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Abstract

Intervertebral disc (IVD) herniation and degeneration contributes significantly to low

back pain (LBP), of which the molecular pathogenesis is not fully understood. Disc her-

niation may cause LBP and radicular pain, but not all LBP patients have disc herniation.

Degenerated discs could be the source of pain, but not all degenerated discs are symp-

tomatic. We previously found that disc degeneration and herniation accompanied by

inflammation. We further found that anti-inflammatory molecules blocked immune

responses, alleviated IVD degeneration and pain. Based on our recent findings and the

work of others, we hypothesize that immune system may play a prominent role in the

production of disc herniation or disc degeneration associated pain. While the nucleus

pulposus (NP) is an immune-privileged organ, the damage of the physical barrier

between NP and systemic circulation, or the innervation and vascularization of the

degenerated NP, on one hand exposes NP as a foreign antigen to immune system, and

on the other hand presents compression on the nerve root or dorsal root ganglion

(DRG), which both elicit immune responses induced by immune cells and their media-

tors. The inflammation can remain for a long time at remote distance, with various

types of cytokines and immune cells involved in this pain-inducing process. In this

review, we aim to revisit the autoimmunity of the NP, immune cell infiltration after

break of physical barrier, the inflammatory activities in the DRG and the generation of

pain. We also summarize the involvement of immune system, including immune cells

and cytokines, in degenerated or herniated IVDs and affected DRG.

K E YWORD S

cytokines, degeneration, herniation, immune, inflammation, intervertebral disc, pain

1 | INTRODUCTION

Low back pain (LBP) is a common symptom1 affecting approximately

40% of the population worldwide,2 producing a significant burden on

society and the medical system.3 Lumbar disc herniation (LDH) is the

major cause of radicular pain,4 which radiates into the lower extremity

directly along the course of a spinal nerve root. In addition to LDH,

nonherniated degenerating intervertebral discs (IVDs) can cause radic-

ular pain in some patients.5 The protrusion or extrusion of

anIVDleadingto contact with or the compression of anerve root or

dorsal root ganglion (DRG) is a common cause of LBP with or without

sciatica. However, evolving evidence has demonstrated that discFubiao Ye and Feng-Juan Lyu contributed equally to this work and shared first authorship.
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herniation-induced radicular pain may persist even after surgical inter-

ventions. Starkweather et al.6 studied neural-immune interactions in

patients with LBP and sciatica. They suggested that the neuroimmune

system was activated during disc herniation-induced radicular pain

and that activated immune cells release proinflammatory cytokines,

which signal the brain through humoral and neural routes, resulting in

pain and functional changes in neural activity. LDH also contributes to

LBP by playing a role in spinal stenosis7 or acting as a primary source

of discogenic LBP,8–10 which is defined as chronic LBP induced by

degenerative disc disease.

However, not all LBP patients have obviousdisc protrusion or nerve

root compression. In somepatients, the severity of pain is not related to

the degree of nerve compression.11 In addition to the mechanical com-

pression of the nerve root or DRG, emerging evidence suggests that the

degenerated disc itself could be a source of LBP. IVD degeneration starts

from 10 years of age, when the number of notochordal cells drops to

below detectable levels in the human NP, and develops with aging.12

IVD degeneration is closely associated with LBP, especially discogenic

LBP.13,14 However, not all degenerated discs are painful. Some people

have degenerated discs without any signs of LBP. The reason this differ-

ence has not yet been fully revealed. We previously found that disc

degeneration is accompanied by inflammation15–17 and fibrotic

changes18,19 as a result of chronic inflammation. We further found that

anti-inflammatory molecules, such as LIM mineralization protein-1,20

transforming growth factor-β (TGF-β),21,22 or Wnt5a,23 can suppress

C-C motif chemokine 4 (CCL4) expression and impede tumor necrosis

factor-α (TNF-α)-activated immune cascades, while melatonin can dis-

rupt interleukin-1β (IL-1β) signaling,24,25 thus alleviating IVD degenera-

tion and pain. Therefore, we hypothesize that inflammation may be the

key difference between symptomatic and asymptomatic IVD

degeneration.26

Since Naylar et al.27 proposed the autoimmunity of IVDs in 1975,

meaning that cells in IVDs will be recognized by the immune system as

foreign antigens and elicit immune reactions, in the past few decades,

studies about the relationship between autoimmunity and disc degenera-

tion and LBP have received growing attention. A number of studies have

focused on the role of molecular immunology and the immune-related

inflammatory response in LBP.28 Currently, it is of practical significance to

fully understand the relationship between the immune response and

inflammatory factors and the role ofmolecular immunology in the process

of LBP in the hope of designing effective biological treatments for disc

degeneration and LBP. Based on this, we review the current literature

related to the natural structure of the discs and the involvement and roles

of immune cells and cytokines in pain production to highlight the neces-

sity to treat against pain progression in IVD degeneration and to facilitate

future studies on and clinical applicationsfor disc regeneration.

