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Abstract

Subcellular locations of proteins are important functional attributes. An effective and efficient subcellular localization
predictor is necessary for rapidly and reliably annotating subcellular locations of proteins. Most of existing subcellular
localization methods are only used to deal with single-location proteins. Actually, proteins may simultaneously exist at, or
move between, two or more different subcellular locations. To better reflect characteristics of multiplex proteins, it is highly
desired to develop new methods for dealing with them. In this paper, a new predictor, called Euk-ECC-mPLoc, by
introducing a powerful multi-label learning approach which exploits correlations between subcellular locations and
hybridizing gene ontology with dipeptide composition information, has been developed that can be used to deal with
systems containing both singleplex and multiplex eukaryotic proteins. It can be utilized to identify eukaryotic proteins
among the following 22 locations: (1) acrosome, (2) cell membrane, (3) cell wall, (4) centrosome, (5) chloroplast, (6) cyanelle,
(7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12) Golgi apparatus, (13)
hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome, (17) mitochondrion, (18) nucleus, (19) peroxisome, (20)
spindle pole body, (21) synapse, and (22) vacuole. Experimental results on a stringent benchmark dataset of eukaryotic
proteins by jackknife cross validation test show that the average success rate and overall success rate obtained by Euk-ECC-
mPLoc were 69.70% and 81.54%, respectively, indicating that our approach is quite promising. Particularly, the success rates
achieved by Euk-ECC-mPLoc for small subsets were remarkably improved, indicating that it holds a high potential for
simulating the development of the area. As a user-friendly web-server, Euk-ECC-mPLoc is freely accessible to the public at
the website http://levis.tongji.edu.cn:8080/bioinfo/Euk-ECC-mPLoc/. We believe that Euk-ECC-mPLoc may become a useful
high-throughput tool, or at least play a complementary role to the existing predictors in identifying subcellular locations of
eukaryotic proteins.
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Introduction

Proteins perform their appropriate functions only when they are

located in the correct subcellular locations. Therefore, one of the

fundamental goals in cell biology and proteomics is to identify the

subcellular locations of these proteins. Although the subcellular

localization of a protein may be determined by carrying out

various biochemical experiments, the approach by purely doing

experiments is both time consuming and high cost. In the post-

genomic age, the gap between newly found protein sequences and

the information of their subcellular localization is becoming

increasingly wide. To bridge such a gap, it is highly desirable to

develop computational methods to predict protein subcellular

localization automatically and accurately. During the past decade,

many efforts have been devoted to deal with such a challenge, and

a large number of computational methods have been developed in

an attempt to predict the subcellular localization of proteins (see,

e.g., [1–16] as well as a long list of references cited in two review

papers [17,18]).

Unfortunately, the aforementioned methods don’t take multi-

ple-location or multiplex proteins into account when predicting

protein subcellular localization. In general, they were established

under the assumption that a protein resides at one, and only one,

subcellular location. However, proteins may simultaneously reside

at, or move between, two or more different subcellular locations.

Proteins with multiple location sites or dynamic feature of this kind

are particularly interesting, because they may have some unique

biological functions worthy of our special notice [19,20]. In

particular, recent evidences have indicated that an increasing

number of proteins have multiple locations in the cell, as indicated

by Millar et al. [21].

In this paper, we focus on predicting the subcellular locations of

eukaryotic proteins with both singleplex and multiplex sites. So far,

only three existing predictors, i.e., Euk-mPLoc [22], Euk-
mPLoc 2.0 [23] and iLoc-Euk [24], were developed that can be

used to predict the subcellular locations of both singleplex and

multiplex eukaryotic proteins. To the best of our knowledge, iLoc-
Euk is at present the best predictor with capacity to deal with

multiple-location or multiplex proteins when predicting eukaryotic
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protein subcellular localization. However, ML-KNN prediction

engine used by iLoc-Euk is not optimal because it doesn’t take

correlations among subcellular locations into account.

