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Abstract

Multiple models exist for the evaluation of human motor performance; some of these rely on

the Index of Difficulty (ID), a measure to evaluate the difficulty associated to simple reaching

tasks. Despite the numerous applications of the ID in reaching movements, the existing for-

mulations are functions of the geometrical features of the task and do not consider the

motor behaviour of subjects performing repetitive movements in interaction with the environ-

ment. Variability of movements, length of trajectories, subject-specific strength and skill, and

required interaction with the environment are all factors that contribute to the motor difficulty

experienced by a moving agent (e.g., human, robot) as it repeatedly interacts with the envi-

ronment during a given task (e.g., target-reaching movement, locomotion, etc.). A novel

concept of motor difficulty experienced by an agent executing repetitive end-effector move-

ments is presented in this study. A stochastic ID formulation is proposed that captures the

abovementioned factors and applies to general three-dimensional motor tasks. Natural

motor variability, inherent in the proposed model, is representative of the flexibility in motor

synergies for a given agent-environment interaction: the smaller the flexibility, the greater

the experienced difficulty throughout the movement. The quantification of experienced

motor difficulty is demonstrated for the case of young healthy subjects performing three-

dimensional arm movements during which different objects are manipulated. Results show

that subjects’ experienced motor difficulty is influenced by the type of object. In particular, a

difference in motor difficulty is observed when manipulating objects with different grasp

types. The proposed model can be employed as a novel tool to evaluate the motor perfor-

mance of agents involved in repetitive movements, such as in pick and place and manipula-

tion, with application in both industrial and rehabilitation contexts.

Introduction

The evaluation of human motor performance is a topic of interest in multiple applications,

ranging from manual operations in a production line, to human-computer interface, and

human biomechanics and rehabilitation. In these fields, movements such as reaching and pick

and place are most commonly studied from the perspectives of motor (e.g., learning, planning,
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coordination, control [1–3]) and cognitive (e.g., mental workload [4]) performances. Within

the motor perspective, measures of difficulty of reaching tasks have been established through-

out the decades.

Background on the index of difficulty

First studies on difficulty measures of a motor task refer to the Fitts’ law and to the related

Index of Difficulty (ID) [5]. The ID was derived by analogy with the Shannon theorem n˚ 17

[6], theorized within the information theory. The ID measures (in bit unit) the difficulty asso-

ciated with a simple reaching task with target of width W placed at a distance D from the start-

ing point:

ID ¼ log
2

2 � D
W

� �

ð1Þ

MacKenzie proposed a variation from the original ID formulation to improve the model fit

on Fitts’ empirical data [7]:

ID ¼ log
2

D
W
þ 1

� �

ð2Þ

Both formulations refer to simple ‘point-to-point’ reaching tasks that do not consider fea-

tures of the movement trajectory (shape, length). A generalization of the ID formulation to a

general planar trajectory t, is proposed in [8]:

Dt ¼

Z

t

ds
Wt sð Þ

ð3Þ

Here, the trajectory is spatially constrained along the path in a two-dimensional space and

is considered as an infinite sequence of simple reaching tasks with target width Wt(s) that var-

ies at the curvilinear coordinate s, and is orthogonal to t at s.
The above-mentioned ID formulations have been applied in reaching tasks considering 3D

[9–13] or 2D targets [14, 15], and have been mostly employed in human-computer interaction

applications involving the use of devices such as mouse, trackball, joystick, haptic devices, 3D

glasses (AR/VR) [8, 15–22].

The existing ID models are evaluated a priori, based solely on the pre-defined geometrical

features of the task. However, these models are mostly useful when employed as tools for the

prediction of valuable subject-specific indicators of motor performance, such as the Movement

Time (MT) [23, 24] and the “Speed-Accuracy” trade-off [25]. For example, the prediction of

MT as a function of the ID has been done a posteriori, based on experimental observations of

subjects performing simple reaching tasks in the shortest possible time [5, 7, 8, 24]. Further-

more, the IDt has been used to improve the prediction of the “Speed-Accuracy” trade-off [25]

observed in constrained reaching tasks experiments (e.g., tunnel-traveling task), by consider-

ing the influence of speed of execution and task difficulty on the accuracy of movements at the

target [26].

Task difficulty and motor variability

The above geometry-based ID models alone quantify a “geometrical” task difficulty, where

tasks with smaller targets and longer paths are relatively more difficult. However, these models

do not directly measure a subject-specific motor performance in the execution of a given

reaching task. None of the existing ID formulations take into account the motor behaviour of a
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moving agent (e.g., human, robot) and its interaction with the environment. Variability of

movements, length of trajectories executed, subject-specific strength and skill, and required

interaction with the environment are all factors that contribute to the motor difficulty experi-

enced by a moving agent as it repeatedly interacts with the environment during a given task

(e.g., target-reaching movement, locomotion, etc.). Nevertheless, no single performance mea-

sure exists that captures the experienced motor difficulty, while taking into account the above-

mentioned factors.