2 | STRUCTURE AND IMMUNE PRIVILEGE
OF THE NUCLEUS PULPOSUS

The IVD is composed of the annulus fibrosus (AF), nucleus pulposus

(NP), and cartilaginous endplate (EP) adjacent to vertebral bodies

(Figure 1). The main components of the NP are NP cells and a gelati-

nous extracellular matrix that keeps the NP moistured. In the matu-

rated disc, the NPis wrapped by the outer AF and covered by the

upper and lower EPs. Under healthy conditions, there are neither

blood vessels nor nerve cells in the NP. This unique architecture

makes the NP exempt from the development of immunological toler-

ance during fetal development and an immune-privileged organ with

no access to the systemic circulation, similar to other immune-

privileged organs, such as the nails, eyes, and brain.29,30 For this rea-

son, immune cells or inflammatory cytokines have not been found in

healthy NP. In addition to the physical barriers, recent studies have

found that a variety of molecular biological mechanisms are also

involved in the maintenance of immune privilege.31 For example, Fas

ligand (FasL), which is predominantly expressed in the activated T lym-

phocytes of immune-privileged sites, could induce the apoptosis of

Fas-expressing T lymphocytes and macrophages. FasL has been noted

to be expressed in healthy NP and thus may play an important role in

the maintenance of NP immune privilege.32,33

3 | BROKEN PHYSICAL BARRIERS LEAD
TO IMMUNE CELL INFILTRATION

Degenerated IVDs, ruptured AF and extruded NP are the basic patho-

logical anatomies of disc herniation (Figure 1). Disc herniation can be

caused by abnormal mechanical overloading34 and trauma35,36 and is

closely associated with IVD degeneration.37,38 When adisc is herni-

ated, the physical barrier between the IVD and the immune system

becomes damaged, which exposes the NP to the immune system.

Then, the systemic immune system will recognize the “immune-

privileged” NP as a “foreign antigen” andinduce the initial immune

response (primary response). In the subsequent stage, with the repair

process of the damaged NP and AF, granulation tissue will form,

followed by the ingrowth of blood vessels, further exposing NP tis-

sues to immune cells in the bloodstream. In this case, some of the NP

matrix is recognized as an autoantigen, which elicits the secondary

immune response, which is mediated by cytotoxic T cells. In addition,

nondegenerated NP cells strongly express FasL, which can lead to the

apoptosis of infiltrated Fas-positive cytotoxic T lymphocytes. How-

ever, FasL expression significantly decreases in degenerated NP

cells,32 which weakens the ability to clear T lymphocytes39,40 and fur-

ther destroys the intradiscal environment.

Several studies have found autoantibodies in degenerated

NP. The team of Capossela41 found a specific immunoglobulin G (IgG)

antibody persisting in degenerated or injured discs, and this IgG anti-

body was reactive to the matrix proteins in the NP, especially to colla-

gen II and aggrecan, suggesting that such antibodies were one of the

factors contributing toIVD degeneration. The research of Mihn42 also

confirmed that autoantibodies were significantly higher in human

degenerative IVDs than in nondegenerated IVDs. The detection of a

humoral response, represented by the immunopositivity to factor VIII

and IgG43 and the number of immune cells,44 was much higher in

sequestered IVDs than protruding IVDs, indicating that the immune
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reactions against IVDs are the consequence, but not the initiating

cause, of disc herniation.

