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Abstract

Computational speech segregation attempts to automatically separate speech from noise.

This is challenging in conditions with interfering talkers and low signal-to-noise ratios.

Recent approaches have adopted deep neural networks and successfully demonstrated

speech intelligibility improvements. A selection of components may be responsible for the

success with these state-of-the-art approaches: the system architecture, a time frame con-

catenation technique and the learning objective. The aim of this study was to explore the

roles and the relative contributions of these components by measuring speech intelligibility

in normal-hearing listeners. A substantial improvement of 25.4 percentage points in speech

intelligibility scores was found going from a subband-based architecture, in which a Gauss-

ian Mixture Model-based classifier predicts the distributions of speech and noise for each

frequency channel, to a state-of-the-art deep neural network-based architecture. Another

improvement of 13.9 percentage points was obtained by changing the learning objective

from the ideal binary mask, in which individual time-frequency units are labeled as either

speech- or noise-dominated, to the ideal ratio mask, where the units are assigned a continu-

ous value between zero and one. Therefore, both components play significant roles and by

combining them, speech intelligibility improvements were obtained in a six-talker condition

at a low signal-to-noise ratio.

Introduction

Computational speech segregation attempts to automatically separate speech from interfering

noise. This is particularly challenging in single-channel recordings where a speech signal is

corrupted by competing talkers and the signal-to-noise ratio (SNR) is low. It has been sug-

gested to exploit a priori knowledge about the speech signal and the interfering noise by con-

structing an ideal binary mask (IBM) [1]. Specifically, the IBM is derived by comparing the

SNRs in individual time-frequency (T-F) units to a local criterion (LC). The resulting IBM
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consists of binary values where T-F units with SNRs exceeding the LC are considered to be

speech-dominated and labeled one, whereas T-F units with SNR below the LC are considered

to be noise-dominated and are labeled zero. However, since the IBM is unavailable in realistic

scenarios, the challenge in computational speech segregation is to estimate the IBM from the

noisy speech. Typically, computational speech segregation systems consist of an acoustic fea-

ture extraction stage combined with a classification stage where the T-F units are separated

into speech-dominated and noise-dominated units in the estimated mask.

In many studies, objective measures have been used to optimize the performance of compu-

tational speech segregation systems during the development stage. One commonly used objec-

tive measure has been the H-FA rate, which calculates the difference between the percentage

of correctly classified speech-dominated T-F units (hit rate, H) and the percentage of incor-

rectly classified noise-dominated T-F units (false alarm rate, FA) [2–8]. Another commonly

used objective measure has been the short-term objective intelligibility (STOI) [9–12]. How-

ever, both objective measures have limitations in predicting speech intelligibility. This has

been observed with configurations in which the IBM has been degraded with different mask

errors [13], and with computational speech segregation systems for noise reduction [14, 15].

Measuring speech intelligibility in listeners is therefore important to properly evaluate changes

introduced in a speech segregation system.

Recent approaches in computational speech segregation have considered systems in which

the T-F units are predicted by deep neural networks (DNNs). With these state-of-the-art
approaches, measured speech intelligibility improvements have been demonstrated in various

adverse conditions [16–19]. A selection of components may be responsible for the success: the

system architecture, a time frame concatenation technique and the learning objective.

First, the system architecture is different than in previously used approaches. In the state-

of-the-art approaches, the features are extracted per frequency channel and subsequently

stacked across frequency. The T-F units in the estimated mask are then predicted simulta-

neously across all frequency channels by the DNN. This has consequences for how the context,

i.e. the spectro-temporal regions in the estimated mask where speech-dominated T-F units

tend to cluster, is exploited by the system. By predicting the T-F units simultaneously across all

frequency channels, the state-of-the-art approaches therefore exploit the spectral context in a

broadband manner. In previously used approaches, a classifier has been employed per fre-

quency channel (i.e., a subband classifier) in the speech segregation system. These subband

classifiers have been implemented with either Gaussian mixture models (GMMs) [2], support

vector machines (SVMs) [3, 4] or DNNs [20]. In such a subband-based system, the spectral

context has been exploited across neighboring subbands by, for example, including delta fea-

tures which can capture spectral feature variations across neighboring frequency channels [2,

8, 21].