In very few studies, the impact of geometry-based task ID on the variability of both kine-

matics and dynamics parameters has been addressed. The relationship between difficulty and

motor performance complexity has been investigated through the analysis of the variability of

cyclic force trajectories [27], resulting in an inverse relationship between the ID and the com-

plexity of motor behaviour in the force domain. In a different study, it has been observed that

in tasks with greater ID the overall joint configurations variability is reduced, especially the

component of variability that does not affect the task performance (i.e., leaves unchanged the

goal-oriented performance variables) [28]; the variable patterns in that case do not represent

noise, but the use of equivalent motor solutions in reaching a goal. The existence of multiple

solutions to produce the same movement is enabled by the abundance of degrees of freedom

(e.g., number of muscles and joints) in the redundant human motor system [29].

While the effect of predefined (geometrical) task difficulty on variability has been partly

observed [27, 28], it is still not clear what is the role of motor variability in the evaluation of the

motor difficulty experienced by a moving agent as it repeatedly interacts with the environ-

ment. This is partially due to the fact that variability stems from different sources, depending

on the characteristics of the agent and the type of required interaction, and its role should be

addressed according to the specific theoretical and experimental context of interest.

Therefore, when seeking a performance measure indicative of the experienced motor diffi-

culty in repetitive movements, it is necessary to (i) clearly identify the aspect of motor variabil-

ity that is relevant to the present quantification of difficulty and (ii) define a novel concept of

motor difficulty that is no longer a deterministic function of task geometry but represents the

stochastic behaviour of a moving agent executing a repetitive motor task while interacting

with the environment.

Multiple aspects of motor variability

The multiple aspects of motor variability have long been studied from various theoretical and

experimental perspectives. The uncontrolled manifold theory [30–32] has been used to dem-

onstrate the co-existence of two components of motor variability in the context of motor learn-

ing [33]: one component, which arises from redundancy, does not affect the task-relevant

dimension, increases exploration, and facilitates the learning; the other component is a task-

relevant variability that should be minimized. Similarly, in the context of optimal feedback

control theory [34, 35], Todorov et al. observed that optimal performance is achieved by

exploiting redundancy, which explains why in a variety of tasks, variability is not minimized,

but it is accumulated in task-irrelevant dimensions. In this perspective, similarly to [28], per-

turbations from the average trajectory should only be minimized if they interfere with task

performance.

Therefore, in multiple contexts it can be seen that two components of variability co-exist

and that only the component that does not affect the task performance allows the subject to be

more flexible. The task-irrelevant variability is enabled by the motor redundancy, whereas the

task-relevant variability is attributed to the noise, and therefore should be minimized by the

motor control system.
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As seen in the literature above, the exploitation of redundancy can be used for improving

learning or, more generally, for enhancing flexibility, depending on the type of task. By the def-

inition assumed here, flexibility is the ability to achieve the same task outcome using different

movement solutions: an agent with greater flexibility can generate the same task performance

with greater variations of the same movement pattern, as compared to an agent with less flexi-

bility [36]. When observed over small time scales (e.g., on a trial-to-trial basis) and small varia-

tions of the environmental constraints, movement variability provides a good window into the

degree of flexibility of motor synergies (also called “implicit” flexibility) associated with a given

task [36].

Although the above interpretation of motor variability as an indication of flexibility is well

acknowledged, it cannot be applied to every possible context: it pertains to the case (as that of

the present study) of agents performing repetitive motor tasks on a small time scale and under

the same movement strategy (i.e., the movement pattern is not “qualitatively” altered, given

the minimal environmental changes), during which task-irrelevant variability can be accumu-

lated up to a certain optimal amount [37]. In this context, flexibility has a positive connotation,

since it is opposed to the case of overly-rigid systems that are less adaptable to perturbations

[37], and can be achieved by channeling the natural movement variability (i.e., variability

observed within the same movement, without any externally imposed perturbations) [36]. For

instance, it has been shown that while walking on a treadmill, humans exploit redundancy by

adjusting stepping movements while maintaining performance: in this perspective the flexibil-

ity allows to perform the locomotion task with a level of motor variability that is potentially

beneficial [38].

In many other cases, too much or too little variability is both “bad” [37], which suggests a

trade-off between flexibility and variability [36]. For instance, movements of unhealthy sub-

jects can sometime show greater variability [39], other times smaller variability [40], as com-

pared to healthy ones, depending on the pathology and experimental conditions. Moreover,

the relationship between variability and flexibility cannot easily be assumed during learning,

when the amount and structure of movement variability and task performance all change with

practice [36, 41].