4 | DRG COMPRESSION BY OR IN
CONTACT WITH THE NP INDUCES PAIN

Disc herniation may cause radicular pain, which is induced by patho-

logical changes in the nerve root or DRG after direct contact with or

compression by a herniated disc. The DRG is the primary processing

center of pain generation and transmission. Traditionally, mechanical

compression has been thought to serve as theprimary factor that

leads to ischemia, edema, or demyelination in the DRG, which suffi-

ciently induces spontaneous pain that may arise from abnormal pro-

duction of proinflammatory molecules secreted by both AF and NP

cells.45,46 In the case of disc herniation, the protruding disc may com-

press the concomitant spinal nerve, sensitizing the peripheral neurons

in the DRG and leading to pain.47

In addition, evidence suggests that NP tissue could cause excit-

atory changes in the DRG even in the absence of mechanical com-

pression.48,49 Takebayashi et al.50 used neurophysiological techniques

in a rat model in vivo to investigate the role of the DRG in radicular

pain in LDH. They found that after the application of NP tissue to the

nerve root, the DRG demonstrated increased excitability and mechan-

ical hypersensitivity when compared to the control group with the

application of fat to the nerve root. Likewise, the application of NP

tissue to the nerve root without compression could increase end-

oneurial fluid pressure and decrease blood flow in the dorsal root

ganglia, which was closely related to the subsequent immune and

inflammatory reactions.51

Neural-immune interactions play a crucial role in the pain-

producing process,52 with the participation of immune cells,

chemokines, and cytokines. Under healthy conditions, macrophages

and a small number of T lymphocytes and satellite glial cells reside in

the DRG. DeLeo et al.46 demonstrated that satellite glial cells in DRG

were activated by the immune system within 24 h, and local macro-

phages in DRG were activated approximately 1 week later under the

influence of activated glial cells. Furthermore, satellite glial cells and

macrophages together release mediators such as histamine,

prostaglandins, cytokines, and chemokines, which in turn aggregate

the infiltration of other immune cells, including neutrophils, macro-

phages, and lymphocytes.53 This reaction reached its peak in approxi-

mately 3 weeks and could last for several months. DeLeo46 and

Moalem54 found that even after the exposed NP was removed or

absorbed, the pain continued. This suggests that as a result of a cas-

cade of neural-immune responses, the systemic immune reactions are

not mitigated even after the stimulus is removed.

Disc degeneration or herniation could lead to increased inflamma-

tory activities in the DRG. In a rat disc degeneration model, nuclear

factor kappa B and cyclooxygenase 2 (COX-2) levels were increased

in the DRG to the left and/or right ofthe disc.55 In a rabbit model of

torsional injury, a significant increase in most DRG neurotransmitter

values was observed 60–90 days later.56 TNF-α injectionin rat discs

also led to increased substance P in DRG.57 In a rat disc herniation

model, the M1 macrophage markers chemokine ligand 3 (CCL3) and

CD86 markedly increased on Day 14 after the surgery and decreased

on Day 28 compared to very low expression in naive DRG.58 In con-

trast, the M2 macrophage markers arginase 1 (Arg1) and CD206 were

markedly increased on Day 28 compared to their low expression in

naive DRG.58

In addition, activated DRG can release inflammatory cytokines

that affect remote uninjured DRG. For example, activated DRG neu-

rons release monocyte chemoattractant protein-1 (MCP-1) after

peripheral nerve injury.59 Axonal damage in rats significantly increased

the activation of genes expressed by immune and inflammatory cells,

as revealed by oligonucleotide microarray analysis.60 These factors

secreted by the compressed or injured neurons can affect the

uninjured DRG over a long distance. In a neuropathic pain model, both

compressed and noncompressed DRG neurons showed increased

CCR2 ligand and MCP-1 expression by Day 5.61

5 | DEGENERATED NP ITSELF
CONTRIBUTES TO DISCOGENIC PAIN

In addition to radicular pain, the degenerated disc itself can contribute

to LBP. Inherently, the native attempt to address IVD injury or tears is

through the process of vascularization and innervation into the disc.

F IGURE 1 Structure of a healthy IVD
and herniated IVD. In the case of disc
herniation, the protruding disc may
compress the concomitant spinal nerve,
sensitizing the peripheral neurons in the
DRG, eliciting the secondary immune
response and finally generate pain. AF,
annulus fibrosus; DRG, dorsal root
ganglion; NP, nucleus pulposus
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In healthy discs, nerve fibers, which include perivascular nerves, sen-

sory nerves independent of blood vessels, and mechanoreceptors,

appeared only on the surface of the AF.62 Healthy discs have no sub-

stance P-expressing nerve fibers in the inner AF and NP, which were

detected only in degenerated discs.62,63 The invasion of nerves may

be the consequence of increased nerve growth factor expression dur-

ing degeneration.64 Since these nerve fibers are unmyelinated and use

substance P as the neurotransmitter, their appearance is closely asso-

ciated with pain. In healthy discs, the NP is avascular, while the EPs

and AF have blood supplies in early life that diminish with aging.65

Studies have shown that the density of blood vessels and nerves is

positively associated with the degree of the degeneration of the

discs.66 Genome-wide analysis has revealed that the expression of

well-recognized nerve-related genes is much higher in degenerated

human AF, accompanied by increased expression of proinflammatory

cytokine- and chemokine-related genes.67 In degenerated and herni-

ated discs, blood vessels and nerves were mostly localized indisrupted

tissues with local proteoglycan loss.66 In addition, the vascularization

of the inner AF or NP creates conditions for immune cell infiltration,

further deteriorating the situation.