Secondly, state-of-the-art approaches often exploit temporal context by concatenating

extracted feature vectors across a predefined number of time frames [11, 12, 17]. Past and

future time frames have both been considered. Improvements in objective measures with time

frame concatenation have been reported [11]. However, the effect of employing a time frame

concatenation technique on measured speech intelligibility is currently unknown.

Thirdly, state-of-the-art approaches use the ideal ratio mask (IRM) as the learning objective

instead of the IBM [16–19, 22]. In the IRM, the mask value is a continuous gain between zero

and one and computed according to the a priori SNR of the considered T-F unit [11, 23–25].

Therefore, the IRM is similar to an ideal Wiener filter [25]. The perceptual effect of applying

IBMs versus IRMs has been investigated in terms of speech quality [26]. A higher sound qual-

ity rating with lower noise annoyance and a larger degree of speech naturalness were observed

when using IRMs compared to IBMs. Additionally, continuous versus binary gain functions
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were compared in the framework of minimum mean-squared error (MMSE)-based noise

reduction algorithms [27]. It was shown that the continuous gain function outperformed the

binary gain function in terms of measured speech intelligibility scores. Furthermore, a larger

STOI improvement relative to noisy speech was found with IRM estimation in DNN-based

systems compared to IBM estimation [11, 12]. Despite these observations, none of the state-of-

the-art approaches has actually demonstrated measured speech intelligibility improvements

with IRM estimation over IBM estimation in an otherwise identical system. Furthermore, it is

unclear how much IRM estimation contributes to the success of state-of-the-art approaches,

especially in comparison to the other components.

The aim of the present study was to explore the roles and the relative contributions of these

components within state-of-the-art computational speech segregation by measuring speech

intelligibility in normal-hearing (NH) listeners at a low SNR. Specifically, a broadband DNN-

based system was compared with a corresponding subband-based system. The subband-based

system employed a GMM classifier per frequency channel using delta features across subbands

to exploit the spectral context. To exploit temporal context in the DNN-based system, time

frame concatenation was either included or excluded. Moreover, the effect of IRM estimation

versus IBM estimation was studied in the DNN-based system. To create as fair of a comparison

between the different systems as possible, the DNN-based system and the subband GMM-

based system considered the same features, and were both trained using the same amount of

training data. Therefore, the considered systems were not necessarily designed to maximize

the measured speech intelligibility, but instead are designed to be able to systematically com-

pare each of the different components.

Methods

Feature extraction

Noisy speech was sampled at a rate of 16 kHz and decomposed into K = 31 frequency channels

by employing an all-pole version of the gammatone filterbank [28], whose center frequencies

were equally spaced on the equivalent rectangular bandwidth (ERB) scale between 80 and

7642 Hz. Previous studies [2, 7, 8] successfully exploited modulations in the speech and the

interferer by extracting amplitude modulation spectrogram (AMS) features [29, 30]. To derive

the AMS features in each frequency channel (subband), the envelope was extracted by half-

wave rectification and low-pass filtering with a cutoff frequency of 1 kHz. Then, each envelope

was normalized by its median computed over the entire envelope signal. These normalized

envelopes were then processed by a modulation filterbank that consisted of one first-order

low-pass and five band-pass filters with logarithmically spaced center frequencies and a con-

stant Q-factor of 1. The cutoff frequency of the modulation low-pass filter was set to the

inverse of the window duration to ensure that at least one full period of the modulation fre-

quency was included in the window [8]. Using time frames of 32 ms with 75% overlap (i.e., a 8

ms frame shift) resulted in a cutoff frequency of 32 Hz. The root mean square (RMS) value of

each modulation filter was then calculated across each time frame.

The DNN-based system

Fig 1 illustrates the DNN-based system. The AMS feature space was power-compressed with

an exponent of 1/15 [17], stacked across frequency channels and fed to the input layer of a

feed-forward DNN. The network architecture consisted of an input layer, two hidden layers

that each had 128 nodes, and an output layer of 31 nodes. Feature frame concatenation was

employed by appending the five past AMS feature time frames to the current frame, which cor-

responded to a temporal context of 40 ms. The DNN-based system was used to either estimate

The benefit of combining DNN architecture with IRM estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0196924 May 15, 2018 3 / 13

https://doi.org/10.1371/journal.pone.0196924


the IBM or the IRM. The IRM was given by [11]:

IRM t; fð Þ ¼
S2ðt; f Þ

S2ðt; f Þ þ N2ðt; f Þ

� �b

¼
SNRðt; f Þ

SNRðt; f Þ þ 1

� �b

ð1Þ

In Eq (1), the S2(t, f) and the N2(t, f) indicate the speech and noise energies, respectively, in a

given T-F unit with time frame t and frequency channel f, and β denotes the mask exponent.

