors 

Clinical risk factors were obtained from medical records at the time 
of intake to CR [17]. Patients were categorized as a current smoker if 
they used cigarettes within the past month and former smoker if they 
quit smoking greater than one month prior to admission. Diabetes status 
was determined based on a fasting plasma glucose ≥7.0 mmol/L [18], 
diagnosis by a physician, or taking medication to treat diabetes. Patients 
were classified as having hypertension if they had a resting blood 
pressure ≥140/90 mmHg [19], were diagnosed by a physician, or were 
taking a medication to treat hypertension. Dyslipidemia was classified 
based on fasting total cholesterol/HDL cholesterol ratio ≥4, tri-
glycerides ≥2 mmol/L, LDL cholesterol ≥2.5 mmol/L [20], physician 
diagnosis, or taking a medication to treat dyslipidemia. 

2.4. Outcomes and follow-up 

All participants were followed from the date of their initial exercise 
test until the date of death or through January 1, 2021. All-cause mor-
tality status was collected from Alberta Vital Statistics. 

2.5. Statistical analysis 

Analyses were performed in Python version 3.9.12. Differences be-
tween mortality-based subgroups (i.e., survivor vs. deceased) were 
assessed with independent samples t-tests and Chi-square tests. A 
RMANOVA with Tukey post-hoc was used to compare eCRF from each 
equation. Cox proportional hazard models were performed to assess the 
relationship between the eCRF equations and mortality risk. Models 
were adjusted for clinical risk factors (sex, age, body mass index, current 
smoking status, former smoking status, hypertension, dyslipidemia, 
diabetes, kidney disease, dialysis, liver disease, peripheral artery dis-
ease, cerebrovascular disease, heart failure, presence of malignancy, 
prior coronary artery bypass grafting, prior myocardial infarction, prior 
percutaneous coronary intervention, and severity of coronary artery 
disease [Duke Jeopardy score]). The predictive ability of the models was 
compared using the concordance index. Statistical significance was set 
at P < 0.05, two-tailed. Data are presented as mean ± SD. 

3. Results 

Descriptive characteristics of the cohort are provided in Table 2. The 
cohort consisted of 7269 individuals with CVD (81% male; age 59.4 ±
10.3yr; 66% referred for myocardial infarction) and there were 284 
deaths (85% male) over a follow-up period of 5.8 ± 2.8yr. Differences in 
eCRF were observed between each equation with the ACSM equation 
resulting in the highest eCRF (9.6 ± 2.7 peak METs) and the McConnell 
and Clark equation resulting in the lowest eCRF (7.6 ± 1.9 peak METs) 
(P < 0.05). Regardless of the equation used, the eCRF was higher in 
participants identified as living compared to deceased at the time of 
follow-up (P < 0.05). 

The Cox models indicated that the eCRF from each of the four 
equations was predictive of mortality (P < 0.05); each one-point in-
crease in peak METs was associated with a 16–24% reduction in risk of 
death (Table 3). The concordance index values for the models were the 
same (0.77) suggesting similar predictive performance between each of 
the models. 

4. Discussion 

The present study compared four well-established eCRF equations 
within a cohort of patients with CVD. Significant differences in eCRF 
were observed between the equations similar to previous research on 
apparently healthy individuals [12]. As hypothesized, eCRF from each 
equation was predictive of all-cause mortality in patients with CVD. 
However, despite the differences in eCRF between the equations and 

Table 1 
Summary of the equations used for estimating CRFa.  

Authors Equation 

ACSM Walk Equation [13] 0.1(speed; m/min) + 1.8(speed; m/min)(fractional 
grade) + 3.5 

ACSM Run Equation [13] 0.2(speed; m/min) + 0.9(speed; m/min)(fractional 
grade) + 3.5 

Bruce et al. 1973 14 6.70–2.82(sex; M = 1, F = 2) + 0.056(test duration; 
seconds) 

FRIEND Equation [15] (speed; m/min)(0.17 + 0.79(fractional grade)) + 3.5 
McConnell and Clark 1987 

[16] 
2.587(test duration; minutes) + 6.004  

a The equations determine relative CRF (mL/kg/min) but were converted to 
metabolic equivalents (METs) for the present study. 
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contrary to our hypothesis, each equation had a similar ability to predict 
mortality, indicating any could be used for this purpose. 

As expected, the McConnell and Clark [16] equation resulted in the 
lowest eCRF since this equation is designed for individuals using 
handrail support and the ACSM equation [13] resulted in the highest 
eCRF since this equation assumes an individual is exercising at a steady 
state. These trends are similar to those observed in a cohort of appar-
ently healthy individuals [12]. Considering an improvement in CRF as 
low as 1 peak MET significantly reduces mortality [4,6,8,21], the 
average difference of 2 peak METs between the ACSM and McConnell 
and Clark equations suggests potential for clinically meaningful impacts 
depending on which equation is used with a patient. Thus, regardless of 
the similar ability to predict all-cause mortality, these differences in 
eCRF equations suggest potential differences in their ability to guide 
clinical care. 

The present study determined eCRF from an exercise stress test, 
although there are other techniques to estimate CRF. Non-exercise 

prediction equations are an easy and inexpensive method for esti-
mating CRF because exercise is not required, and the needed informa-
tion is typically available in electronic medical records. A non-exercise 
prediction equation has even been developed specifically for individuals 
with CVD [22]. The eCRF from these non-exercise prediction equations 
is associated with mortality [21,23–25] but have errors in accuracy [12, 
26,27], are less predictive of mortality compared to direct assessments 
of CRF [21], and do not allow for the collection of other metrics assessed 
during exercise testing that have clinical utility (e.g. exercising elec-
trocardiogram and blood pressure). Nonetheless, exercise testing is not 
always feasible and future research should compare the predictive 
ability of the different determinations of CRF in a population of in-
dividuals with CVD. 

The strengths of the present study include the cohort of males and 
females with CVD and a diversity of clinical risk factors. There were, 
however, some limitations that should be noted. The directly-measured 
CRF of the patients is not known and as a result it is not possible to 
determine which eCRF equation is most accurate in this cohort. Further, 
only 4% of the cohort was deceased by the end of a relatively short 
follow-up period (5.8 ± 2.8yr). A longer follow-up period could help to 
better distinguish predictive differences between eCRF equations. 

In conclusion, eCRF from any of the four studied equations can 
similarly identify all-cause mortality risk in patients with CVD. These 
findings support recommendations that eCRF be calculated to improve 
patient risk stratification when the direct assessment of CRF using car-
diopulmonary measures is not feasible [6]. However, the significant 
differences in eCRF values from each equation suggest potential differ-
ences in their ability to guide clinical treatment plans and should be the 
focus of future prospective research. 
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