6 | IMMUNE CELLS INVOLVED IN IVD
DEGENERATION

In this section, we revisit the findings about immune cells that have

been found to be involved in disc degeneration or herniation, which

include macrophages, T cells, B cells, and NK cells.

6.1 | Macrophages

Macrophages can play a role in immune defense by phagocytosing

bacteria or cell debris. In addition, macrophages also play an important

role in immune reactions by secreting cytokines that can regulate the

immune response. The detection of macrophages in degenerated or

herniated discs has been reported in human and animal models. The

infiltration of macrophages could occur in mouse IVDs at Days 1–4

afterdisc injury.68,69 In human herniated discs, macrophages were

detected in 37% of all 205 specimens.44 In 25% of protruded human

IVDs, macrophages, but no other inflammatory cells, were found.44 In

a rat NP explant study, the infiltration of macrophages into non-

degenerated NP transplanted under the abdominal skin was detect-

able.70 Moreover, a significantly higher NP cell survival rate was

found when the recipient was immunedeficient rather than wild-

type.70 Furthermore, the function of macrophages in herniated discs

is different from that of macrophages in nonherniated discs.71 While

the main function of the former was to promote the reabsorption of

prominent tissue and participate in the process of blood vessel

ingrowth, the latter's main function was to remove the necrotic tissue

and secrete inflammatory cytokines.71 For example, in the IVDs of

patients with discogenic pain, macrophages release a variety of

inflammatory cytokines (such as IL-1, IL-6, and TNF-α).72 In vitro, the

coculture of NP cells with macrophages promoted the expression of

TNF-α, IL-6, IL-8, and COX-2.73 These inflammatory cytokines have a

significant effect on inducing hyperalgesia and are the most likely to

be involved in the occurrence of discogenic pain.

6.2 | T cells

The presence of T cells has been reported in degenerated or herniated

discs. In a human disc study, abundant activated T cells were detected

in 17% of all 205 herniated discs.44 In widely used TNF-α transgenic

mice with evidenced spontaneous annular tears and disc herniation,

neutrophil, macrophage, and mast cell infiltration was found in

extruded discs, whereas the additional presence of CD4+ and CD8+ T

cells was found in pronounced herniated discs.74 In rat herniated NP,

the number of Th1 cells was greatly increased on Day 14 but

decreased on Day 28, while the number of Th2 cells was increased on

Day 28.58 In a porcine study, the proportion of activated T cells

(CD4+ and CD8+) was significantly higher in the exudate of the perfo-

rated titanium chamber containing nondegenerated porcine NP

explantsthan in that of empty chambers.75 Geiss et al.76 further found

in porcine models that 3 weeks after the exposure of autologous NP

to the systemic immune system, T lymphocytes were primed into IL-

4-producing CD4+ Th2 cells and promoted the autoimmune response

in the disc through released IL and TNF-α, leading to the occurrence

of pain. The infiltration of T lymphocytes was detectable at Day 3 and

reached the reaction peak at approximately Day 21.76

6.3 | B cells

The presence of B cells has been reported in human discs. In Virri's

study, B cells were detected in 16% of all the examined human herni-

ated discs.44 In an NP explant study that placed nondegenerated por-

cine NP in perforated titanium chambers subcutaneously in recipient

pigs, the proportion of immunoglobulin kappa-expressing activated B

cells was significantly increased in the exudate of the NP-filled cham-

bers compared to empty chambers.75

6.4 | NK cells

The detection of NK cells in herniated or degenerated discsis rarely

reported. We found only one study, in which Murai et al. reported the

infiltration of NK cells into the nondegenerated NP transplanted

under the abdominal skin of recipient rats.70

7 | IMMUNE CYTOKINES INVOLVED IN
IVD DEGENERATION/HERNIATION

Cytokines are small proteins or peptides constitutively expressed on

the cell surface in precursor forms. They are synthesized and secreted
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by immune or other types of cells and participate in immune activa-

