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Type III secretion systems (T3SSs) are specialized secretion apparatus involved in the 
virulence of many Gram-negative pathogens, enabling the injection of bacterial type III 
effectors into host cells. The T3SS-dependent injection of effectors requires the insertion 
into host cell membranes of a pore-forming “translocon,” whose effects on cell responses 
remain ill-defined. As opposed to pore-forming toxins that damage host cell plasma 
membranes and induce cell survival mechanisms, T3SS-dependent pore formation is 
transient, being regulated by cell membrane repair mechanisms or bacterial effectors. 
Here, we review host cell responses to pore formation induced by T3SSs associated 
with the loss of plasma membrane integrity and regulation of innate immunity. We will 
particularly focus on recent advances in mechanisms controlling pore formation and the 
activity of the T3SS linked to type III effectors or bacterial proteases. The implications 
of the regulation of the T3SS translocon activity during the infectious process will be 
discussed.
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inTRODUCTiOn

Through secreted proteins, bacterial pathogens have the capacity to induce the formation of pores 
into eukaryotic host cell membranes. Pore-forming toxins (PFTs) can exert direct cytotoxic effect by 
irreversibly damaging the plasma membrane, or, at sub-lethal concentrations, can induce cell signal-
ing involved in cytoskeletal reorganization, or in a variety of defense and innate immune responses 
(1–6). Alternatively, secreted bacterial proteins, such as AB toxins or type III secretion system (T3SS) 
translocon components, can form transient pores at the plasma membranes to promote the delivery 
of bacterial virulence factors into the host cytosol. Although host cell responses to various AB toxins 
have been largely described (7–9), relatively little is known about signaling linked to pore formation 
mediated by T3SS translocon components.

The T3SS can be viewed as a molecular syringe that upon cell contact, allows the delivery of 
bacterial effectors directly from the bacterial cytoplasm to the host cytosol [for review, see Ref. (10, 
11)]. This system is widely spread among Gram-negative bacterial pathogens and shows conserved 
structural and functional features. Much of our knowledge has been inferred from extensive studies 
on the Shigella, Salmonella, or Yersinia T3SSs, and specific characteristics have been reported for 
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TABLe 1 | Translocators components in various T3SSs [for review, see 
Ref. (12)].

Hydrophilic 
protein

Hydrophobic 
protein with  
2 TM domain

Hydrophobic 
protein with 1 TM 
domain

EPEC/EHEC EspA EspB EspD
Yersinia LcrV YopD YopB
Salmonella SipD SipC SipB
Shigella IpaD IpaC IpaB
Pseudomonas PcrV PopD PopB
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other T3SSs, such as those from enteropathogenic (EPEC) and 
enterohemorrhagic (EHEC) Escherichia coli.

As for AB toxins, T3SS-mediated injection of bacterial effec-
tors through eukaryotic cell plasma membranes requires the 
formation of a “translocation” pore, which occurs upon contact 
of T3SS with host cell membrane. Cell contact triggers the secre-
tion of translocators proteins through the T3SS: two hydrophobic 
translocators proteins insert in the host cell membrane to form 
the so-called translocon, whereas one hydrophilic translocator 
protein is thought to connect the membrane-inserted translocon 
and the T3SS needle [for review, see Ref. (12); Table  1]. Here, 
we will review the responses elicited by host cells, linked to the 
pore-forming activity of the T3SS, and discuss their role during 
bacterial pathogenesis.

T3 TRAnSLOCOn AnD PORe ACTiviTY

Upon cell contact, two hydrophobic proteins forming the trans-
locon and containing trans-membrane domains insert into the 
host cell plasma membrane. Membrane insertion is associated 
with conformational changes, leading to oligomerization occur-
ring through coiled-coil domain interactions, required for pore 
formation [Table 1; (12–16)]. Interestingly, coiled-coil domain of 
translocator proteins share homology with PFT, suggesting com-
mon origins and oligomerization mechanisms (17). Although 
the hydrophilic protein does not integrate in membranes, it is 
absolutely required for pore activity, possibly by acting as an 
assembly platform for proper oligomerization of the translocon 
components (12). The hydrophilic protein is also presumed to 
provide a molecular link between the translocon and the T3SS 
needle, through which type III effectors are channeled to get 
access to the cell cytosol. It is generally admitted that during 
type III effector translocation into host cells, the translocon is 
connected to the needle, forming a sealed conduct that does not 
allow exchange with the extracellular medium. This view is sup-
ported by cryo-EM studies showing a continuum between the 
T3SS and host cell membranes during bacterial infection (18, 
19). However, the Yersinia type III effector YopH secreted in the 
extracellular media was shown to translocate into host cells by 
hijacking translocon components, suggesting that an alternate 
AB5-like toxin translocation mechanism could also occur for 
type III effectors (20). Presumably, only translocons detached 
from T3SS are expected to form pores opened to the extracel-
lular medium. While such considerations remain speculative, 