Mask values in the IRM are therefore scaled according to the SNR, such that T-F units with

lower SNR are attenuated more strongly.

The subband-based system

The subband-based system has previously been employed [8, 14, 21] and a detailed description

is given in [14]. In short, delta features were computed symmetrically across frequency bands,

resulting in the feature vector X(t, f):

Xðt; f Þ ¼ ½Aðt; f Þ;Df � kAðt; f Þ;DfþkAðt; f Þ�

Df � kAðt; f Þ ¼ Aðt; f Þ � Aðt; f � kÞ; 8k 2 fn 2 ½1; K�jf � n � 1g

DfþkAðt; f Þ ¼ Aðt; f Þ � Aðt; f þ kÞ; 8k 2 fn 2 ½1; K�jf þ n � Kg

ð2Þ

In Eq (2), f indicates the current subband and k the considered number of subbands across

which the delta features were computed. Seven subbands (k = 3) were used in this comparison,

since having more than seven subbands does not statistically improve the measured speech

intelligibility scores [14]. The classification back-end consisted of a GMM classifier trained to

represent the speech and noise-dominated AMS feature distributions (λ1,f and λ0,f) for each

subband f of the K filters [2]. To separate the feature vector into speech- and noise-dominated

T-F units, an LC was applied to the a priori snr. The GMM classifier output was given as the

posterior probability of speech and noise presence P(λ1,f|X(t, f)) and P(λ0,f|X(t, f)), respectively:

Pðl1;f jX t; fð ÞÞ ¼
Pðl1;f ÞPðXðt; f Þjl1;f Þ

PðXðt; f ÞÞ
ð3Þ

Pðl0;f jX t; fð ÞÞ ¼
Pðl0;f ÞPðXðt; f Þjl0;f Þ

PðXðt; f ÞÞ
ð4Þ

Fig 1. The DNN-based system. Noisy speech was decomposed by a gammatone filterbank and AMS features were

extracted per subband. The AMS features were fed into an DNN with two hidden layers of 128 nodes each. The system

estimated a time-frequency mask (either an IBM or an IRM), and the mask was subsequently applied to the subband

signals of the noisy speech, as illustrated by the dashed line, in order to reconstruct the speech signal.

https://doi.org/10.1371/journal.pone.0196924.g001
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The a priori probabilities P(λ1,f) and P(λ0,f) were computed by counting the number of feature

vectors for each of the classes λ1,f and λ0,f during training.

System configurations

In this study, six system configurations were compared (see Table 1). System configurations

“GMM (IBM, 1 subband)” and “GMM (IBM, 7 subbands)” exploited spectral context in the

subband-based system. In the “GMM (IBM, 1 subband)” configuration, delta features were

used as in [2] with only the adjacent subband. In the “GMM (IBM, 7 subbands)” configuration,

k = 3 symmetrically placed subbands around the considered subband were used to exploit

spectral context, according to Eq (2). Configurations “DNN (IBM)”, “DNN (IBM, 40 ms)”,

“DNN (IRM)” and “DNN (IRM, 40 ms)” were all configurations of the DNN-based system.

“DNN (IBM)” and “DNN (IRM)” were configurations with no frame concatenation and using

IBM and IRM estimation, respectively. “DNN (IBM, 40 ms)” and “DNN (IRM, 40 ms)” were

configurations with five past concatenated frames corresponding to 40 ms duration, and with

IBM and IRM estimation, respectively. In addition to the six system configurations, unpro-

cessed noisy speech was tested as a baseline.

Stimuli

The speech material was taken from the Danish Conversational Language Understanding

Evaluation (CLUE) database [31]. It consists of 70 sentences in 7 lists for training and 180 sen-

tences in 18 balanced lists for testing, and the sentences are spoken by a male Danish talker.

Noisy speech mixtures were created by mixing individual sentences with the non-stationary

six-talker (ICRA7) noise [32]. A Long Term Average Spectrum (LTAS) template was com-

puted based on the CLUE corpus, and the LTAS of the noise masker was adjusted to the tem-

plate LTAS. A randomly-selected noise segment was used for each sentence. In order to avoid

onset effects in the speech intelligibility test [31], the noise segment started 1000 ms before the

speech onset and ended 600 ms after the speech offset.

