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Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques
in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some
of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep
Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure,
advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object
detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future
directions in designing deep learning schemes for computer vision problems and the challenges involved therein.

1. Introduction

Deep learning allows computational models of multiple
processing layers to learn and represent data with multiple
levels of abstraction mimicking how the brain perceives and
understands multimodal information, thus implicitly captur-
ing intricate structures of large-scale data. Deep learning is
a rich family of methods, encompassing neural networks,
hierarchical probabilistic models, and a variety of unsuper-
vised and supervised feature learning algorithms. The recent
surge of interest in deep learning methods is due to the fact
that they have been shown to outperform previous state-of-
the-art techniques in several tasks, as well as the abundance
of complex data from different sources (e.g., visual, audio,
medical, social, and sensor).

The ambition to create a system that simulates the human
brain fueled the initial development of neural networks. In
1943, McCulloch and Pitts [1] tried to understand how the
brain could produce highly complex patterns by using inter-
connected basic cells, called neurons. The McCulloch and
Pitts model of a neuron, called a MCP model, has made an
important contribution to the development of artificial neural

networks. A series of major contributions in the field is pre-
sented in Table 1, including LeNet [2] and Long Short-Term
Memory [3], leading up to today’s “era of deep learning.”
One of the most substantial breakthroughs in deep learning
came in 2006, when Hinton et al. [4] introduced the Deep
Belief Network, with multiple layers of Restricted Boltzmann
Machines, greedily training one layer at a time in an unsu-
pervised way. Guiding the training of intermediate levels
of representation using unsupervised learning, performed
locally at each level, was the main principle behind a series
of developments that brought about the last decade’s surge in
deep architectures and deep learning algorithms.

Among the most prominent factors that contributed to
the huge boost of deep learning are the appearance of large,
high-quality, publicly available labelled datasets, along with
the empowerment of parallel GPUcomputing, which enabled
the transition from CPU-based to GPU-based training thus
allowing for significant acceleration in deepmodels’ training.
Additional factors may have played a lesser role as well, such
as the alleviation of the vanishing gradient problem owing to
the disengagement from saturating activation functions (such
as hyperbolic tangent and the logistic function), the proposal
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Table 1: Important milestones in the history of neural networks and machine learning, leading up to the era of deep learning.

Milestone/contribution Contributor, year
MCP model, regarded as the ancestor of the Artificial Neural Network McCulloch & Pitts, 1943
Hebbian learning rule Hebb, 1949
First perceptron Rosenblatt, 1958
Backpropagation Werbos, 1974
Neocognitron, regarded as the ancestor of the Convolutional Neural Network Fukushima, 1980
Boltzmann Machine Ackley, Hinton & Sejnowski, 1985
Restricted Boltzmann Machine (initially known as Harmonium) Smolensky, 1986
Recurrent Neural Network Jordan, 1986

Autoencoders Rumelhart, Hinton &Williams, 1986
Ballard, 1987

LeNet, starting the era of Convolutional Neural Networks LeCun, 1990
LSTM Hochreiter & Schmidhuber, 1997
Deep Belief Network, ushering the “age of deep learning” Hinton, 2006
Deep Boltzmann Machine Salakhutdinov & Hinton, 2009
AlexNet, starting the age of CNN used for ImageNet classification Krizhevsky, Sutskever, & Hinton, 2012

of new regularization techniques (e.g., dropout, batch nor-
malization, and data augmentation), and the appearance of
powerful frameworks like TensorFlow [5], theano [6], and
mxnet [7], which allow for faster prototyping.

Deep learning has fueled great strides in a variety of
computer vision problems, such as object detection (e.g.,
[8, 9]),motion tracking (e.g., [10, 11]), action recognition (e.g.,
[12, 13]), human pose estimation (e.g., [14, 15]), and semantic
segmentation (e.g., [16, 17]). In this overview, we will con-
cisely review the main developments in deep learning archi-
tectures and algorithms for computer vision applications. In
this context, we will focus on three of the most important
types of deep learning models with respect to their applica-
bility in visual understanding, that is, Convolutional Neural
Networks (CNNs), the “Boltzmann family” including Deep
Belief Networks (DBNs) and Deep Boltzmann Machines
(DBMs) and Stacked (Denoising) Autoencoders. Needless
to say, the current coverage is by no means exhaustive;
for example, Long Short-Term Memory (LSTM), in the
category of Recurrent Neural Networks, although of great
significance as a deep learning scheme, is not presented in this
review, since it is predominantly applied in problems such as
language modeling, text classification, handwriting recogni-
tion, machine translation, speech/music recognition, and less
so in computer vision problems. The overview is intended
to be useful to computer vision and multimedia analysis
researchers, as well as to general machine learning research-
ers, who are interested in the state of the art in deep learning
for computer vision tasks, such as object detection and
recognition, face recognition, action/activity recognition,
and human pose estimation.