and such disconnection may occur following the translocation 
of injected type III effectors. Studies using artificial membranes 
have illustrated the pore-forming activity of purified translo-
con components (21). Although there are numerous evidence 
demonstrating pore-activity linked to T3SS, structures corre-
sponding to pore-forming translocons are yet to be visualized 
during bacterial infection (13, 22–25).

Red blood cells (RBCs), which lack internal organelles, 
are unable to reseal membrane injuries and have been used to 
demonstrate T3SS-mediated pore formation (26). Release of 
hemoglobin by RBCs provides a metric for membrane damage 
linked to pore formation, which, in combination with solute 
size-dependent osmoprotection experiments, allows to estimate 
the size of membrane pores. Such experiments indicate that the 
T3SS induces the formation of pores within host cell membranes 
with an estimated size ranging from 1.2 to 5 nm, depending on 
the studies and bacterial systems (27–29). This diameter size is 
comparable to with that estimated for the inner diameter of the 
T3SS needle, consistent with a continuum between the needle 
and the membrane-inserted translocon during the injection 
of type III effectors. The analysis of the effects of mutations in 
translocator proteins shows a lack of correlation between T3SS-
dependent RBCs’ hemolysis and translocation of type III effectors 
in epithelial cells (30–34). This suggests that T3SS-dependent 
pore formation measured by the RBC’s hemolysis assay does not 
implicate the same requirements as pore formation during trans-
location of effectors in epithelial cells. These issues are a matter of 
current debates. Other methods, including the use of fluorescent 
dyes, have been developed to demonstrate T3SS-dependent pore 
activity (25, 35).

MeCHAniSM OF T3SS-DePenDenT 
PORe FORMATiOn

The observations that (i) translocated effectors do not leak into 
the extracellular medium after injection into cells and (ii) only a 
minority of cells infected with T3SS-expressing bacteria show dye 
incorporation assay or K+ efflux, point to the inefficient capacity 
of the T3SS to mediate the formation of pore in nucleated cells 
(36–38). It was generally thought that as opposed to RBCs, mem-
brane repair in nucleated cells was responsible for this relatively 
low pore-forming activity. As developed further, it is now clear 
that bacteria also control pore formation to avoid/or counteract 
detection by host cells.

In a very recent study, Sheahan and Isberg have identified 
host cell factors required for Yersinia T3SS-associated pore activ-
ity. Insertion and assembly of the translocon into the host cell 
membrane is a more complex process than originally thought, 
as numerous cytoskeletal and membrane trafficking proteins 
have been involved (39). This study confirms the key role played 
by actin and the small Rho GTPase in pore formation (40–42). 
Unexpectedly, Sheahan and Isberg also identified CCR5, a plasma 
membrane receptor, as playing a major role in T3-pore forma-
tion. CCR5 was recently identified to be a receptor for some PFT, 
emphasizing the functional homology the between T3 translocon 
and PFT (43).
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FiGURe 1 | Membrane repair and inflammasome activation mediated by T3 translocons and PFTs. Membrane injuries by PFTs or T3 translocon (T3-T) 
trigger an osmotic stress response, Ca2+ influx, and K+ efflux that are sensed by host cells. These responses activate innate immune responses and membrane 
repair mechanisms. K+ efflux, or possibly osmotic stress, associated with PFTs leads to the activation of the p38 MAPK and IL-1β secretion. In response to T3-pore 
formation, inflammasome and caspase-1 activation are also observed in association with K+ influx into the translocon component (T3-TC) containing vacuole. 
Following endocytosis, T3 translocon components can activate caspase-11 through the activation of the non-canonical inflammasome. Membrane repair 
mechanisms linked to Ca2+ influx, lysosomal exocytosis and annexin recruitment are observed. New membrane recruitment to the site of infection by the exocyst 
complex could also contribute to patch T3-pores.
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HOST CeLL ReSPOnSeS TO PORe 
FORMATiOn in PLASMA MeMBRAneS