System training and evaluation

The full ICRA7 noise recording of 600 s was divided such that one half of the recording was

used for training and the other half was used for testing. The 70 training sentences were each

mixed three times with a randomly-selected noise segment from the noise recording at −5, 0,

and 5 dB SNR to create a training set of 210 utterances. Training at multiple SNR has been

used as an approach in many studies, e.g. [2]. This training set was used to train both the

DNN-based system and the subband GMM-based system. The DNN was trained to estimate

either the IBM or the IRM using back-propagation with the scaled conjugate gradient algo-

rithm and a mean-squared error cost function. All hidden layers were trained simultaneously

Table 1. Overview of the system configurations.

Configuration Classifier Architecture Frame concatenation Learning objective

GMM (IBM, 1 subband) GMM Subband - IBM

GMM (IBM, 7 subbands) GMM Subband - IBM

DNN (IBM) DNN Broadband 0 ms IBM

DNN (IBM, 40 ms) DNN Broadband 40 ms IBM

DNN (IRM, 40 ms) DNN Broadband 40 ms IRM

DNN (IRM) DNN Broadband 0 ms IRM

https://doi.org/10.1371/journal.pone.0196924.t001
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in the network. For the IRM estimation, β was set to 0.5 as previously done [11, 12]. For the

subband GMM-based system, a moderate classifier complexity of 16 Gaussian components

with full covariance matrix was selected. The classifiers were first initialized by 15 iterations of

the K-means clustering algorithm, followed by five iterations of the expectation-maximization

algorithm, and an LC of −5 dB was employed. Both systems were evaluated with 180 CLUE

sentences that were each mixed with ICRA7 noise at −5 dB SNR.

Subjects and experimental setup

The experiment was conducted with a group of 20 NH listeners that were aged between 20 and

32 years with a mean of 24.5 years. Requirements for participation were: (1) aged between 18–

40 years, (2) audiometric thresholds of less than or equal to 20 dB hearing level (HL) in both

ears (between 0.125 and 8 kHz), (3) Danish as their native language, and (4) no previous expe-

rience with the Hearing In Noise Test (HINT) [33] or CLUE material [31].

The total session lasted about two hours, including the screening process. The experiment

was approved by the Danish Science-Ethics Committee (reference H-16036391). Listeners

were recruited with online advertisement, and they were paid for their participation. Informed

consent was obtained prior to the experiment. The subjects were all recruited and tested within

a two-month period. The experiment was split into two parts: subject training and subject test-

ing. In the training part, five randomly selected sentences from the training set were presented

for each of the conditions to familiarize the subjects with the task. Subsequently, each subject

heard one list per condition, whereby conditions and lists were randomized across subjects.

The sentences were presented diotically to the listener via headphones (Sennheiser HD650) in

an acoustically and electrically shielded booth. Prior to the actual experiments, the headphones

were calibrated by first adjusting to a reference sound pressure level (SPL) and then perform-

ing a headphone frequency response equalization. During the experiment, the sentences were

adjusted to the desired presentation level, and the equalization filters were applied. The SPL

was set to a level of 65 dB. For each sentence, the subjects were instructed to repeat the words

they heard, and an operator scored the correctly understood words via a MATLAB interface. The

subjects were told that guessing was allowed. They could listen to each sentence only once, and

breaks were allowed according to the subject’s preference.

Statistical analysis

Intelligibility scores were reported as a percentage of correctly scored words, i.e. the word rec-

ognition score (WRS). The WRSs were computed per sentence and averaged across sentences

per list. The intelligibility scores followed a normal distribution, and a linear mixed effect

model was constructed with list WRSs as the response variable and the system configurations

as a fixed factor (8 levels). Subjects were treated as a random factor, as is standard in a repeated

measures design. Fixed factor levels were tested at a 5% significance level. To visualize the data,

the predicted least-squares means and 95% confidence limits of the least-squares means were

extracted from the model. To assess any difference between system configurations, the differ-

ences of the least-squares means were computed in pairwise comparisons, where the p values

were adjusted following the Tukey multiple comparison testing. To evaluate potential speech

intelligibility improvements, Paired Student’s t-tests between the noisy speech and the relevant

system configuration was constructed and tested at a 5% significance level.