In this paper, to better reflect the characteristics of multiplex

proteins, a new predictor, called Euk-ECC-mPLoc, has been

developed that can be used to deal with the systems containing

both singleplex and multiplex eukaryotic proteins by introducing a

powerful multi-label learning algorithm which exploits correlations

between subcellular locations and by hybridizing the gene

ontology information with the dipeptide composition information.

Our experimental results on a benchmark dataset consisting of

7,766 eukaryotic protein sequences by jackknife cross validation

test show that the overall success rates thus obtained by our

proposed predictor Euk-ECC-mPLoc outperforms that by iLoc-
Euk predictor. Moreover, for some subcellular locations with

training proteins of very small size, the success rates achieved by

Euk-ECC-mPLoc are 35%*90% higher than those by iLoc-
Euk. Therefore, Euk-ECC-mPLoc significantly improve the

predictive performance on those ‘‘difficult’’ subcellular locations.

According to a recent comprehensive review [25], to establish a

practically useful statistical predictor for a protein system, we need

to consider the following procedures: (i) construct or select a valid

benchmark dataset to train and test the predictor; (ii) formulate the

protein samples with an effective mathematical expression that can

truly reflect their intrinsic correlation with the target concerned;

(iii) introduce or develop a powerful algorithm (or engine) to

operate the prediction; (iv) properly perform cross-validation tests

to objectively evaluate the anticipated accuracy of the predictor; (v)

establish a user-friendly web-server for the predictor that is

accessible to the public. Below, let us describe in detail how to deal

with these steps one-by-one.

Materials and Methods

Dataset
In this paper, the dataset X from iLoc-Euk [24] is used as the

benchmark dataset for the current study. The dataset can be

obtained from the Online Supporting Information S1 of [24]. The

dataset is constructed specialized for eukaryotic proteins, where

none of proteins included in X has greater than or equal to 25%

pairwise sequence identity to any other one in a same subcellular

location compared with most of the other benchmark datasets in

this area. Using the dataset X will make it more reliable and easier

to compare our new predictor with the existing ones.

The dataset X contains 7,766 different eukaryotic protein

sequences, of which 6,687 belong to one subcellular location,

1,029 to two locations, 48 to three locations, and 2 to four

locations. The dataset covers 22 different subcellular locations as

shown in Fig. 1, and hence can be represented as

X~X1|X2|X3|X4|X5 � � �|X22, ð1Þ

where X1 represents the subset for the subcellular location of

‘‘acrosome’’, X2 for ‘‘cell membrane’’, X3 for ‘‘cell wall’’, and so

forth. A breakdown of the 7,766 eukaryotic proteins in the

benchmark dataset X according to their 22 location sites is given in

Table 1. To avoid redundancy and homology bias, none of the

proteins in X has greater than or equal to 25% pairwise sequence

identity to any other in a same subset. For convenience, hereafter

let us just use the subscripts of Eq.(1) as the codes of the 22 location

sites; i.e., ‘‘1’’ for ‘‘acrosome’’, ‘‘2’’ for ‘‘cell membrane’’, ‘‘3’’ for

‘‘cell wall’’, and so forth (Table 1).

Note that because some proteins may occur in two different

locations, the 7,766 different proteins actually correspond to 8,897

‘‘locative proteins’’ (Table 1). For the concept of locative proteins,

readers are referred to [22,26,27] where the difference between

‘‘protein’’ and ‘‘locative protein’’ and their relationship are

elaborated.

Feature Extraction
To develop a powerful method for statistically predicting

protein subcellular localization, one of the most important steps

is to extract core and essential features of protein samples that are

closely correlated with their subcellular locations. To avoid losing

important information hidden in protein sequences, the pseudo

amino acid composition (PseAAC) was proposed [28,29] to

replace the simple amino acid composition (AAC) for representing

the sample of a protein. For a brief introduction about Chou’s

PseAAC, please visit the Wikipedia web-page at http://en.