The remainder of this paper is organized as follows. In
Section 2, the three aforementioned groups of deep learning
model are reviewed: Convolutional Neural Networks, Deep
Belief Networks andDeep BoltzmannMachines, and Stacked
Autoencoders. The basic architectures, training processes,
recent developments, advantages, and limitations of each

group are presented. In Section 3, we describe the contribu-
tion of deep learning algorithms to key computer vision tasks,
such as object detection and recognition, face recognition,
action/activity recognition, and human pose estimation; we
also provide a list of important datasets and resources for
benchmarking and validation of deep learning algorithms.
Finally, Section 4 concludes the paper with a summary of
findings.

2. Deep Learning Methods and Developments

2.1. Convolutional Neural Networks. Convolutional Neural
Networks (CNNs) were inspired by the visual system’s struc-
ture, and in particular by the models of it proposed in [18].
The first computational models based on these local con-
nectivities between neurons and on hierarchically organized
transformations of the image are found in Neocognitron [19],
which describes that when neurons with the same parameters
are applied on patches of the previous layer at different
locations, a form of translational invariance is acquired. Yann
LeCun and his collaborators later designed Convolutional
Neural Networks employing the error gradient and attaining
very good results in a variety of pattern recognition tasks [20–
22].

A CNN comprises three main types of neural layers,
namely, (i) convolutional layers, (ii) pooling layers, and (iii)
fully connected layers. Each type of layer plays a different role.
Figure 1 shows a CNN architecture for an object detection
in image task. Every layer of a CNN transforms the input
volume to an output volume of neuron activation, eventually
leading to the final fully connected layers, resulting in a
mapping of the input data to a 1D feature vector. CNNs have
been extremely successful in computer vision applications,
such as face recognition, object detection, powering vision in
robotics, and self-driving cars.

(i) Convolutional Layers. In the convolutional layers, a CNN
utilizes various kernels to convolve the whole image as
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Figure 1: Example architecture of a CNN for a computer vision task (object detection).

well as the intermediate feature maps, generating various
feature maps. Because of the advantages of the convolution
operation, several works (e.g., [23, 24]) have proposed it as a
substitute for fully connected layers with a view to attaining
faster learning times.

(ii) Pooling Layers.Pooling layers are in charge of reducing the
spatial dimensions (width × height) of the input volume for
the next convolutional layer.The pooling layer does not affect
the depth dimension of the volume.The operation performed
by this layer is also called subsampling or downsampling, as
the reduction of size leads to a simultaneous loss of infor-
mation. However, such a loss is beneficial for the network
because the decrease in size leads to less computational over-
head for the upcoming layers of the network, and also it works
against overfitting. Average pooling and max pooling are the
most commonly used strategies. In [25] a detailed theoretical
analysis of max pooling and average pooling performances
is given, whereas in [26] it was shown that max pooling can
lead to faster convergence, select superior invariant features,
and improve generalization. Also there are a number of
other variations of the pooling layer in the literature, each
inspired by different motivations and serving distinct needs,
for example, stochastic pooling [27], spatial pyramid pooling
[28, 29], and def-pooling [30].

(iii) Fully Connected Layers. Following several convolutional
and pooling layers, the high-level reasoning in the neural
network is performed via fully connected layers. Neurons in
a fully connected layer have full connections to all activation
in the previous layer, as their name implies. Their activation
can hence be computed with amatrixmultiplication followed
by a bias offset. Fully connected layers eventually convert
the 2D feature maps into a 1D feature vector. The derived
vector either could be fed forward into a certain number of
categories for classification [31] or could be considered as a
feature vector for further processing [32].

The architecture of CNNs employs three concrete ideas:
(a) local receptive fields, (b) tied weights, and (c) spatial
subsampling. Based on local receptive field, each unit in a
convolutional layer receives inputs from a set of neighboring
units belonging to the previous layer. This way neurons are

capable of extracting elementary visual features such as edges
or corners. These features are then combined by the subse-
quent convolutional layers in order to detect higher order
features. Furthermore, the idea that elementary feature detec-
tors, which are useful on a part of an image, are likely to be
useful across the entire image is implemented by the concept
of tied weights. The concept of tied weights constraints a set
of units to have identical weights. Concretely, the units of
a convolutional layer are organized in planes. All units of a
plane share the same set of weights. Thus, each plane is res-
ponsible for constructing a specific feature. The outputs of
planes are called feature maps. Each convolutional layer
consists of several planes, so that multiple feature maps can
be constructed at each location.