Results

Fig 2 shows the measured WRSs of the six system configurations along with unprocessed

noisy speech. The sample mean across subjects and a 95% Student’s t-based confidence

The benefit of combining DNN architecture with IRM estimation
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interval of the sample mean were computed and included in Fig 2 for visualization. For the six

system configurations, the least-squares means and 95% confidence limits of the least-squares

means predictions are shown. In noisy speech, the average WRS was 65%. The relatively high

baseline score was presumably due to the fluctuations in the six-talker noise, which has been

shown to facilitate listening-in-the-dips in NH subjects [34].

Measured WRSs increased significantly from the “GMM (IBM, 1 subband)” configuration

to the “GMM (IBM, 7 subbands)” configuration by 18.9 percentage points (p< 0.0001). This

result indicates that an increased number of appended delta feature vectors across frequency

in the subband GMM-based system led to higher measured speech intelligibility, since a larger

amount of spectral context was exploited. Comparing across the systems, the “DNN (IBM)”

configuration led to 25.4 percentage points higher WRS than the “GMM (IBM, 1 subband)”

configuration (p< 0.0001). Despite that the “DNN (IBM)” configuration had a higher WRS of

6.5 percentage points than the “GMM (IBM, 7 subbands)” configuration, measured speech

intelligibility scores for the two configurations were not significantly different.

The “DNN (IBM)” and “DNN (IBM, 40 ms)” configurations did not differ significantly

from each other, and no statistically significant difference was found either between the “DNN

(IRM)” and “DNN (IRM, 40 ms)” configurations. Therefore, the employed time frame concat-

enation technique, which was used to exploit temporal context, did not have a perceptual effect

in the current DNN-based system, regardless of whether IBM or IRM estimation was consid-

ered in the system.

Fig 2. Measured WRSs in normal-hearing listeners at −5 dB SNR in the ICRA7 noise. Unprocessed noisy speech

served as a baseline condition. For the baseline (diamonds), sample means across subjects and 95% Student’s t-based

confidence intervals of the mean were computed. For the system configurations, the least-squares means and 95%

confidence limits of the least-squares means predictions derived from the linear mixed effect model were plotted.

https://doi.org/10.1371/journal.pone.0196924.g002
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The configuration “DNN (IRM)” led to 13.9 percentage points higher WRS than the “DNN

(IBM)” configuration (p< 0.001). Furthermore, 17.5 percentage points higher WRS was

observed for the “DNN (IRM, 40 ms)” configuration than for the “DNN (IBM, 40 ms)” config-

uration (p< 0.0001). Therefore, a clear perceptual advantage was found for IRM over IBM

estimation in the DNN-based system. The measured intelligibility scores were subsequently

converted into WRS improvements relative to the unprocessed noisy speech. Significant

improvements, based on the Paired Student’s t-tests at a 5% significance level, were obtained

for the “DNN (IRM)” configuration (8.2 percentage points; t[19] = 2.36; p = 0.014) and the

“DNN (IRM, 40 ms)” configuration (6.8 percentage points; t[19] = 2.14; p = 0.023). This par-

ticular finding demonstrates the benefit of estimating the IRM as opposed to the IBM, when

computational speech segregation systems are used for noise reduction applications.

Discussion

The roles and relative contributions of the components

The comparison between the subband GMM-based system configurations (“GMM (IBM, 1

subband)” and “GMM (IBM, 7 subbands)”) indicated that the measured speech intelligibility

scores increased with the number of subbands used to compute the delta features. By increas-

ing the number of subbands, the AMS feature vector was rapidly growing. In [14], it was

shown that more than seven considered subbands did not further increase the measured

speech intelligibility. The subband GMM classifier was therefore limited in the capability to

handle the large amount of AMS feature data. In addition, the “GMM (IBM, 1 subband)” con-

figuration that resembled previously-used approaches [2, 8, 21] resulted in a much lower

speech intelligibility than the corresponding broadband DNN-based system configuration

(“DNN (IBM)”). By increasing the number of subbands and thereby exploiting more spectral

context in the subband GMM-based system, it was possible to achieve a measured speech

intelligibility score similar to that obtained with the DNN-based system. By changing the

architecture from subband GMM classifiers to a broadband DNN, the segregation system was

able to predict the T-F units simultaneously across all of the subbands. Therefore, the DNN-

based system exploited the spectral context in a broadband manner, which may be more effec-

tive than the corresponding subband-based system. This is most likely because of the capability

of DNNs to handle higher-dimensional feature vectors. Estimated IBMs with these three con-

figurations (“GMM (IBM, 1 subband)”, “GMM (IBM, 7 subbands)” and “DNN (IBM)”) are

shown in Fig 3f–3h and can be compared to the IBM in Fig 3e. H-FA rates were computed for

each of the estimated IBMs to indicate the mask estimation accuracy. Results were 27.8%