The present study does not consider the presence of motor disease nor learning and, similar

to [28, 34, 35], focuses on repetitive end-effector movements in which the agent can be more

flexible and explore equivalent motor solutions (i.e., variations of the same movement pattern)

in phases where accuracy is not required, while succeeding in task goals. In this context, a

greater motor variability is associated to a greater flexibility (and potentially greater adaptabil-

ity to perturbations [37]) of the motor control system to manage the abundance of degrees of

freedom available to execute a given task in a specific environment. Within the described con-

text of interest, a novel concept of difficulty in motor tasks is described in the following

section.

Experienced difficulty in motor tasks

The novel concept of motor difficulty experienced by an agent performing repetitive motor

tasks represents how much the flexibility of movements is limited by both the agent and the

environment features. In general, flexibility is limited by the presence of several constraints

that can be relative to the specific agent (internal constraints) or to the task/environment

(external constraints) [42]. Both types of constraints affect the movement execution, limiting

the exploitation of motor redundancy and the spatial configurations that an agent can achieve.

When an agent’s movement is more (or less) limited due to internal/external constraints, the

difficulty experienced in the task execution should be higher (or lower).
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This concept of motor difficulty can be expressed by the stochastic motor behavior of an

agent (e.g., human, robot) that arises during a desired interaction with the environment, quan-

tified by the novel stochastic Index of Difficulty. The stochastic behavior of agents performing

any repetitive motor tasks, as enabled by the redundant motor system, implicitly and simulta-

neously reflects the characteristics of the agent (e.g., motor redundancy, strength, skill) and the

type of interaction (e.g., task and environmental features).

A task executed with low motor difficulty represents a type of agent-environment interac-

tion that allows greater flexibility in the choice of equivalent motor solutions; in this case, the

stochastic behavior on the end-effector is characterized by greater natural variability, calcu-

lated relative to an average trajectory throughout the entire path. Vice versa, a greater motor

difficulty is associated to limited flexibility of motor synergies in the task execution, quantified

by the small variability of the end-effector trajectories throughout the movement.

Limited flexibility (and great difficulty) could be due to external constraints that restrain

end-effector movements, hence requiring great accuracy in the control of its position (analo-

gously to the case of reaching small and distant targets, with great geometrical ID). On the

other hand, the source of limited flexibility (and great difficulty) could come from internal

constraints that make the agent overly rigid and less adaptable to potential perturbations.

Lastly, a reduced flexibility could be the result of a particular agent-environment coupling that

exhibits a more rigid (hence, difficult) behaviour as compared to one that is assumed to be

optimal with respect to some criterion (e.g., resilience, speed, success rate).

The proposed stochastic model should be applied for the evaluation of experienced diffi-

culty within the same task domain and movement strategy, in order to (a) compare the perfor-

mance of different agents (or populations) executing the same movement pattern or (b)

quantify the effects of small environmental changes on the flexibility (and difficulty) of a cer-

tain agent (or population) executing a given task.

An example of the first type of application (a) has been presented in a previous work by the

authors [43], in which the locomotion performance of young and elderly human subjects has

been compared at different speed levels. A preliminary two-dimensional formulation of the sto-

chastic Index of Difficulty was used to show that, in the sagittal plane, the healthy elderly popula-

tion exhibits throughout the gait cycle a lower motor variability at the swing foot end-effector, as

compared to the control population (i.e., young healthy). The elderly motor flexibility is there-

fore further limited by age-related internal constraints, resulting in a greater experienced motor

difficulty when performing the same walking task, especially at higher speed levels.

The second type of application (b) of the stochastic Index of Difficulty is the object of this

study, where the experienced difficulty associated with the three-dimensional repetitive manipu-

lation of different objects is quantified for a given agent (healthy young human subjects). It is

hypothesized that the flexibility of motor synergies within the same movement pattern is affected

by the small changes in the external constraints represented by the handling of diverse objects.

Lastly, the proposed model can also be applied in the future to a third scenario (c), in

which the observed motor difficulty of a reference agent-environment pair (e.g., healthy

human subject on a staircase) is used as a benchmark of motor performance representative of

the desired degree of flexibility in the specific task (e.g., stair climbing), against which the per-

formance of different agent-environment coupling (e.g., exoskeleton-wearing subject on a

steeper staircase) can be evaluated.

Materials and methods

In this section, the stochastic model of experienced motor difficulty is presented for a general

three-dimensional repetitive movement of an agent’s end-effector (hand). In the next section,
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this model will be applied to a dataset of healthy subjects performing three-dimensional hand

movements during which different objects are manipulated.

Stochastic index of difficulty for a general three-dimensional motor task

To quantify the motor difficulty in a repetitive agent-environment interaction, the proposed

stochastic model of the Index of Difficulty IDobs is based on a formal analogy with IDt (Eq 3),

as follows:

IDobs s
�;φð Þ ¼

Z s�

0

ds
Wobs s;φð Þ

ð4Þ

where Wobs(s, φ) is named the “stochastic width” and stores information about the variability

of end-effector position at the curvilinear coordinate s observed over n repeated trajectories tk,
k = 1, . . ., n, whose average is �t . Assuming a probability density function for the stochastic

position of the end-effector, evaluated at a probability level φ.