During the construction of a featuremap, the entire image
is scanned by a unit whose states are stored at corresponding
locations in the feature map. This construction is equivalent
to a convolution operation, followed by an additive bias term
and sigmoid function:

y(𝑑) = 𝜎 (Wy(𝑑−1) + b) , (1)

where 𝑑 stands for the depth of the convolutional layer,W is
the weight matrix, and b is the bias term. For fully connected
neural networks, the weight matrix is full, that is, connects
every input to every unit with different weights. For CNNs,
the weight matrixW is very sparse due to the concept of tied
weights. Thus,W has the form of

[[[[[[
[

w 0 ⋅ ⋅ ⋅ 0
0 w ⋅ ⋅ ⋅ 0
... ⋅ ⋅ ⋅ d

...
0 ⋅ ⋅ ⋅ 0 w

]]]]]]
]

, (2)

where w are matrices having the same dimensions with the
units’ receptive fields. Employing a sparse weight matrix
reduces the number of network’s tunable parameters and thus
increases its generalization ability. Multiplying W with layer
inputs is like convolving the input with w, which can be seen
as a trainable filter. If the input to𝑑−1 convolutional layer is of
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dimension𝑁×𝑁 and the receptive field of units at a specific
plane of convolutional layer 𝑑 is of dimension 𝑚 × 𝑚, then
the constructed feature map will be a matrix of dimensions(𝑁−𝑚+1) × (𝑁−𝑚+1). Specifically, the element of feature
map at (𝑖, 𝑗) location will be

y(𝑑)𝑖𝑗 = 𝜎 (𝑥(𝑑)𝑖𝑗 + 𝑏) (3)

with

𝑥(𝑑)𝑖𝑗 = 𝑚−1∑
𝛼=0

𝑚−1∑
𝑏=0

𝑤𝛼𝑏y(𝑑−1)(𝑖+𝛼)(𝑗+𝑏), (4)

where the bias term 𝑏 is scalar. Using (4) and (3) sequentially
for all (𝑖, 𝑗) positions of input, the feature map for the corres-
ponding plane is constructed.

One of the difficulties that may arise with training of
CNNs has to do with the large number of parameters that
have to be learned, which may lead to the problem of
overfitting. To this end, techniques such as stochastic pooling,
dropout, and data augmentation have been proposed. Fur-
thermore, CNNs are often subjected to pretraining, that is, to
a process that initializes the network with pretrained param-
eters instead of randomly set ones. Pretraining can accelerate
the learning process and also enhance the generalization
capability of the network.

Overall, CNNs were shown to significantly outperform
traditional machine learning approaches in a wide range of
computer vision and pattern recognition tasks [33], examples
of which will be presented in Section 3. Their exceptional
performance combined with the relative easiness in training
are the main reasons that explain the great surge in their
popularity over the last few years.

2.2. Deep Belief Networks and Deep Boltzmann Machines.
Deep Belief Networks and Deep Boltzmann Machines are
deep learning models that belong in the “Boltzmann family,”
in the sense that they utilize the Restricted Boltzmann
Machine (RBM) as learning module. The Restricted Boltz-
mann Machine (RBM) is a generative stochastic neural net-
work. DBNs have undirected connections at the top two
layers which form an RBM and directed connections to the
lower layers. DBMs have undirected connections between all
layers of the network. A graphic depiction of DBNs and
DBMs can be found in Figure 2. In the following subsections,
we will describe the basic characteristics of DBNs and DBMs,
after presenting their basic building block, the RBM.

2.2.1. Restricted Boltzmann Machines. A Restricted Boltz-
mann Machine ([34, 35]) is an undirected graphical model
with stochastic visible variables k ∈ {0, 1}𝐷 and stochastic
hidden variables h ∈ {0, 1}𝐹, where each visible variable is
connected to each hidden variable. AnRBM is a variant of the
BoltzmannMachine, with the restriction that the visible units
and hidden unitsmust form a bipartite graph.This restriction
allows formore efficient training algorithms, in particular the
gradient-based contrastive divergence algorithm [36].

The model defines the energy function 𝐸: {0, 1}𝐷 ×{0, 1}𝐹 → R:

𝐸 (k, h; 𝜃) = − 𝐷∑
𝑖=1

𝐹∑
𝑗=1

𝑊𝑖𝑗V𝑖ℎ𝑗 − 𝐷∑
𝑖=1

𝑏𝑖V𝑖 − 𝐹∑
𝑗=1

𝛼𝑗ℎ𝑗, (5)

where 𝜃 = {a, b,W} are the model parameters; that is, 𝑊𝑖𝑗
represents the symmetric interaction term between visible
unit 𝑖 and hidden unit 𝑗, and 𝑏𝑖, 𝑎𝑗 are bias terms.