wikipedia.org/wiki/Pseudo_amino_acid_composition. For a sum-

mary about its recent developments and applications, see a

comprehensive review [30]. Ever since the concept of PseAAC was

proposed by Chou [28] in 2001, it has rapidly penetrated into

almost all the fields of protein attribute prediction, such as

identifying bacterial virulent proteins [31], predicting homo-

oligomeric proteins [32], predicting protein secondary structure

content [33], predicting supersecondary structure [34], predicting

protein structural classes [35,36], predicting protein quaternary

structure [37], predicting enzyme family and sub-family classes

[38–40], predicting protein subcellular location [41–44], predict-

ing subcellular localization of apoptosis proteins [45–48], predict-

ing protein subnuclear location [49], predicting protein submi-

tochondria locations [50–52], identifying cell wall lytic enzymes

[53], identifying risk type of human papillomaviruses [54],

identifying DNA-binding proteins [55], predicting G-Protein-

Coupled Receptor Classes [56,57], predicting protein folding rates

[58], predicting outer membrane proteins [59], predicting cyclin

proteins [60], predicting GABA(A) receptor proteins [61],

Figure 1. Schematic illustration to show the 22 subcellular
locations of eukaryotic proteins. They are: (1) acrosome, (2) cell
membrane, (3) cell wall, (4) centrosome, (5) chloroplast, (6) cyanelle, (7)
cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome,
(11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14)
lysosome, (15) melanosome, (16) microsome (17) mitochondrion, (18)
nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22)
vacuole. Adopted from [24] with permission.
doi:10.1371/journal.pone.0036317.g001
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identifying bacterial secreted proteins [62], identifying the

cofactors of oxidoreductases [63], identifying lipase types [64],

identifying protease family [65], predicting Golgi protein types

[66], classifying amino acids [67], among many others. Actually,

according to a recent comprehensive review [25], the Chou’s

PseAAC is generally formulated as

P~ f1,f2,f3, � � � ,fu, � � � ,fV½ �T , ð2Þ

where the subscript V is an integer, and its value as well as the

components depends on how to extract the desired features from

the amino acid sequence of P.

In the present study, we adopt Gene Ontology and Dipeptide

Composition feature extraction methods to generate features of

protein examples, which are widely used in many existing protein

subcellular localization systems [22–24,26,27,68–74]. For reader’s

convenience, a brief introduction on Gene Ontology and Dipeptide

Composition is given below.

Gene Ontology. GO database [75] was established according

to the molecular function, biological process, and cellular

component. The following questions might be raised by those

who do not really understand GO (Gene Ontology): One of the

three aspects of GO is ‘Cellular Compartment’ [75], which is just

another name for subcellular location. If a protein already has GO

annotation, why does one need to predict its subcellular location?

Is it merely a procedure of converting the annotation into another

format? Is it true that the high success rate obtained via the GO

approach was due to a trivial utilization of the subcellular

component annotations in the GO database? To really understand

these questions, the readers should carefully read the paper [14],

particularly the profound and penetrating analysis on the left

column of page 155 of that paper [14]. For readers’ convenience,

it can be briefly summarized as follows: (i) Although GO database

is constructed based on protein function and cellular component,

for those proteins with ‘subcellular location unknown’ annotation

in Swiss-Prot database, most (more than 99%) of their corre-

sponding GO numbers in GO database are also annotated with

‘cellular component unknown’. (ii) Even for those proteins whose

subcellular locations are clearly annotated in Swiss-Prot database,

their corresponding GO numbers in GO database do not always

directly indicate their corresponding subcellular locations. In some

cases they are actually annotated with ‘cellular component

unknown’. (iii) More important, it should be emphasized that

during the course of prediction, only the GO numbers of a query

protein but not its GO annotations were used, just like the case of

using all the other predictors in identifying the protein subcellular

location that only the sequence of a query protein but not its Swiss-

Prot annotation was used. (iv) Finally, as shown by the compelling

statistical analysis given in Table 6 of the paper [14], the

percentage (45.02%) of proteins with GO annotations to indicate

their subcellular components is even less than the percentage

(51.76%) of proteins with known subcellular location annotation in

the Swiss-Prot database. Accordingly, the high success rate

obtained by the method via the GO approach was by no means

due to a trivial procedure of converting the annotation from one

into another format, as often misinterpreted by some people.