The inverse function of Wobs(s, φ) is integrated with respect to the infinitesimal length ds of

the average trajectory, over a range of the curvilinear coordinate s from zero (initial position)

to s� 2 0;�t½ �. Nevertheless, IDobs is not simply the inverse of motor variability, but a cumulative

measure that takes into account both the variability of the movement pattern throughout the

entire motion and the length of the path. For instance, two agents that perform a repetitive

motor task with the same overall movement variability, but along different average trajectories,

will experience different motor difficulties.

Furthermore, IDobs captures the overall flexibility of motor synergies (in the context previ-

ously explained) through a cumulative measure of variability, which differs from the typical

measures of used in reaching task experiments, where a local form of motor variability is con-

sidered (i.e. at specific points, such as target) [44–47].

Model of stochastic width

To account for the motor variability in IDobs(s�, φ) throughout the three-dimensional manipu-

lation task, the variability of n repeated trajectories is evaluated in the plane orthogonal to the

average trajectory �t at curvilinear coordinate s (Fig 1), consistently with the approach of [8,

48].

Each point qk(s) (k = 1, . . ., n) is the intersection between the trial trajectory tk and the

plane P(s) orthogonal to the average trajectory at s. In the case of bivariate normal distribution

of the n points qk(s), their spatial distribution on P(s) is expressed by the standard deviation

ellipse (light blue area in Fig 1), as observed in field studies [46, 49, 50]. The point qk(s),
belonging to the average trajectory �t at curvilinear coordinate s, is the centre of the standard

deviation ellipse.

The elliptical shape of the spatial distribution of the n points qk(s) is evaluated by the Princi-

pal Component Analysis (PCA) technique [40, 51–53]. The PCA technique is used to identify

the principal components (PC) representing the directions of spatial variability of the dataset

considered. By applying the PCA at each curvilinear coordinate s, a local reference system is

identified by the independent variables �(s), η(s), ψ(s) (Fig 1). These variables represent the

directions of maximum variance: σ� and ση are the standard deviations of the n points qk(s)
along the first and second PC, �(s) and η(s), respectively. Given that all the n points qk(s) lay in

the plane P(s) orthogonal to �t at s, the standard deviation of the third PC, ψ(s), is null (σψ = 0)

(Fig 1). Under the assumption that at each value of the curvilinear coordinate s, the n points

qk(s) are normally distributed along directions defined by �(s) and η(s), the sum of squares of
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the normalized variables (z2
�
sð Þ ¼ � sð Þ

s� sð Þ

� �2

and z2
Z
sð Þ ¼ Z sð Þ

sZ sð Þ

� �2

), are equal to a constant squared

distance c2:

z2

�
sð Þ þ z2

Z
sð Þ ¼

� sð Þ
s� sð Þ

� �2

þ
Z sð Þ
sZ sð Þ

 !2

¼ c2 ð5Þ

which can be rewritten as follows:

� sð Þ
ffiffiffiffi
c2
p
� s� sð Þ

 !2

þ
Z sð Þ
ffiffiffiffi
c2
p
� sZ sð Þ

 !2

¼ 1 ð6Þ

Eq 6 represents an ellipse with semi-axes
ffiffiffiffi
c2
p
� s� sð Þ and

ffiffiffiffi
c2
p
� sZ sð Þ. The area contoured by

the ellipse’s equation represents the local variability of the end-effector position; since variabil-

ity varies based on the confidence region considered (i.e., probability level φ), the ellipse must

be consequently adjusted. This information in inherent in c2: by choosing a specific value of c2

the semi-axes can be properly modified to consider an ellipse that expresses the variability for

the chosen probability level. Depending on the number of samples considered to evaluate the

motor variability, c2 is differently calculated [54, 55]. If the entire population is known, or a

large sample size is provided, c2 is expressed by the squared Mahalanobis distance (MD2) and

evaluated through the critical values of the Chi-squared distribution with v1 degrees of free-

dom (w2
n1 ;φ

). ν1 is equal to the dimensionality of the motor variability: in the current case of

three-dimensional movement, the local variability on P(s) has dimension ν1 = 2. By assuming

that the entire population is known and choosing a probability level φ = 0.95 (95%), the value

w2
2;0:95
¼ 5:992 ¼ MD2 ¼ c2 0:95ð Þ can be obtained from the Chi-squared distribution tables.