(“GMM (IBM, 1 subband)”), 34.5% (“GMM (IBM, 7 subbands)”) and 63.7% (“DNN (IBM)”),

respectively. A larger amount of spectral context is exploited by increasing the number of

considered subbands in the subband GMM-based system (Fig 3f and 3g), which leads to more

correctly-classified speech T-F units (hits) and therefore a larger H-FA rate. However, the esti-

mated IBM using the DNN-based system (Fig 3h) contains much larger regions with cor-

rectly-classified speech T-F units and and less mask errors (both misses and false alarms),

which has increased the H-FA rate quite substantially. The results of the present study also

indicated that the employed time frame concatenation technique, which has been proposed to

exploit temporal context in the state-of-the-art approaches [11, 12, 17], did not have a signifi-

cant impact on the measured speech intelligibility. This was observed regardless of whether

the DNN-based system estimated the IBM or the IRM. This result was rather surprising, but

should be seen in light of the small amount of training data (only 210 utterances) fed to the

DNN-based system. Most likely, the small amount of training data was not sufficient to unfold

the predictive power of the DNN. Another important point is that “only” five past feature

The benefit of combining DNN architecture with IRM estimation
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frames were appended to the current frame, resulting in an exploited temporal context of 40

ms. To put this into perspective, 23 frames were concatenated in total with a step size of 10 ms

in another study [17], which resulted in a much larger exploited temporal context of 200 ms.

Furthermore, the 23 frames were symmetrically placed around the current frame with eleven

past and eleven future time frames. Whether the temporal context in future time frames affect

speech intelligibility is not clear.

A substantial perceptual advantage of IRM over IBM estimation was observed in the DNN-

based system, where both configurations with IRM estimation (“DNN (IRM)” and “DNN

(IRM, 40 ms)”) led to higher measured speech intelligibility scores than the corresponding

configurations with IBM estimation. The present study therefore demonstrated the effective-

ness of the IRM estimation over the IBM estimation with respect to measured speech

Fig 3. Estimated and ideal time-frequency masks. Masks for an CLUE sentence mixed with ICRA7 noise at −5 dB

SNR. The spectrograms of clean and noisy speech are shown in Figs 3a and 3b. The IRM and the IBM are shown in

Figs 3c and 3e. A selection of estimated masks from system configurations are shown in Figs 3d, 3f, 3g and 3h. Misses

(speech-dominated T-F units erroneously labeled as noise-dominated) and false alarms (noise-dominated T-F units

erroneously labeled as speech-dominated) are shown on top of the estimated IBMs. The estimated IBM in Fig 3h was

converted from the corresponding estimated IRM by applying a threshold, which was derived from Eq (1) at −5 dB

SNR and using β = 0.5.

https://doi.org/10.1371/journal.pone.0196924.g003
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intelligibility in the state-of-the-art approaches. The effectiveness of the IRM can be explained

by how the mask gain values are computed. From Eq (1), it is observed that these values can

vary continuously between 0 and 1. Comparing the ideal masks (Fig 3c and 3e) to the spectro-

gram of speech in quiet (Fig 3a), it can be seen that several mask regions with low speech

energy are captured by the IRM, but not by the IBM (e.g., around 0.6 s and above 2446 Hz).

The IRM can therefore convey important speech information that is not reflected in the IBM,

suggesting that the IRM is a better learning objective than the IBM in computational speech

segregation. By comparing the estimated masks in Fig 3d and 3h, it is also apparent that the

estimated IRM mask values are more tolerant to misses by the segregation system. Several

mask regions with misses in Fig 3h correspond to areas with positive gain values in Fig 3d,

such that speech information is conveyed, which otherwise would have been missed. There-

fore, even though a binary classification of T-F units makes the IBM a simpler objective to esti-

mate, the findings in the present study support the use of the IRM estimation in state-of-the-

art approaches for noise reduction applications. In addition to the measured speech intelligi-

bility, subjective speech quality will most likely also improve with IRM estimation, since it has

previously been demonstrated that the IRM itself improves the quality in comparison to the

IBM [26].