tion and inflammatory reactions. Currently, cytokines are classified

into two opposing categories, as demonstrated in Table 1. One cate-

gory is proinflammatory cytokines, including IL-1β, TNF-α, IL-6, and

interferon-gamma (IFN-γ). The other category is anti-inflammatory

cytokines, such as IL-4, IL-10, and TGF-β. To date, various cytokines

have been identified in degenerated IVDs.77 Wang et al.78 found that

treatment with TNF-α or IL-1β led to increased secretion of CCL3, but

not CCL4, in degenerated NP cells, which in turn promoted macro-

phage infiltration that could be blocked by an antagonist of its ligand

CCR1. In this section, we summarize the immune cytokines related to

IVD degeneration/herniation and discuss how they may be involved

in pain production.

7.1 | TNF-α

TNF-α is recognized as a major proinflammatory cytokine. It is also

known as a pain-inducing factor, with the ability to promote a cascade

of immune reactions and cytokine production. Patients with

degenerated IVDs showed elevated TNF-α levels in IVDs and periph-

eral serum.79 TNF-α overexpression or treatment led to spontaneous

IVD herniation80 and COX-2 expression,81 while TNF-α inhibition at

the time of IVD puncture limited degeneration and pain in animal

models.82 In animal models, changes in neuronal properties can be

caused by topical application of TNF-α to the nerve root and DRG,

which decreased the pain threshold required to activate nerve C-

fibers.83 At the initial stage of injury, macrophages, mast cells, and glial

cells in the DRG-released endogenous TNF-α to induce a rapid

immune response, leading to a subsequent cascade of inflammation.84

In the next 3–5 days, immune cells (macrophages, neutrophils) infil-

trated from the circulation released additional TNF-α, forming a posi-

tive feedback loop to promote immune inflammation and decrease

pain thresholds.85 Then, a systemic immune response was initiated,

and the expression of TNF-α in remote DRG was also increased in dis-

tant areas of the body.86 In summary, TNF-α is mainly released by

immune cells around neurons and immune glial cells, which can sensi-

tize and enhance the excitability of neurons and promote a sustained

inflammatory response at various levels of the nervous system. How-

ever, TNF-α is required for the production of IL-6 and prostaglandin

E2 (PGE2), an inflammatory mediator to induce pain and enhance pain

sensitivity, but not for IL-8 production73 in IVD autografts; therefore,

TNF-α is not the sole cytokine that initiates all immune reactions in

the disc.

7.2 | IL-1β

IL-1 is secreted by a variety of immune cells or immune-like glial cells,

including macrophages, monocytes, and dendritic cells. Global IL-1α/β

knockout in mice resulted in a more degenerative phenotype in the

AF and changes in collagen type and maturity, accompanied by alter-

ations in systemic cytokine levels and vertebral bone morphology.87

Studies have shown that IL-1β expression was correlated with, or

upregulated, the expression of chemokines, such as CCL5,88 CCL3,

and CCL4,89 indicating that IL-1β can activate monocytes-

macrophages and aggravate inflammatory cell infiltration. Similar to

TNF-α, IL-1β has also been demonstrated to increase the excitability

of neurons. DRG neurons are susceptible to IL-1β, with a short period

of application resulting in the potentiation of heat-activated inward

currents and a shift of activation thresholds toward lower tempera-

ture.90 When NP cells isolated from herniated discs were stimulated

with IL-1β, a significant increase in the production of PGE2 was

observed.91 In addition, IL-1 can also elevate the expression level of

intercellular cell adhesion molecule-1, which has a chemotactic effect

on promoting the recruitment of inflammatory cells, leading to

TABLE 1 Proinflammatory and anti-inflammatory cytokines in discogenic pain

Cytokines Category Primary source Function in neuroimmunologic pain
Expression during
IVD degeneration

TNF-α Proinflammatory Schwann cells, macrophages, mast cells,

and neutrophils

Sensitize and enhance the excitability of

neurons; promote sustained inflammatory

response

Increased

IL-1β Proinflammatory Macrophages, monocytes, dendritic cells Increase excitability of neurons Increased

IL-6 Proinflammatory Mast cells, macrophages, lymphocytes,

neurons, and glial cells

Decrease thermal activation and pain

threshold; increase excitability of neurons

Increased

IFN-γ Proinflammatory Th1 cells; astrocytes and damaged neurons Induce spontaneous pain and pain

hypersensitivity

Increased

IL-10 Anti-inflammatory T cells, B cells, macrophages, and mast cells Inhibit the release IL-1β, IL-6, and TNF-α Reduced