Fig 1. Example of trial trajectories (dash-dotted lines) and their average (thick black line). The light blue ellipse shows the motor variability

in the plane P(s) orthogonal to �t� at s.

https://doi.org/10.1371/journal.pone.0276308.g001
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Nevertheless, for the present dataset, the number of trials executed by each participant in each

condition (n = 7), are not enough to evaluate the 95% of motor variability by considering

MD2. Therefore, when the entire population is not known and a limited number of samples is

collected, c2 is expressed by the Hotelling’s T-squared distance (T2), and evaluated as the fol-

lowing:

T2 ¼
n � 1ð Þ � n1

n � n � n1ð Þ
� Fn1 ;n2 ;φ ð7Þ

where Fn1;n2;φ
is the critical value of the F-distribution obtained from the F-distribution tables

with ν1 degrees of freedom of the numerator (ν1 = 2), ν2 degrees of freedom of the denomina-

tor (equal to n − ν1), and probability level φ. By considering φ = 0.95 (95%), ν1 = 2, ν2 = 5

(n = 7), from the F-distribution tables F(2,5,0.95) = 5.786, and consequently T2 = 1.984 =

c2(0.95). Therefore, the major semi-axis of the standard deviation ellipse has length
ffiffiffiffiffiffiffiffiffiffiffi
1:984
p

�

s� sð Þ and the minor semi-axis has length
ffiffiffiffiffiffiffiffiffiffiffi
1:984
p

� sZ sð Þ. By considering the interval θ 2 [0,

2π], parametrization of Eq 6 leads to:

� y; s;φð Þ ¼ c φð Þ � s� sð Þ � cos yð Þ

Z y; s;φð Þ ¼ c φð Þ � sZ sð Þ � sin yð Þ
ð8Þ

(

The distance between the center of the ellipse, p(s), and a point on the ellipse can be

obtained as:

r y; s;φð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c φð Þ � s� sð Þ � cos yð Þð Þ
2
þ c φð Þ � sZ sð Þ � sin yð Þ
� �2

q

ð9Þ

The mean value of the above variable radius of the ellipse, evaluated over the interval θ 2 [0,

2π] at a probability level φ, is:

rmean s;φð Þ ¼
1

2p

Z 2p

0

r y; s;φð Þ dy ð10Þ

With this integral, the elliptical area that characterizes the spatial distribution at s of the n
points qk(s) with probability level φ is converted into a circular area of radius rmean(s, φ). This

average radius is used in this study to model the stochastic width associated with the repetitive

movement, as follows:

Wobs s;φð Þ ¼ 2 � rmean s;φð Þ ð11Þ

Through this model, the information of the observed end-effector spatial variability on the

plane P(s) can be captured by the single value of the stochastic width Wobs(s, φ). The practical

use of the above model of stochastic width Wobs(s, φ) in capturing the motor variability will be

shown in the following sections. Nevertheless, other models for stochastic width could be

assumed, without losing generality in the proposed analytical-stochastic framework for the

evaluation of motor difficulty.

Results and discussion

The application of the proposed model of difficulty (IDobs) to capture the effects of different

external constraints on an agent’s experienced difficulty is demonstrated through the analysis

of repetitive movements in the execution of a three-dimensional manipulation task. Results of

the statistical analysis on IDobs(s�, φ) values are provided and discussed.
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Application of the difficulty model to a manipulation task

The task taken into account consists of reaching, grasping, transporting, and releasing differ-

ent objects placed at fixed locations on a plane, which represent the external constraints influ-

encing the agent-environment interaction.

An experimental dataset publicly available in [56] is used to test the model. Data analysis is

carried out using MATLAB1 software (version R2021a). Data refer to 31 healthy individuals;

all subjects belong to the same population of young healthy adults and, therefore, no between-

subjects differences are assumed. Each individual sits in front of a table to perform the manip-

ulation task with the dominant hand. The initial object position is placed 300 mm from the

edge of the table on the same side of the dominant hand; here, the subject grasps an object and

moves it to the release position, placed 500 mm symmetrically on the other side of the table,

where the object is released and, finally, repositions the hand at the starting point. For the

experiment, five different objects have been considered: a tennis ball (105 mm diameter), two

one-litre water bottles (80 mm diameter), one full and the other half-full, two ellipsoid shaped

balls (62 mm maximum diameter), one soft and the other of stiff plastic. Reflective markers

have been placed on the subjects’ end-effector to obtain, through a motion capture system,

kinematics parameters of the movement. In the present article, the marker on the hand’s

palm is considered for the end-effector movements. Further information on the dataset are in

[57].

The subjects’ end-effector average trajectory is evaluated on 7 trial trajectories performed

during the motor task, for each of the five objects. An example of the trial trajectories of the

end-effector (dash-dotted lines) and their average (thick black line) is shown (Fig 2) for a

given subject during the manipulation task of the tennis ball.