The joint distribution over the visible and hidden units is
given by

𝑃 (k, h; 𝜃) = 1
Z (𝜃) exp (−𝐸 (k, h; 𝜃)) ,

Z (𝜃) = ∑
k
∑
h
exp (−𝐸 (k, h; 𝜃)) , (6)

whereZ(𝜃) is the normalizing constant.The conditional dis-
tributions over hidden h and visible v vectors can be derived
by (5) and (6) as

𝑃 (h | k; 𝜃) = 𝐹∏
𝑗=1

𝑝 (ℎ𝑗 | k) ,

𝑃 (k | h; 𝜃) = 𝐷∏
𝑖=1

𝑝 (V𝑖 | h) .
(7)

Given a set of observations {k𝑛}𝑁𝑛=1 the derivative of the log-
likelihood with respect to the model parameters can be de-
rived by (6) as

1𝑁
𝑁∑
𝑛=1

𝜕 log𝑃 (k𝑛; 𝜃)𝜕𝑊𝑖𝑗 = E𝑃data [V𝑖ℎ𝑗] − E𝑃model
[V𝑖ℎ𝑗] , (8)

where E𝑃data denotes an expectation with respect to the data
distribution 𝑃data(h, k; 𝜃) = 𝑃(h | k; 𝜃)𝑃data(k), with 𝑃data(k) =(1/𝑁)∑𝑛 𝛿(k − kn) representing the empirical distribution
and E𝑃model is an expectation with respect to the distribution
defined by the model, as in (6).

A detailed explanation along with the description of a
practical way to train RBMs was given in [37], whereas [38]
discusses the main difficulties of training RBMs and their
underlying reasons and proposes a new algorithm with an
adaptive learning rate and an enhanced gradient, so as to
address the aforementioned difficulties.

2.2.2. Deep Belief Networks. Deep Belief Networks (DBNs)
are probabilistic generative models which provide a joint
probability distribution over observable data and labels.They
are formed by stacking RBMs and training them in a greedy
manner, as was proposed in [39]. A DBN initially employs an
efficient layer-by-layer greedy learning strategy to initialize
the deep network, and, in the sequel, fine-tunes all weights
jointly with the desired outputs. DBNs are graphical models
which learn to extract a deep hierarchical representation of
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Figure 2: Deep Belief Network (DBN) and Deep Boltzmann Machine (DBM). The top two layers of a DBN form an undirected graph and
the remaining layers form a belief network with directed, top-down connections. In a DBM, all connections are undirected.

the training data. They model the joint distribution between
observed vector x and the 𝑙 hidden layers h𝑘 as follows:

𝑃 (x, h1, . . . , h𝑙) = ( 𝑙−2∏
𝑘=0

𝑃 (h𝑘 | h𝑘+1))𝑃 (h𝑙−1, h𝑙) , (9)

where x = h0, 𝑃(h𝑘 | h𝑘+1) is a conditional distribution for
the visible units at level 𝑘 conditioned on the hidden units of
the RBM at level 𝑘 + 1, and 𝑃(h𝑙−1 | h𝑙) is the visible-hidden
joint distribution in the top-level RBM.

The principle of greedy layer-wise unsupervised training
can be applied to DBNs with RBMs as the building blocks for
each layer [33, 39]. A brief description of the process follows:

(1) Train the first layer as an RBM that models the raw
input x = h0 as its visible layer.

(2) Use that first layer to obtain a representation of the
input that will be used as data for the second layer.
Two common solutions exist. This representation can
be chosen as being themean activation𝑃(h1 = 1 | h0)
or samples of 𝑃(h1 | h0).

(3) Train the second layer as an RBM, taking the trans-
formed data (samples or mean activation) as training
examples (for the visible layer of that RBM).

(4) Iterate steps ((2) and (3)) for the desired number of
layers, each time propagating upward either samples
or mean values.

(5) Fine-tune all the parameters of this deep architecture
with respect to a proxy for the DBN log- likelihood,
or with respect to a supervised training criterion
(after adding extra learning machinery to convert the
learned representation into supervised predictions,
e.g., a linear classifier).

There are twomain advantages in the above-described greedy
learning process of theDBNs[40].First, it tackles the challenge

of appropriate selection of parameters, which in some cases
can lead to poor local optima, thereby ensuring that the net-
work is appropriately initialized. Second, there is no require-
ment for labelled data since the process is unsupervised.
Nevertheless, DBNs are also plagued by a number of short-
comings, such as the computational cost associated with
training a DBN and the fact that the steps towards further
optimization of the network based on maximum likelihood
training approximation are unclear [41]. Furthermore, a
significant disadvantage of DBNs is that they do not account
for the two-dimensional structure of an input image, which
may significantly affect their performance and applicabil-
ity in computer vision and multimedia analysis problems.
However, a later variation of the DBN, the Convolutional
Deep Belief Network (CDBN) ([42, 43]), uses the spatial
information of neighboring pixels by introducing convolu-
tional RBMs, thus producing a translation invariant gener-
ative model that successfully scales when it comes to high
dimensional images, as is evidenced in [44].