In response to membrane injuries, cells trigger repair mechanisms 
involving the detection and removal of damaged plasma membranes. 
Membrane injuries, such as those induced by PFTs, immediately 
trigger an osmotic stress response, as well as a Ca2+ influx and a 
K+ efflux that are sensed by host cells (4, 44–46). These responses 
activate MAP kinase signaling, inflammasomes, and NF-κB acti-
vation, which in turn lead to the elicitation of inflammatory and 
innate immune responses (Figure 1). Such signaling also activates 
membrane repair mechanisms: K+ efflux triggers NLRP3 activation, 
leading to the recruitment of Caspase-1 (IL-1-converting enzyme) 
(47). Caspase-1 has a dual effect; it cleaves pro-IL-1β to generate 
mature IL-1β and stimulates the sterol regulatory element-binding 
proteins (SREBPs) to promote membrane biogenesis (48). Fast-
acting cortical membrane repair involving exocytic and endocytic 
processes are also well described (49, 50). Ca2+ influx triggered by 
pore formation is sensed by synaptotagmin, a Ca2+ sensor present at 
the surface of lysosomes. Intracellular Ca2+ increase determines the 
synaptotagmin-dependent fusion of specialized lysosomes, named 
secretory lysosomes, in large vesicles. These vesicles fuse with 
wounded membranes, a process that contributes to the patching of 

pores at the plasma membranes (26, 49, 50). Fusion of secretory lys-
osomes with wounded plasma membranes also leads to the release 
of lysosomal enzymes, such as sphingomyelinases, into the medium. 
Sphingomyelinases hydrolyze sphingomyelin to form ceramides that 
induce membrane curvature. This curvature is thought to initiate 
endocytosis of damage membranes that are subsequently targeted 
to intracellular degradation. Endocytosis has been proposed as 
an active repair mechanism of membrane damaged by PFTs (44). 
Ca2+ influx also leads to the binding of cytoplasmic annexins to the 
plasma membrane, resulting in the connection of the membrane 
to actin network. Annexin A5 was also shown to form a network 
limiting diffusion at the site of membrane injury (51). Ca2+ influx 
has also been associated with the annexin-dependent blebbing of 
the plasma membrane leading to the shedding of vesicles containing 
pores mediated by PFT in the extracellular milieu (52–54).

CHARACTeRiZinG SiGnALS LinKeD TO 
MeMBRAne inSeRTiOn AnD PORe 
ACTiviTY OF THe T3 TRAnSLOCOn

Identifying signals that specifically associated with the T3SS trans-
locon is challenging because it is also required for the translocation 
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of type III effectors, many of which being reported to regulate innate 
immune responses. Furthermore, various microbial structures, 
including structural components of the T3SA, act as pathogen-
associated molecular patterns (PAMPs) and are sensed by host cells 
to induce innate immune responses that are not directly associated 
with translocon insertion into host membranes (55, 56). To identify 
translocon-specific signals, studies have reported the use of bacte-
rial mutants lacking all type III effectors (effectorless strain) and/or 
using cells lacking the two main TLR adaptor proteins (MyD88−/− 
and Trif−/−) and hence, deficient for TLR signaling downstream of 
PAMPs. Such studies showed that the insertion of translocon com-
ponents into the host plasma membrane activates an innate immune 
response that differs depending on the cell type (42). Insertion of the 
Yersinia translocon is associated with NLRP3 and NLRC4 activation 
with downstream signaling events leading to caspase-1 activation and 
IL-1β production (57, 58). The T3SS-dependent activation of NLRC4 
has also been observed for Shigella, Salmonella, and Pseudomonas 
(59, 60). For Salmonella and Pseudomonas, such NLRC4 activation 
was shown to depend on T3SS-dependent pore formation and K+ 
efflux (37). Activation of the non-canonical caspase-11 (caspase 4 in 
humans) inflammasome has also been described to be dependent on 
the T3SS, although recent evidences indicate that bacterial LPS could 
account for caspase-11 activation (61–64).