For a given object, Eqs 4 and 11 are applied to the trial trajectories of each subject to deter-

mine the values of Wobs(s�, φ) and IDobs(s�, φ), respectively, with φ = 0.95 and for s� evaluated

from zero (initial position) to the final rest position (s� ¼ �t). As an example, the profiles of the

stochastic width and stochastic Index of Difficulty, averaged over the 31 subjects, are shown

for the object tennis ball (Fig 3).

The trend of Wobs(s�, φ) highlights three phases, each of them characterized by a travelling

action (gross movement) and a positioning action (fine movement). The first phase (reaching

phase) consists of moving the end-effector (hand’s palm) from the starting point to the grasp-

ing position; the second phase (transport phase) consists of moving the object from the grasp-

ing position and releasing it at the releasing position; finally, the third phase (return phase)

consists of moving the empty hand from the releasing point to the starting point where the

cycle ends (final placement). For each phase, the trend of Wobs(s�, φ) is bell-shaped, with

smaller values at points where a greater accuracy of the end-effector movements is required

(positioning action). These results are in line with [34] since Wobs(s�, φ) values are higher in

the task-irrelevant dimensions (travelling action of each phase), and reach local minima in the

task-relevant dimensions (positioning action of each phase) where greater accuracy is

required. The exploitation of motor redundancy is greater in the task-irrelevant dimensions

since a greater motor variability is observed, witnessed by the large Wobs(s�, φ) values. At

points where accuracy is required, the environment forces the agents to reach a specific target.

In short, each phase is characterized by a travelling action where the agent’s end effector is free

to explore the space with greater spatial configurations, followed by the positioning action

where accuracy is required, resulting in minima values of Wobs(s�, φ). At points where accuracy

is required, the lowest values of Wobs(s�, φ) cause steeper slopes of the IDobs(s�, φ) trend result-

ing in a greater increase of the motor difficulty.
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Statistical analysis on the stochastic index of difficulty

Different analyses have been performed to test the following two main hypotheses:

1. The manipulation of different objects represents a change in the external constraints, affect-

ing the agent-environment interaction, and influencing the motor difficulty experienced by

the subjects during the entire manipulation task. To test the hypothesis, a one-way repeated

measures ANOVA on IDobs s� ¼ �t;φð Þ values of the 31 subjects has been performed for each

condition (i.e., each object). Results show that there is a significative change in the subjects’

motor difficulty when manipulating different objects.

2. In [57] it has been observed that objects with different geometry affect the subjects’ motor

behaviour during the object manipulation. To test this hypothesis, a one-way repeated mea-

sures ANOVA on IDobs s� ¼ �t;φð Þ values of the 31 subjects for the three geometrical differ-

ent objects (tennis ball, half-full bottle, plastic ellipsoid ball), has been performed. Results

show that differences in the motor behaviour, expressed by IDobs s� ¼ �t;φð Þ, are not associ-

ated to the different geometry, but to the different grasp type.

To verify whether the five different objects determine a relevant difference on the overall

experienced difficulty in the manipulation task (quantified by IDobs s� ¼ �t;φð Þ), a statistical

analysis has been performed using IBM SPSS Statistics1 software (version 26). Assumption

Fig 2. Trial trajectories (dash-dotted lines) and average trajectory (thick black line) for a given subject during the tennis ball manipulation task.

https://doi.org/10.1371/journal.pone.0276308.g002

PLOS ONE Quantification of motor difficulty through an analytical-stochastic model

PLOS ONE | https://doi.org/10.1371/journal.pone.0276308 October 19, 2022 10 / 20

https://doi.org/10.1371/journal.pone.0276308.g002
https://doi.org/10.1371/journal.pone.0276308


prior to the one-way repeated measures ANOVA for the IDobs s� ¼ �t;φð Þ values of the 31 sub-

jects (normality through Shapiro-Wilk test, sphericity through Mauchly’s test) have been con-

firmed for all the five objects. ANOVA results show statistically significant differences by

comparing the IDobs s� ¼ �t;φð Þ values of different objects (F(4,120) = 4.361, p< 0.003). By

applying the post hoc test with Bonferroni correction, the statistically significant difference of

IDobs s� ¼ �t;φð Þ is evident in case of ellipsoid balls (soft and plastic) vs. bottles (half-full and

full) (p< 0.005). Results are in Fig 4.

These results confirm the first hypothesis: the proposed stochastic Index of Difficulty is sen-

sitive to capture the different motor difficulty experienced by the population while executing a

motor task (object manipulation) with different external conditions (objects). In particular,

subjects experience a greater motor difficulty when manipulating the bottles (half-full and

full), compared to the ellipsoid balls (soft and plastic). Since results do not provide relevant dif-

ferences between the two bottles (half-full vs. full), and between the two ellipsoid balls (soft vs.

plastic) it can be concluded that the different mass alone as well as, the different stiffness of

Fig 3. IDobs(s�, φ) and Wobs(s�, φ) values averaged over 31 subjects during the tennis ball manipulation task.

https://doi.org/10.1371/journal.pone.0276308.g003
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objets do not influence the population’s motor difficulty; the same conclusion holds in [57]

where it has been observed that the alteration of the mechanical properties (weight variations

in the bottles, stiffness and friction in the ellipsoid ball), does not affect the motor behaviour.