2.2.3. Deep BoltzmannMachines. Deep BoltzmannMachines
(DBMs) [45] are another type of deep model using RBM as
their building block. The difference in architecture of DBNs
is that, in the latter, the top two layers form an undirected
graphical model and the lower layers form a directed gen-
erative model, whereas in the DBM all the connections are
undirected.DBMshavemultiple layers of hiddenunits, where
units in odd-numbered layers are conditionally indepen-
dent of even-numbered layers, and vice versa. As a result,
inference in the DBM is generally intractable. Nonetheless,
an appropriate selection of interactions between visible and
hidden units can lead tomore tractable versions of themodel.
During network training, a DBM jointly trains all layers of
a specific unsupervised model, and instead of maximizing
the likelihood directly, the DBM uses a stochastic maximum
likelihood (SML) [46] based algorithm tomaximize the lower
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bound on the likelihood. Such a process would seem vulner-
able to falling in poor local minima [45], leaving several units
effectively dead. Instead, a greedy layer-wise training strategy
was proposed [47], which essentially consists in pretraining
the layers of the DBM, similarly to DBN, namely, by stacking
RBMs and training each layer to independently model the
output of the previous layer, followed by a final joint fine-
tuning.

Regarding the advantages of DBMs, they can capture
many layers of complex representations of input data and
they are appropriate for unsupervised learning since they
can be trained on unlabeled data, but they can also be fine-
tuned for a particular task in a supervised fashion. One of
the attributes that sets DBMs apart from other deep models
is that the approximate inference process of DBMs includes,
apart from the usual bottom-up process, a top-down feed-
back, thus incorporating uncertainty about inputs in a more
effective manner. Furthermore, in DBMs, by following the
approximate gradient of a variational lower bound on the
likelihood objective, one can jointly optimize the parameters
of all layers, which is very beneficial especially in cases of
learning models from heterogeneous data originating from
different modalities [48].

As far as the drawbacks of DBMs are concerned, one of
the most important ones is, as mentioned above, the high
computational cost of inference, which is almost prohibitive
when it comes to joint optimization in sizeable datasets.
Severalmethods have beenproposed to improve the effective-
ness of DBMs. These include accelerating inference by using
separate models to initialize the values of the hidden units in
all layers [47, 49], or other improvements at the pretraining
stage [50, 51] or at the training stage [52, 53].

2.3. Stacked (Denoising) Autoencoders. Stacked Autoen-
coders use the autoencoder as their main building block,
similarly to the way that Deep Belief Networks use Restricted
BoltzmannMachines as component. It is therefore important
to briefly present the basics of the autoencoder and its denois-
ing version, before describing the deep learning architecture
of Stacked (Denoising) Autoencoders.

2.3.1. Autoencoders. An autoencoder is trained to encode the
input x into a representation r(x) in a way that input can be
reconstructed from r(x) [33].The target output of the autoen-
coder is thus the autoencoder input itself. Hence, the output
vectors have the same dimensionality as the input vector.
In the course of this process, the reconstruction error is
being minimized, and the corresponding code is the learned
feature. If there is one linear hidden layer and the mean
squared error criterion is used to train the network, then the 𝑘
hidden units learn to project the input in the span of the first𝑘 principal components of the data [54]. If the hidden layer
is nonlinear, the autoencoder behaves differently from PCA,
with the ability to capture multimodal aspects of the input
distribution [55]. The parameters of the model are optimized
so that the average reconstruction error is minimized. There
are many alternatives to measure the reconstruction error,
including the traditional squared error:

Hidden node Reconstruct error

ReconstructionInputCorrupted input

Figure 3: Denoising autoencoder [56].

𝐿 = ‖x − f (r (x))‖2 , (10)

where function f is the decoder and f(r(x)) is the reconstruc-
tion produced by the model.

If the input is interpreted as bit vectors or vectors of bit
probabilities, then the loss function of the reconstruction
could be represented by cross-entropy; that is,

𝐿 = −∑
𝑖

x𝑖 log f𝑖 (r (x)) + (1 − x𝑖) log (1 − f𝑖 (r (x))) . (11)

The goal is for the representation (or code) r(x) to be a
distributed representation that manages to capture the coor-
dinates along the main variations of the data, similarly to the
principle of Principal Components Analysis (PCA). Given
that r(x) is not lossless, it is impossible for it to constitute a
successful compression for all input x. The aforementioned
optimization process results in low reconstruction error on
test examples from the same distribution as the training
examples but generally high reconstruction error on samples
arbitrarily chosen from the input space.

2.3.2. Denoising Autoencoders. The denoising autoencoder
[56] is a stochastic version of the autoencoder where the input
is stochastically corrupted, but the uncorrupted input is still
used as target for the reconstruction. In simple terms, there
are two main aspects in the function of a denoising autoen-
coder: first it tries to encode the input (namely, preserve the
information about the input), and second it tries to undo the
effect of a corruption process stochastically applied to the
input of the autoencoder (see Figure 3). The latter can only
be done by capturing the statistical dependencies between the
inputs. It can be shown that the denoising autoencoder max-
imizes a lower bound on the log-likelihood of a generative
model.