TGF-β Anti-inflammatory Activated T cells and B cells Inhibit proinflammatory cytokine (IL-1β, IL-6,
and TNF-α) release and promote

expression of endogenous opioids

Increased

IL-4 Anti-inflammatory T cells, mast cells, and granulocytes Suppress the expression of IL-1β, IL-6, and
TNF-α

Increased

Abbreviations: IFN-γ, interferon-gamma; IL, interleukin; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α.
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neuropathic pain.92 However, IL-1β differs from TNF-α in that IL-1β,

but not TNF-α, stimulates matrix degradation.93 Taken together, the

evidence for IL-1β in enhancing synaptic transmission and neuronal

activity at several locations of the nervous system is strong,

suggesting its prominent role in inflammatory cascades.

7.3 | IL-6

IL-6 is a proinflammatory cytokine mainly released by mast cells, mac-

rophages, lymphocytes (activated T cells and B cells), neurons, and

glial cells. Patients with degenerated IVDs had increased levels of IL-6

in serum94 as well as in IVDs.95 IL-1β/TNF-α stimulated IL-6 levels in

cultured human AF cells.96 Recently, Sainoh et al.97 found that the

injection of IL-6 receptor antibody reduced pain in LBP patients.

Moreover, IL-6 is also an effective serum marker of LBP. Weber inves-

tigated the serum levels of various cytokines in LBP patients.98

Among IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IFN-γ, TNF-

α, matrix metalloproteinase (MMP)-1, MMP-3, and MMP-9, only IL-6

showed significantly higher serum levels in LBP subjects than in con-

trol subjects.98 Haddadiet al. found that IL-6 serum levels were greatly

reduced in LDH patients with radicular pain after lumbar disc sur-

gery.99 All these findings suggest that IL-6 is a strong pain indicator in

discogenic LBP. However, the role of IL-6 in modulating acute pain is

less clear than that of TNF-α and IL-1β. For instance, IL-6 did not

show an effect on themechanical threshold100 or thermal

hypoalgesia.101 It was not until Obreja et al.102 found that the applica-

tion of IL-6 in vitro in combination with its soluble receptor directly

potentiated heat-activated inward currents in cultured DRG neurons

and resulted in a decreased thermal activation threshold that the asso-

ciation of IL-6 with discogenic pain was realized. IL-6 can induce the

aggregation of inflammatory cells, activate the release of inflammatory

mediators, and promote the process of IVD degeneration. Brazda

et al.103 used sciatic nerve ligature to investigate temporal changes in

IL-6 and its receptor gp130 in both ipsilateral and contralateral DRG

in rats. They found increased IL-6 expression not only in the DRG

associated with the damaged nerve but also in those not associated

with nerve injury in the experimental neuropathic pain model.103 Fur-

thermore, the research of Koerner104 provided evidence that sub-

stance P led to the activation of the inflammatory pathway by

increasing IL-6 expression, suggesting that IL-6 may be an important

link between IVD degeneration and LBP.

7.4 | IFN-γ

IFN-γ is released by Th1 cells, which infiltrate into damaged neurons.

IFN-γ has been implicated in many chronic pain states, including neu-

ropathic pain.105 The application of IFN-γ can cause the spontaneous

firing of dorsal horn neurons in vivo and increase the response to

stimulation.106 Luchting et al.107 investigated the systemic T cell sub-

set responses and profiles of T cell-related cytokines, such as macro-

phage inflammatory protein-1α, TNF-α, IFN-γ, and IL-4, in patients

with chronic neuropathic pain. They found that T cell subsets and

their related cytokines played a role in anti-inflammation. IFN-γ

appears to induce central sensitization by several mechanisms and is a

potent proinflammatory cytokine implicated in the pathogenesis of

neuropathic pain. In a study of the application of NP tissue to spinal

dorsal nerve roots, the level of IFN-γ in exposed NP tissue was

increased relative to native tissue, and a positive correlation between

IFN-γ and the macrophage marker CD68 in NP tissue was found.108

The serum level of IFN-γ in LBP patients is not significantly different

from that in healthy controls.98 Interestingly, IFN-γ antibodies could

prevent the elevation of IL-6 in NP exposed to DRG,109 indicating a

role of IFN-γ in IL-6 signaling.