Therefore, the mass end stiffness can be removed from the features that affect the subjects’

motor difficulty.

A further investigation can be carried out focusing only on objects characterized by differ-

ent geometry (tennis ball, half-full bottle, plastic ellipsoid ball). The following analysis is aimed

at verifying if the different geometry is the main object’s feature that affects the subjects’ motor

difficulty. Assumption prior to the one-way repeated measures ANOVA for the

IDobs s� ¼ �t;φð Þ values of the 31 subjects (normality through Shapiro-Wilk test, sphericity

through Mauchly’s test) have been confirmed for all the geometrically different objects.

ANOVA results show statistically significant differences by comparing the IDobs s� ¼ �t;φð Þ val-

ues of different objects (F(2,60) = 4.010, p< 0.02). By applying the post hoc test with Bonfer-

roni correction (α = 0.05/3 = 0.016), the statistically significant difference of IDobs s� ¼ �t;φð Þ is

evident in case of ellipsoid/tennis ball vs. bottle (p< 0.001). Results are in Fig 5.

These results do not support the hypothesis that the geometry is the main feature that

affects the subjects’ motor difficulty. Nevertheless, statistical differences can be associated with

the grasp type of the objects: the tennis ball (spherical) and ellipsoid ball (ellipsoid) are gripped

with the same type of grip (’power sphere’ grip), while the bottle (cylinder) is gripped with the

‘large diameter’ grip [58, 59]. No relevant differences are observed by comparing objects

grasped with the “power sphere” grip (tennis ball vs. ellipsoid ball); on the contrary, relevant

differences are observed when comparing objects with different type of grips, i.e. tennis/

Fig 4. Mean values and SEM (Standard Error of the Mean) of the stochastic Index of Difficulty IDobs s� ¼ �t�;φ
� �

, evaluated for the entire manipulation

task and for different objects. Asterisks indicate pairwise significant differences (p-value< 0.005); critical p-value = 0.05/10 = 0.005.

https://doi.org/10.1371/journal.pone.0276308.g004
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ellipsoid ball (“power sphere” grip) vs. bottle (“large diameter” grip) [58, 59]. When differenti-

ating the objects basing on the grasp type, both the geometry and the volume are considered

[58, 59]. These two features influence the level of accuracy in grasping the object (precision/

intermediate/power), the number of fingers involved, and the positioning of the thumb

(adducted/abducted). Therefore, the influence of both the geometry and volume of objects,

summarized in the grasp type, have an impact on the subjects’ motor difficulty, and not only

the object’s geometry.

In this section, it has been shown that the manipulation of different objects affects the sto-

chastic Index of Difficulty, and in particular, agents experience a different motor difficulty

when manipulating objects with different grasp types. In the next section, further analysis has

been performed to investigate how objects characterized by a given grasp type, affect the speed

of execution and the stochastic width.

Velocity profiles and stochastic width

The velocity profiles related to the manipulation of the five objects are bell-shaped (Fig 6). Fea-

tures of the velocity profiles are in line with the scientific literature since highest values are

reached approximately halfway the path travelled [60, 61], with greater peaks for greater dis-

tances travelled [44, 62]. During the reaching and transport phases, the velocity peaks observed

in the bell-shaped profiles are higher for the ellipsoid balls (soft and plastic) as compared to the

tennis ball and bottles (full and half-full).

Differences in the velocity profiles are accentuated halfway the path of each phase, where

the peak velocity is reached; these differences are not substantial during the return phase since

subjects do not handle any object. Furthermore, in both the reaching and transport phases, it

can be observed that the velocity profiles of the two bottles (half-full and full) and of the two

Fig 5. Mean values and SEM (Standard Error of the Mean) of the stochastic Index of Difficulty IDobs s� ¼ �t�;φ
� �

evaluated for the entire manipulation

task and for three objects with different geometry. Asterisks indicate pairwise significant differences (p-value< 0.016); critical p-value = 0.05/3 = 0.016.

https://doi.org/10.1371/journal.pone.0276308.g005
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ellipsoid balls (soft and plastic) are almost overlapping, confirming that neither the mass nor

the stiffness influence the speed of execution (as well as difficulty, as observed before).