In [56], the stochastic corruption process arbitrarily sets a
number of inputs to zero. Then the denoising autoencoder is
trying to predict the corrupted values from the uncorrupted
ones, for randomly selected subsets of missing patterns. In
essence, the ability to predict any subset of variables from
the remaining ones is a sufficient condition for completely
capturing the joint distribution between a set of variables. It
should be mentioned that using autoencoders for denoising
was introduced in earlier works (e.g., [57]), but the substantial
contribution of [56] lies in the demonstration of the success-
ful use of the method for unsupervised pretraining of a deep
architecture and in linking the denoising autoencoder to a
generative model.
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2.3.3. Stacked (Denoising) Autoencoders. It is possible to stack
denoising autoencoders in order to form a deep network by
feeding the latent representation (output code) of the denois-
ing autoencoder of the layer below as input to the current
layer.The unsupervised pretraining of such an architecture is
done one layer at a time. Each layer is trained as a denoising
autoencoder by minimizing the error in reconstructing its
input (which is the output code of the previous layer). When
the first 𝑘 layers are trained, we can train the (𝑘 + 1)th layer
since it will then be possible compute the latent representa-
tion from the layer underneath.

When pretraining of all layers is completed, the network
goes through a second stage of training called fine-tuning.
Here supervised fine-tuning is considered when the goal is to
optimize prediction error on a supervised task. To this end, a
logistic regression layer is added on the output code of the
output layer of the network. The derived network is then
trained like a multilayer perceptron, considering only the
encoding parts of each autoencoder at this point.This stage is
supervised, since the target class is taken into account during
training.

As is easily seen, the principle for training stacked auto-
encoders is the same as the one previously described for
Deep Belief Networks, but using autoencoders instead of
Restricted Boltzmann Machines. A number of comparative
experimental studies show that Deep Belief Networks tend to
outperform stacked autoencoders ([58, 59]), but this is not
always the case, especially when DBNs are compared to
Stacked Denoising Autoencoders [56].

One strength of autoencoders as the basic unsupervised
component of a deep architecture is that, unlike with RBMs,
they allow almost any parametrization of the layers, on
condition that the training criterion is continuous in the
parameters. In contrast, one of the shortcomings of SAs is
that they do not correspond to a generative model, when
with generative models like RBMs and DBNs, samples can be
drawn to check the outputs of the learning process.

2.4. Discussion. Some of the strengths and limitations of the
presented deep learningmodels were already discussed in the
respective subsections. In an attempt to compare these mod-
els (for a summary see Table 2), we can say that CNNs have
generally performed better than DBNs in current literature
on benchmark computer vision datasets such as MNIST. In
cases where the input is nonvisual, DBNs often outperform
other models, but the difficulty in accurately estimating joint
probabilities as well as the computational cost in creating a
DBN constitutes drawbacks. Amajor positive aspect of CNNs
is “feature learning,” that is, the bypassing of handcrafted
features, which are necessary for other types of networks;
however, in CNNs features are automatically learned. On the
other hand, CNNs rely on the availability of ground truth,
that is, labelled training data, whereas DBNs/DBMs and SAs
do not have this limitation and can work in an unsupervised
manner. On a different note, one of the disadvantages of
autoencoders lies in the fact that they could become ineffec-
tive if errors are present in the first layers. Such errors may
cause the network to learn to reconstruct the average of the
training data. Denoising autoencoders [56], however, can

Table 2: Comparison of CNNs, DBNs/DBMs, and SdAs with
respect to a number of properties. + denotes a good performance
in the property and − denotes bad performance or complete lack
thereof.

Model properties CNNs DBNs/DBMs SdAs
Unsupervised learning − + +
Training efficiency − − +
Feature learning + − −
Scale/rotation/translation invariance + − −
Generalization + + +

retrieve the correct input from a corrupted version, thus lead-
ing the network to grasp the structure of the input distribu-
tion. In terms of the efficiency of the training process, only in
the case of SAs is real-time training possible, whereas CNNs
and DBNs/DBMs training processes are time-consuming.
Finally, one of the strengths of CNNs is the fact that they can
be invariant to transformations such as translation, scale, and
rotation. Invariance to translation, rotation, and scale is one
of themost important assets of CNNs, especially in computer
vision problems, such as object detection, because it allows
abstracting an object’s identity or category from the specifics
of the visual input (e.g., relative positions/orientation of the
camera and the object), thus enabling the network to effec-
tively recognize a given object in cases where the actual pixel
values on the image can significantly differ.

3. Applications in Computer Vision

In this section, we survey works that have leveraged deep
learning methods to address key tasks in computer vision,
such as object detection, face recognition, action and activity
recognition, and human pose estimation.

3.1. Object Detection. Object detection is the process of
detecting instances of semantic objects of a certain class
(such as humans, airplanes, or birds) in digital images and
video (Figure 4). A common approach for object detection
frameworks includes the creation of a large set of candidate
windows that are in the sequel classified using CNN features.
For example, the method described in [32] employs selective
search [60] to derive object proposals, extracts CNN features
for each proposal, and then feeds the features to an SVM
classifier to decide whether the windows include the object
or not. A large number of works is based on the concept of
Regions with CNN features proposed in [32]. Approaches
following the Regions with CNN paradigm usually have
good detection accuracies (e.g., [61, 62]); however, there is
a significant number of methods trying to further improve
the performance of Regions with CNN approaches, some of
which succeed in finding approximate object positions but
often cannot precisely determine the exact position of the
object [63]. To this end, such methods often follow a joint
object detection—semantic segmentation approach [64–66],
usually attaining good results.