The cytosolic presence of translocators, rather than pore 
formation, has also been described to activate the inflammasome 
(65). The detection of translocator components in the cytosol 
has been attributed to the cytoplasmic tail of one of translocators 
following its insertion in the plasma membrane, or, alternatively, 
to the endocytosis of the pore-forming translocon complex. In 
both cases, cytosolic access of T3 translocon components leads 
to canonical NLRP3 and non-canonical caspase-11 activation, 
similar to what has been described for cytosolic PAMPs (62, 65). 
Consistent with a role for translocon endocytosis, Senerovic et al. 
have described that the purified translocator component IpaB 
oligomerizes in membrane and forms ion channels promoting 
K+ influx upon internalization within endosomes, responsible 
for macrophages cell death. In this case, translocon-dependent 
K+ influx into vacuoles may affect endolysosomal membranes’ 
integrity, leading to caspase-1 activation downstream of the 
NLRC4 inflammasome (66).

Perhaps most indicative of T3SS-dependent pore-forming 
activity, membrane repair mechanisms are also activated upon 
bacterial infection. In response to Ca2+ influx linked to T3SS-
dependent pores, synaptotagmin-dependent lysosomal exocyto-
sis has been reported in Salmonella and Yersinia infected cells 
(39, 67). During infection, Salmonella and EPEC also trigger the 
recruitment and activation of the Ca2+-sensors annexins at the 
site of bacterial attachment (68–73).

BACTeRiAL MeCHAniSMS OF AvOiDinG 
CeLL DeATH LinKeD TO T3SS-MeDiATeD 
PORe FORMATiOn

Invasive bacteria, such as Salmonella or Shigella, promote their 
uptake in vacuole, resulting in a process leading to the removal of 
membrane-inserted translocons from the plasma membrane. This 

“self-removal” of membrane-inserted translocons may represent 
an additional factor contributing to the difficulty in detecting pore 
formation in epithelial cells infected by these bacteria. To minimize 
plasma membrane damages linked to T3 translocons, bacteria that 
multiply extracellularly have developed multiple strategies against 
inflammatory cell death. Injected type III effectors may down-
regulate cell death and inflammatory signals, by interfering with 
initiator or effector caspases and NLRC4 inflammasome activation 
(74). The role of these type III effectors has been recently reviewed 
elsewhere (57, 58, 75–77). Here, we will mostly discuss the bacterial 
regulation of T3SS-dependent pore formation.

In Yersinia, at least three different type III effectors, such as 
YopK, YopE, and YopT, regulate T3SS-dependent pore formation 
and effector injection into host cells. The translocon component 
YopB activates both pro-inflammatory response and the small 
Rho GTPase, Ras (42, 78). YopB/D translocon insertion, in coop-
eration with invasin-beta1 integrin signaling, activates multiple 
Rho GTPases leading to actin polymerization, a step absolutely 
required for the Yersinia T3SS-dependent pore formation in 
the plasma membrane. The role of actin polymerization in the 
formation of the Yersinia T3SS-dependent pore is not clear but 
might reflect the importance to affix plasma membrane while 
translocon is inserted, or the translocon disconnection from the 
T3SA following effector injection in host cells. Among injected 
effectors, YopE and YopT display pore inhibition activity through 
the downregulation of several Rho GTPases (RhoA, RhoG, Rac1, 
and CDC42), linked to a GAP and protease activity toward 
these GTPases, respectively. Inhibition of Rho GTPase activity 
associated with actin depolymerization not only prevents pore 
formation but also reduces effector translocation. YopK also 
negatively regulates injection of type III effectors and cytotoxic-
ity. As opposed to YopE and YopT regulating the T3SS activity 
through their action of Rho GTPases, YopK binds to the trans-
locon and may directly clot it or induce conformational changes 
leading to translocation blockage (76). Although sharing little 
primary sequence homology with YopK, the EPEC/EHEC type 
III effector EspZ displays a similar activity (Figure 2). EspZ was 
shown to interact with the EPEC-translocon component EspD 
and prevents cell death by preventing the translocation of T3SS 
effectors into infected cells (79).