Furthermore, it can be seen from Table 6 of the paper [14] that

there is a huge number of proteins with given accession numbers

and the corresponding GO numbers, but their subcellular

locations are still unknown. Actually, the essence of why using

GO approach to represent protein samples can significantly

improve the prediction quality is due to the fact that proteins

mapped into the GO database space would be clustered in a way

better reflecting their subcellular locations, thus to significantly

enhances the success rate of prediction for those proteins that do

not have significant sequence homology to proteins with known

locations, as elaborated in [18,76]. So far, there are two main

approaches to extract features from GO database space. However,

in order to incorporate more information, instead of only using 0

and 1 elements as done in [23], here let us use another better

approach [24] as described below.

Step 1. Compression and reorganization of the existing GO

numbers. The GO database (version 94 released on 08 April 2011)

contains many GO numbers. However, these numbers do not

increase successively and orderly. For easier handling, some

reorganization and compression procedures are taken to renumber

them. The GO database obtained through such a treatment is

called GO_compress database, which contains 18,844 numbers

increasing successively from 1 to the last one.

Step 2. Using Eq.(2) with V~18,844, the protein P is

represented as

PGO~ f G
1 ,f G

2 ,f G
3 , � � � ,f G

u , � � � ,f G
18844

� �T
, ð3Þ

where f G
u (u~1,2,:::,18,844) are defined via the following steps.

Step 3. Use BLAST [77] to search the homologous proteins

of the protein P from the Swiss-Prot database (version 55.3), with

the expect value Eƒ0:001 as the BLAST parameter.

Table 1. Breakdown of the eukaryotic protein benchmark
dataset X taken from [24].

Subset Subcellular location
Number of
proteins

X1 Acrosome 14

X2 Cell membrane 697

X3 Cell wall 49

X4 Centrosome 96

X5 Chloroplast 385

X6 Cyanelle 79

X7 Cytoplasm 2186

X8 Cytoskeleton 139

X9 Endoplasmic reticulum 457

X10 Endosome 41

X11 Extracellular 1048

X12 Golgi apparatus 254

X13 Hydrogenosome 10

X14 Lysosome 57

X15 Melanosome 47

X16 Microsome 13

X17 Mitochondrion 610

X18 Nucleus 2320

X19 Peroxisome 110

X20 Spindle pole body 68

X21 Synapse 47

X22 Vacuole 170

Total number of locative proteins N(loc) 8,897

Total number of different proteins N(seq) 7,766

doi:10.1371/journal.pone.0036317.t001
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Step 4. Those proteins which have §60% pairwise sequence

identity with the protein P are collected into a set, XP{homo, called

the ‘‘homology set’’ of P. All the elements in XP{homo are deemed

as the ‘‘representative proteins’’ of P, sharing some similar

attributes such as structural conformations and biological functions

[78–80]. Because they were retrieved from the Swiss-Prot

database, these representative proteins must have their own

accession numbers.

Step 5. Search the GO database at http://www.ebi.ac.uk/

GOA/ to find the corresponding GO number(s) [81] for each of

the accession numbers collected in Step 4, and then convert the

GO numbers thus obtained to their GO_compress numbers as

described in Step 1. (Note that the relationships between the

UniProtKB/Swiss-Port protein entries and the GO numbers may

be one-to-many, ‘‘reflecting the biological reality that a particular

protein may function in several processes, contain domains that

carry out diverse molecular functions, and participate in multiple

alternative interactions with other proteins, organelles or locations

in the cell’’ [75]. For example, the Uni-ProtKB/Swiss-Prot protein

entry ‘‘P01040’’ corresponds to three GO numbers, i.e.,

‘‘GO:0004866’’, ‘‘GO:0004869’’, and ‘‘GO:0005622’’).