A vast majority of works on object detection using deep
learning apply a variation of CNNs, for example, [8, 67, 68]
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(a) (b) (c)

Figure 4: Object detection results comparison from [66]. (a) Ground truth; (b) bounding boxes obtained with [32]; (c) bounding boxes
obtained with [66].

(in which a new def-pooling layer and new learning strategy
are proposed), [9] (weakly supervised cascaded CNNs), and
[69] (subcategory-aware CNNs). However, there does exist
a relatively small number of object detection attempts using
other deep models. For example, [70] proposes a coarse
object locating method based on a saliency mechanism in
conjunction with a DBN for object detection in remote
sensing images; [71] presents a newDBN for 3D object recog-
nition, in which the top-level model is a third-order Boltz-
mann machine, trained using a hybrid algorithm that com-
bines both generative and discriminative gradients; [72]
employs a fused deep learning approach, while [73] explores
the representation capabilities of a deep model in a semisu-
pervised paradigm. Finally, [74] leverages stacked autoen-
coders for multiple organ detection in medical images, while
[75] exploits saliency-guided stacked autoencoders for video-
based salient object detection.

3.2. Face Recognition. Face recognition is one of the hottest
computer vision applications with great commercial interest
as well. A variety of face recognition systems based on the
extraction of handcrafted features have been proposed [76–
79]; in such cases, a feature extractor extracts features from
an aligned face to obtain a low-dimensional representation,
based on which a classifier makes predictions. CNNs brought
about a change in the face recognition field, thanks to their
feature learning and transformation invariance properties.
The first work employing CNNs for face recognitionwas [80];

today light CNNs [81] and VGG Face Descriptor [82] are
among the state of the art. In [44] a Convolutional DBN
achieved a great performance in face verification.

Moreover, Google’s FaceNet [83] and Facebook’s Deep-
Face [84] are both based on CNNs. DeepFace [84] models
a face in 3D and aligns it to appear as a frontal face. Then,
the normalized input is fed to a single convolution-pooling-
convolution filter, followed by three locally connected layers
and two fully connected layers used to make final predic-
tions. Although DeepFace attains great performance rates,
its representation is not easy to interpret because the faces
of the same person are not necessarily clustered during the
training process. On the other hand, FaceNet defines a triplet
loss function on the representation, whichmakes the training
process learn to cluster the face representation of the same
person. Furthermore, CNNs constitute the core of OpenFace
[85], an open-source face recognition tool, which is of
comparable (albeit a little lower) accuracy, is open-source,
and is suitable for mobile computing, because of its smaller
size and fast execution time.

3.3. Action and Activity Recognition. Human action and
activity recognition is a research issue that has received a lot
of attention from researchers [86, 87]. Many works on human
activity recognition based on deep learning techniques have
been proposed in the literature in the last few years [88]. In
[89] deep learning was used for complex event detection and
recognition in video sequences: first, saliencymapswere used
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for detecting and localizing events, and then deep learning
was applied to the pretrained features for identifying the
most important frames that correspond to the underlying
event. In [90] the authors successfully employ a CNN-based
approach for activity recognition in beach volleyball, sim-
ilarly to the approach of [91] for event classification from
large-scale video datasets; in [92], a CNN model is used for
activity recognition based on smartphone sensor data. The
authors of [12] incorporate a radius–margin bound as a reg-
ularization term into the deep CNNmodel, which effectively
improves the generalization performance of the CNN for
activity classification. In [13], the authors scrutinize the appli-
cability of CNN as joint feature extraction and classification
model for fine-grained activities; they find that due to the
challenges of large intraclass variances, small interclass vari-
ances, and limited training samples per activity, an approach
that directly uses deep features learned from ImageNet in an
SVM classifier is preferable.

Driven by the adaptability of the models and by the
availability of a variety of different sensors, an increasingly
popular strategy for human activity recognition consists in
fusing multimodal features and/or data. In [93], the authors
mixed appearance andmotion features for recognizing group
activities in crowded scenes collected from the web. For the
combination of the different modalities, the authors applied
multitask deep learning. The work of [94] explores combina-
tion of heterogeneous features for complex event recognition.
The problem is viewed as two different tasks: first, the most
informative features for recognizing events are estimated, and
then the different features are combined using an AND/OR
graph structure. There is also a number of works combining
more than one type of model, apart from several data modal-
ities. In [95], the authors propose a multimodal multistream
deep learning framework to tackle the egocentric activity
recognition problem, using both the video and sensor data
and employing a dual CNNs and Long Short-Term Memory
architecture. Multimodal fusion with a combined CNN and
LSTM architecture is also proposed in [96]. Finally, [97] uses
DBNs for activity recognition using input video sequences
that also include depth information.