PROTeOLYTiC DeGRADATiOn OF  
T3-POReS BY A BACTeRiAL SeRine 
PROTeASe AUTOTRAnSPORTeR OF 
enTeROBACTeRiACeAe

More recently, our group has reported a novel mechanism con-
trolling T3SS-mediated pore formation and cytotoxicity induced 
by EPEC and EHEC (38). In addition to the T3SS, EPEC secretes 
other bacterial toxins involved in virulence. Among these, EspC, 
a protease belonging to the serine protease autotransporter 
of enterobacteriaceae (SPATE) family (80, 81), was shown to 
degrade the T3SS translocon components following contact 
with epithelial cells, thus downregulating T3SS-dependent pore 
formation and cytotoxicity. In EPEC, the hydrophilic transloca-
tor component EspA polymerizes into a filament connecting the 
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FiGURe 2 | Bacterial effectors regulating T3-pore formation. Upon cell contact and T3SS activation, the Yersinia YopB/D translocon components activate Rho 
GTPases leading to the polymerization of actin and T3-pore formation. The injected T3 effectors, such as YopK, YopE, and YopT, downregulate T3-pore formation 
and effector translocation. YopK directly acts on the T3 translocon. YopE and YopT inhibit RhoGTPases. EspZ shares an activity related to that of YopK by binding to 
the EPEC T3 translocon, inhibiting T3-pore formation and effector injection. EspC downregulates T3 pore by degrading the translocator components EspA/D, an 
activity shared by the EHEC EspP. EspP also downregulate the Hly PFT inserted in plasma membranes.
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T3SS needle to the translocon that is composed of the EspB and 
EspD hydrophobic proteins. EspC appears to preferentially target 
EspA associated with EspD. Since EspC does not prevent type 
III effector injection, it may recognize a specific conformation 
of EspA/D corresponding to a T3SS “by-product” with potential 
cytotoxic activity. Interestingly, EspP, the EspC hortologue in 
EHEC has been involved in the proteolytic degradation of the  
E. coli hemolysin Hly, a pore-forming cytolysin (82). The cleavage 
of Hly by EspP occurs in the region of the hydrophobic domain 
and lead to the inactivation of its pore-forming activity.

ePiTHeLiAL CeLL DeATH LinKeD TO 
T3SS-POReS

Depending on the cell type and the extent of pore formation, 
membrane lesions can lead to apoptotic or necrotic cell death. It 
has been suggested that pores detected in epithelial cells infected 
with effectorless Yersinia or an EPEC espC mutant result from 
unsealed translocons similar to those found in membranes of 
erythrocytes. With the exception of T3SS-dependent cell death 
induced by Yersinia, which appears to implicate distinct pathways, 
T3SS-dependent cytotoxicity appears to be caspase independent 
(38, 79, 83, 84). Epithelial cells dying from T3SS-dependent 
unregulated pore formation show nuclear shrinkage without 
signs of nuclear fragmentation, consistent with non-apoptotic cell 
death (38, 79, 83, 84). The precise mechanism implicated in this 
T3SS-dependent death is unknown. In unrelated studies, how-
ever, nuclear shrinkage and caspase-independent cell death have 
been linked to the activation of phospholipase A2 (PLA2) (85). 
Interestingly, PLA2 activation associated with K+ efflux and/or 
Ca2+ influx triggers IL-1 β secretion (86, 87), as observed for T3SS-
dependent pore formation. Nuclear shrinkage may correspond to 

a common response to membrane insults induced by PFTs and 
T3SS-dependent unregulated pore formation (88, 89).

COnCLUDinG ReMARKS AnD 
PeRSPeCTiveS

As reviewed here, T3SS-expressing bacteria have developed a 
diversity of mechanisms to downregulate the formation of pores 
linked to the activity of T3SS translocon, reflecting the importance 
of this process in the pathophysiology of bacterial infections. In 
the absence of such translocon regulatory processes, a variety of 
inflammatory and death processes can be induced, depending on 
the bacterial pathogen. Although the insertion of T3SS-translocons 
during type III effector injection may induce a common canonical 
response associated with the activation of the NLRC4 inflam-
masome and eventually, necrotic cell death, these responses 
may be subsequently further tuned by other bacterial effectors. 
Deciphering how these signals integrate during the course of the 
bacterial infectious process represents a challenge needed to be 
addressed in future studies. Understanding how the T3SS pore 
formation and injection of effector is regulated could also lead to 
the development of innovative therapeutic molecules, widening 
the spectrum of currently studied T3SS inhibitor (90, 91).
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