A statistical analysis of the velocity peaks for the three different geometrical objects has

been carried out. The goal was to verify if the geometry alone or the grasp type have a signifi-

cant effect on the velocity profiles. A one-way repeated-measures ANOVA has been conducted

to evaluate if there is a statistically significant difference between the velocity peaks of the three

different geometrical objects for the reaching and transport phases. After checking the

assumptions prior to ANOVA (normality through Shapiro-Wilk test, sphericity through

Mauchly’s test), results show statistically significant differences in the reaching (F(2,60) =

39.234, p< 0.0001) and transport phase (F(2,60) = 45.219, p< 0.0001). By applying the post

hoc test with Bonferroni correction, the statistically significant difference of velocity peaks is

evident in case of the ellipsoid/tennis ball vs. bottle (p< 0.001) in both the reaching and trans-

port phases (Fig 7).

These results confirm that velocity peaks (and velocity profiles) of movements executed to

reach, grasp, move and release an object are affected by the object-related grasp type. Again,

the geometry of the object is not the only feature that influences movements performed, but

also the volume. These two features together characterize the object’s grasp type [58, 59].

Moreover, by comparing Fig 6 with Fig 4, it can be observed that in presence of objects

Fig 6. Velocity profiles values averaged over 31 subjects during the object manipulation task.

https://doi.org/10.1371/journal.pone.0276308.g006
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Fig 7. Mean values and SEM (Standard Error of the Mean) of velocity peaks at the reaching (7a) and transport (7b) phase for the three different

geometrical objects. Asterisks indicate pairwise significant differences (p-value< 0.001); critical p-value = 0.05/3 = 0.016.

https://doi.org/10.1371/journal.pone.0276308.g007
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associated with a greater motor difficulty (e.g., bottles), velocity peaks and profiles are lower.

This phenomenon is caused by the external constraints: higher motor difficulty implies that

the agent’s motor system is more constrained (less flexible), resulting in reduced maximum

speed and reachable configurations (exploitation of motor redundancy).

The stochastic width profile Wobs(s�, φ) for each given object (averaged over 31 subjects) is

bell-shaped in each phase of the task, with smaller values where accuracy of the end-effector’s

position is required (Fig 8).

The bell-shaped profiles of Wobs(s�, φ) are consistent with the velocity ones: events that

require greatest accuracy (i.e., smaller Wobs(s�, φ) values) occur at the lowest speed values, and

vice-versa. Furthermore, the maxima of both stochastic width and velocity profiles increase as

the distance travelled within each phase increases (the distance travelled in the reaching phase

is approximately half the one of the transport phase). A greater travelling distance allows the

subjects to go faster (Fig 6) and attain a greater number of end-effector configurations (Fig 8).

Conclusions

Starting from the original definition of the Index of Difficulty given by Fitts [5], the paper dis-

cussed a novel concept and proposed an analytical-stochastic model of experienced motor dif-

ficulty (IDobs) by considering the stochastic behaviour of agents performing a given repetitive

motor task. The agent’s motor difficulty is no longer a deterministic function of task geometry,

but it is indicative of the stochastic behaviour of an agent as it performs a motor task while

interacting with the environment: the motor difficulty is not a unique characteristic of an

agent, but it is the unique characteristic of the combined agent-environment system.

By applying the stochastic Index of Difficulty to the three-dimensional manipulation of dif-

ferent objects, a higher motor difficulty has been experienced by subjects when handling

objects characterized by a “large diameter” grip (bottle), compared to objects characterized by

a “power sphere” grip (ellipsoid/tennis ball); the different mass and stiffness of the considered

objects, instead, did not influence the subject’s motor difficulty. Results obtained can help

future work in which a complete factorial experimental analysis will be designed to investigate

the effects of multiple objects’ features (mass, volume, stiffness, geometry, main axis of symme-

try), and their interaction; the collection of a large dataset will be necessary, where the objects

manipulated can be compared within and across multiple features, and agents with different

motor abilities (e.g., age, experience) will be recruited. Nonetheless, the current dataset and

analysis has provided useful information on what could be, among many, the main relevant

factors in object manipulation tasks, hence the opportunity to formulate more refined hypoth-

eses in the future about the effect of specific objects’ features on the motor difficulty.

The use of the stochastic Index of Difficulty, and the evaluation of the agent’s motor diffi-

culty, is not limited to the specific application of manipulation tasks but can be employed in

multiple fields of investigation. As an example, IDobs can be used to design the layout of the

workplace, such as in assembly workstations, since the kinematics of operators and motor

strategies to be adopted to reach points are affected by the presence of obstacles, positions of

targets, positions of components/parts to handle etc. . . [63, 64]. Furthermore, IDobs can be a

valuable tool to be employed in job rotation/resource allocation problems. As an example, by

observing a reference operator that executes optimally a given motor task, its motor difficulty

can be quantified; this information can be employed to compare the IDobs of other operators

and choose the operators whose motor behaviour it the closest to the ‘optimal’ one.

Further research will be focused in applying in industrial contexts the analytical-stochastic

model proposed to analyse the motor difficulty of differently skilled operators in executing
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manual operations characterized by different motor complexity. Analogous research

approaches can be translated to the context of motor rehabilitation.
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