7.5 | IL-10

IL-10 is known as an anti-inflammatory cytokine. IL-10 is released

by activated T cells, B cells, macrophages, and mast cells.110

Reduced IL-10 expression was found in rat disc degeneration

models.111 IL-10 treatment suppresses the expression of IL-1β and

TNF-α as a consequence of the impeded development of inflamma-

tory responses.112 Moreover, serum levels of IL-10 are reported to

be lower in LBP patients than controls.113 Zhou et al.114 demon-

strated that IL-10 led to a reduction in pain sensitivity in the spinal

dorsal horn induced by formalin injection. Following injury to the

sciatic nerve and DRG in a mouse model, the expression level of IL-

10 was increased.115 Taken together, increasing the expression of

IL-10 by gene therapy or drugs may result insubstantial inhibitory

effects on acute disc-related pain.

7.6 | TGF-β

TGF-β is mainly produced by activated T cells and B cells. TGF-β is

mainly regarded as an anti-inflammatory cytokine with a wide variety

of functions, including promoting cell survival, inhibiting apoptosis,

stimulating cell proliferation or inducing cell differentiation.116 For

example, TGF-β can downregulate the TNF-α expression induced by

IFN-γ and IL-1β, antagonizethe MMP3 expression induced by TNF-

α,21 downregulate CCL4 expression and reduce pain behavior in

rats.22 TGF-β1 was reported to be upregulated in NP tissues of

patients and rats with IDD.117 In a rat model, intradiscal TGF-β1 injec-

tion prevented the inflammatory response in DRG and pain develop-

ment.22 Similar to IL-10, TGF-β treatment suppressed the expression

of IL-1β and TNF-α and inhibited the development of inflammatory

responses in degenerated IVD cells.112 In degenerated IVDs, when

combined with carboxymethylcellulose as a scaffold, TGF-β3 stimu-

lated IVD cell proliferation and extracellular matrix production

in vitro.118 In a model of neuropathy, TGF-β significantly attenuated

the development of pain hypersensitivity and reversed previously

established pain.119 In both the glial cells and the neurons of DRG,

TGF-β suppressed their activation and proliferation, inhibited

proinflammatory cytokine release, and reduced sensitivity to pain.120
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7.7 | IL-4

IL-4 is an anti-inflammatory cytokine thatis released by activated T

cells, mast cells and granulocytes. IL-4 is known as an inhibitor of IL-1β,

IL-6, and TNF-α. IL-4 can stimulate the activation of B cells, promote T

cells to differentiate into the Th2 phenotype, and suppress the activa-

tion of macrophages. IL-4 was virtually nonexistent in healthy discs,

while the immunoreactivity was increased in degenerated and herni-

ated IVD tissue.121 A meta-analysis found significantly more IL-4

expression in the IVDs but not in the blood samples of IDD patients.122

IL-4 treatment downregulated LPS-stimulated inflammatory responses,

including the production of IFN-β, IL-12, IL-6, and IL-8 in IVD cells.123

Similarly, the overexpression of IL-4 in vivo124 suppressed c-Fos immu-

noreactivity in the dorsal horn of the spinal cord and impededthe

upregulation of spinal PGE2, IL-1β, and phosphorylated-p38 MAP

kinase. Further investigation would be desirable to elucidate therole of

IL-4 in IVD degeneration and herniation.

7.8 | IL-8

IL-8 is also known as chemokine CXCL8. IL-8 is a cytokine secreted

by macrophages and epithelial cells. IL-1β/TNF-α stimulation

enhanced the production of IL-8 from cultured human AF cells.96 In a

F IGURE 2 Schematic diagram demonstrates immune cascades in disc-related pain producing. When the protruding nucleus pulposus tissue
breaks through the immune barrier and is recognized by the immune system, the immune cells in the blood circulation (such as T cells and
macrophages) are activated to release ； (CCL2/CCL3), and more immune cells in the blood (such as T cells and macrophages) are activated and
aggregated toward NP and DRG. Simultaneously, the release of inflammatory mediators (TNF-α, IFN-γ, IL-1/6, etc.) and inhibitory mediators