3.4. Human Pose Estimation. The goal of human pose esti-
mation is to determine the position of human joints from
images, image sequences, depth images, or skeleton data as
provided by motion capturing hardware [98]. Human pose
estimation is a very challenging task owing to the vast range
of human silhouettes and appearances, difficult illumination,
and cluttered background. Before the era of deep learning,
pose estimation was based on detection of body parts, for
example, through pictorial structures [99].

Moving on to deep learning methods in human pose
estimation, we can group them into holistic and part-based
methods, depending on the way the input images are pro-
cessed. The holistic processing methods tend to accomplish
their task in a global fashion and do not explicitly define a
model for each individual part and their spatial relationships.
DeepPose [14] is a holistic model that formulates the human
pose estimation method as a joint regression problem and
does not explicitly define the graphical model or part detec-
tors for the human pose estimation. Nevertheless, holistic-
based methods tend to be plagued by inaccuracy in the

high-precision region due to the difficulty in learning direct
regression of complex pose vectors from images.

On the other hand, the part-based processing methods
focus on detecting the human body parts individually, fol-
lowed by a graphic model to incorporate the spatial informa-
tion. In [15], the authors, instead of training the network using
the whole image, use the local part patches and background
patches to train a CNN, in order to learn conditional prob-
abilities of the part presence and spatial relationships. In
[100] the approach trains multiple smaller CNNs to perform
independent binary body-part classification, followed with a
higher-level weak spatialmodel to remove strong outliers and
to enforce global pose consistency. Finally, in [101], a multi-
resolution CNN is designed to perform heat-map likelihood
regression for each body part, followed with an implicit
graphic model to further promote joint consistency.

3.5. Datasets. The applicability of deep learning approaches
has been evaluated on numerous datasets, whose content
varied greatly, according the application scenario. Regardless
of the investigated case, the main application domain is
(natural) images. A brief description of utilized datasets
(traditional and new ones) for benchmarking purposes is
provided below.

(1) Grayscale Images.Themost used grayscale images dataset
is MNIST [20] and its variations, that is, NIST and perturbed
NIST. The application scenario is the recognition of hand-
written digits.

(2) RGB Natural Images. Caltech RGB image datasets [102],
for example, Caltech 101/Caltech 256 and the Caltech Sil-
houettes, contain pictures of objects belonging to 101/256
categories. CIFAR datasets [103] consist of thousands of 32 ×32 color images in various classes. COIL datasets [104] consist
of different objects imaged at every angle in a 360 rotation.

(3) Hyperspectral Images. SCIEN hyperspectral image data
[105] and AVIRIS sensor based datasets [106], for example,
contain hyperspectral images.

(4) Facial Characteristics Images.Adience benchmark dataset
[107] can be used for facial attributes identification, that
is, age and gender, from images of faces. Face recognition
in unconstrained environments [108] is another commonly
used dataset.

(5) Medical Images. Chest X-ray dataset [109] comprises
112120 frontal-view X-ray images of 30805 unique patients
with the text-mined fourteen disease image labels (where
each image canhavemultilabels). LymphNodeDetection and
Segmentation datasets [110] consist of Computed Tomogra-
phy images of the mediastinum and abdomen.

(6) Video Streams. The WR datasets [111, 112] can be used
for video-based activity recognition in assembly lines [113],
containing sequences of 7 categories of industrial tasks.
YouTube-8M [114] is a dataset of 8 million YouTube video
URLs, along with video-level labels from a diverse set of 4800
Knowledge Graph entities.
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4. Conclusions

The surge of deep learning over the last years is to a great ex-
tent due to the strides it has enabled in the field of computer
vision.The three key categories of deep learning for computer
vision that have been reviewed in this paper, namely, CNNs,
the “Boltzmann family” including DBNs and DBMs, and
SdAs, have been employed to achieve significant performance
rates in a variety of visual understanding tasks, such as object
detection, face recognition, action and activity recognition,
human pose estimation, image retrieval, and semantic seg-
mentation. However, each category has distinct advantages
and disadvantages. CNNs have the unique capability of
feature learning, that is, of automatically learning features
based on the given dataset. CNNs are also invariant to trans-
formations, which is a great asset for certain computer vision
applications. On the other hand, they heavily rely on the
existence of labelled data, in contrast to DBNs/DBMs and
SdAs, which can work in an unsupervised fashion. Of the
models investigated, both CNNs and DBNs/DBMs are com-
putationally demanding when it comes to training, whereas
SdAs can be trained in real time under certain circumstances.

As a closing note, in spite of the promising—in some cases
impressive—results that have been documented in the litera-
ture, significant challenges do remain, especially as far as the
theoretical groundwork that would clearly explain the ways
to define the optimal selection of model type and structure
for a given task or to profoundly comprehend the reasons
for which a specific architecture or algorithm is effective
in a given task or not. These are among the most impor-
tant issues that will continue to attract the interest of the
machine learning research community in the years to come.
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