Finally, the relative contributions of the components within state-of-the-art approaches

were addressed. First, a substantial improvement of 25.4 percentage points in measured speech

intelligibility scores was found by changing the system architecture from subband GMM-

based, with first-order delta features across frequency, to the broadband DNN architecture.

The subband GMM-based architecture was similar to previously-used system architectures [2,

8, 21]. Secondly, by changing from IBM estimation to IRM estimation, another improvement

of 13.9 percentage points in measured speech intelligibility scores was obtained. Therefore,

these results suggest that both of these components play a significant role in the success of the

state-of-the-art approaches. By combining the two significant components, intelligibility

improvements of about 7–8 percentage points relative to noisy speech were demonstrated.

These improvements were obtained despite that the system was evaluated in the challenging

scenario of being presented with unseen, six-talker noise at a low SNR after a relatively limited

system training.

Large-scale training in the DNN-based system

Being able to generalize to acoustic conditions not seen during training (i.e., mismatches

between acoustic conditions encountered during training and testing) is crucial for any speech

segregation system to be applied in realistic scenarios. The segregation systems in this study

considered a mismatch of six-talker noise segments between training and testing. One reason

for the relatively limited speech intelligiblity improvement with the DNN-based system with

IRM estimation, in comparison to that which has been reported in other studies, is that the

competing six-talker noise contains spectro-temporal modulations that are very similar to the

modulations in the speech signal. This complicates the task of automatically segregating the

interfering noise from the target speech. Other studies have demonstrated a generalization

ability with DNN-based systems but have employed 20-talker noise with less fluctuations

[16, 17].

Another reason for the limited improvement is the small amount of training data used in

the present study. The training set was kept low with only 210 utterances in order to compare

the DNN-based system with the subband GMM-based system. However, it has previously

been shown that DNNs can benefit from large-scale training in computational speech segrega-

tion [17, 22, 35], and intelligibility improvements over noisy speech can be obtained with these
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systems in conditions with various acoustic mismatches [16–19]. In one of these studies [16],

the speech segregation system was trained with 28, 000 utterances presented in different types

of noise at different SNRs. At −5 dB SNR and with 20-talker noise, this led to an improvement

of 25 percentage points in speech intelligibility scores in NH listeners. In another study [17],

the system was trained with 640, 000 utterances in a multi-conditional training set to produce

an improvement of 10 percentage points in the speech intelligibility scores in the same experi-

mental design as the first study [16]. Retraining the considered DNN-based system with a

larger training set than 210 utterances would most likely improve the generalization ability to

the unseen six-talker noise segments. Large-scale training is therefore also an important com-

ponent within state-of-the-art approaches in computational speech segregation, and investi-

gating the impact of large-scale training on measured speech intelligibility is one direction for

future work.

Conclusion

This study explored the relative contributions of a selection of components within state-of-

the-art speech segregation systems to improving speech intelligibility. The first component

was the system architecture, which was changed from subband-based, in which a classifier was

employed per frequency channel, to a DNN network architecture where the T-F units were

predicted simultaneously across all frequency channels. Specifically, a broadband DNN-based

system was compared with a corresponding subband GMM-based system. A second compo-

nent was the time frame concatenation technique. This technique is often applied in DNN-

based speech segregation systems to exploit the temporal context. However, this technique did

not show a significant effect on the measured speech intelligibility scores in this study, presum-

able because of the relatively limited amount of training data was not sufficient to unfold the

predictive power of the DNN. The third considered component was the estimation of the IRM

instead of estimating the IBM. Results showed a substantial perceptual advantage with the

IRM estimation in the DNN-based system. Finally, the relative contributions of the compo-

nents were addressed. A substantial improvement of 25.4 percentage points in measured

speech intelligibility scores was found by changing the system architecture from subband

GMM-based, which is similar to previously-used architectures, to a recent DNN architecture.

Another improvement of 13.9 percentage points was obtained by changing from IBM estima-

tion to IRM estimation in the state-of-the-art approach. Therefore, both of these components

seem to play a significant role in the success of state-of-the-art speech segregation systems. By

combining the two significant components, intelligibility improvements of about 7–8 percent-

age points relative to noisy speech were demonstrated in adverse conditions where speech was

corrupted by a six-talker noise at a low SNR.
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