(TGF-β, IL-4/10, etc.) activates the immune cells (such as T cells and macrophages) in NP and DRG tissues. Eventually, both immune cells from
different sources jointly release inflammatory cytokines (IL-1/6, TNF-α, IFN-γ, etc.) to activate sensory neurons and produce pain. IFN-γ,
interferon-gamma; IL, interleukin; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α
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trauma model induced by overloading, injured human IVDs with bro-

ken EPs secreted increased IL-8.125 Among IL-8, TNF-α, and IL-1α,

which are strongly expressed in human degenerated disc tissues, IL-8

had the strongest association with pain scores.126 In the cerebrospinal

fluid of chronic LBP patients with disc degeneration, IL-8 was ele-

vated compared to that in pain-free subjects with or without disc

degeneration.127 In the injured sciatic nerve, a significant increase in

IL-8 was observed following partial sciatic ligation.128 Furthermore,

anti-IL-8 antibodies can reduce the release of nerve growth factor.129

Together, these results indicate that the suppression of IL-8 may be

beneficial for relieving disc-associated pain.

8 | CONCLUSION

Even though there is growing evidence for immune and glial cells and

their mediators playingan important role in maintaining the immune

privilege status of the NP, as well as being involved in the pathogene-

sis of IVD degeneration, the complex interactions of these participants

remain unclear. Understanding the role of the immune system in disc-

related pain may lead to a better appreciation of the nature of pain

and therapeutic approaches.

In this review, we discuss possible immune events during disc

herniation and degeneration. The summary of the procedure is

illustratedin Figure 2. In brief, the NP is an immune-privileged tissue

protected from immune tolerance during fetal development due to its

avascular nature. At times of trauma, long-term abnormal loading or

gradual disc degeneration occurs when the AF ring is weakened, the

AF is ruptured and the NP leaks out. The protruded NP may compress

the DRG and activate the macrophages, T lymphocytes and glial cells

in the DRG, which secrete chemokines to attract more immune cells

and release more inflammatory cytokines, leading to further inflamma-

tion and radicular pain. At the same time, the systemic circulation rec-

ognizes the NP as a foreign antigen and initiates an immune reaction

to attack it. As a native attempt to repair injured tissue, nerves and

blood vessels, which are distributed in the outer AF under healthy cir-

cumstances, grow into the inner AF or even the NP. Thus, immune

cells can directly contact the NP during disc herniation or infiltrate

into the NP during disc degeneration, probably through the

established vascularization, and react with the NP to produce autoan-

tibodies, elicit immune reactions and release cytokines to amplify

inflammation, which act on the invaded nerve, resulting in local pain

or referred pain caused by sinuvertebral nerve irritation. However,

this theory may not explain all typesof disc-related pain observed in

the clinic, as in some patients with discogenic pain, no sign of neuro-

vascular ingrowth in the NP can be observed.

The administration of anti-inflammatory drugs may help to

dampen immune reactions and alleviate disc degeneration. As Kim

reported,130 the inhibition of IL-1 by lactoferricin can deliver

anti-inflammatory and anticatabolic effects in culture models. We pre-

viously found that Wnt5a can inhibit TNF-α-induced inflammatory

signaling and suppress IVD degeneration.23 Nevertheless, caution

should be taken when designing anti-inflammatory therapies, since

studies have shown that although the silencing of key proinflammatory

cytokines may reduce inflammatory reactions in vivo, it does not always

indicate a less degenerated IVD as a result. For example, IL-1 knockout

in mice resulted in reduced serum concentrations of inflammatory cyto-

kines during agingcompared to those in wild-type mice.87 However,

rather than protecting the animals from degeneration, IL-1 knockout

mice exhibited a more degenerated phenotype, represented by a less

stable AF and smaller NP with alterations in collagen type and matu-

rity.87 This finding may indicate that the absolute absence of IL-1 is not

beneficial to disc development and, thus, that although a dampened

immune reaction may be beneficial to patients, the dose and administra-

tion protocol of the drugs may matter and should be carefully designed

to achieve the desired effect.

Many studies are underway to design regenerative strategies for

discs, especially with mesenchymal stem cells as a tool.131,132 In addi-

tion to their potential to give rise to NP-like cells,133 mesenchymal

stem cells also have anti-inflammatory and immunomodulatory

effects, which may suppress inflammation in the disc.134 However,

the impact of the inflammatory condition inside the disc on the sur-

vival and function of these cells should be taken into consideration to

maximize the effect. In addition, endogenous progenitor cells were

recently identified in all three compartments of the IVD,135,136

highlighting a novel cell source for disc repair. Knowledge on how

these progenitor cells may help the herniated or degenerated discs to

repair and how they react to the inflammatory microenvironment

awaits further research.
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