Step 6. The elements in Eq.(3) is given by

f G
u ~

PN(rep)
k~1 g(u,k)

N(rep)
(u~1,2, � � � ,18844), ð4Þ

where N(rep) is the number of representative proteins in XP{homo,

and

g(u,k)~

1, if the k{th representative protein hits the u{th

GO compressnumber

0, otherwise

8><
>: :ð5Þ

Note that the GO feature extraction method may become a

naught vector or meaningless under any of the following situations:

(1) the protein P does not have significant homology to any protein

in the Swiss-Prot database, i.e., XP{homo~� meaning the

homology set XP{homo is an empty one; (2) its representative

proteins do not contain any useful GO information for statistical

prediction based on a given training dataset.

Under such a situation, let us consider using the dipeptide

composition method as backup to extract features for the protein

P, as described below.

Dipeptide Composition. Dipeptide composition (abbreviat-

ed as DC) represents the co-occurrence frequency of each two

adjacent amino acid residues. It is used to describe the global

information about each protein sequence in the form of 420-

dimensional (420-D) feature vector. An advantage of DC over

amino acid composition is that it uses some sequence-order

information. Dipeptide composition generates 420 components for

each protein sequence, the first 20 components are the conven-

tional amino acid composition(AAC); the following 400 compo-

nents are the fractions of 400 dipeptides, i.e. AA, AC, AD, … ,

YV, YW, YY; the 400 components are calculated using the

following equation

fraction of dip(i)~
total number of dip(i)

total number of all possible dipeptides
,ð6Þ

where dip(i) is the i-th dipeptide of the 400 dipeptides, i = 1, 2 ,…,

400.

Prediction Algorithm: Ensemble of Classifier Chains
To enhance the success rate, the powerful ECC (Ensemble of

Classifier Chains) classifier [82] is adopted to perform prediction.

Below, let us introduce the Ensemble of Classifier Chains classifier.

Without lose of generality, let us consider a system or dataset X

that contains N eukaryotic proteins classified into M~22
subcellular location sites. The dataset X can be represented by

the following matrix:

D1
1 D2

1 � � � DM
1

D1
2 D2

2 � � � DM
2

..

. ..
. ..

.

D1
i D2

i � � � DM
i

..

. ..
. ..

.

D1
N D2

N � � � DM
N

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð7Þ

where Dj
i~1 (i~1,2,:::,N; j~1,2,:::, M ) if the i-th eukaryotic

protein belongs to the j-th subcellular location site, 0 otherwise.

According to Eq.(7), we know that if
PM

j~1 D
j
iw1, the i-th

eukaryotic protein is a multiplex protein, while if
PM

j~1 D
j
i~1, the

i-th eukaryotic protein is a single-location protein. In this study, we

deal with the case that there is at least one eukaryotic protein ofPM
j~1 D

j
iw1, that is to say, the systems that contain both single-

location and multiple-location eukaryotic proteins.

Before introducing Ensemble of Classifier Chains, we firstly

present a simple method, called Binary relevance (BR) [83], which

converts a multi-label learning problem into a number of

independent binary classification ones. Taking the above system

or dataset X for example, M independent binary classifiers are

separately constructed for the M eukaryotic subcellular location

sites, i.e.,

fC1,C2, � � � , CMg, ð8Þ

where C1 is the prediction model for the 1st subcellular location

site, C2 for 2nd and so on. The positive (Tz
j ) and negative (T{

j )

training samples for Cj(j~1,2,:::, M) are collected according to

the following formula:

Figure 2. Figure to illustrate the complete process of BR
method.
doi:10.1371/journal.pone.0036317.g002
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Tz
j ~

SN
i~1 Pi(D

j
i~1)

T{
j ~

SN
i~1 Pi(D

j
i~0)

(
, ð9Þ

where Dj
i represents the label information as shown in Eq.(7),

Pi(D
j
i~1) represents the protein that belongs to the j-th

subcellular location site,
S

is the union symbol in the set theory.

For the prediction of a query protein, BR outputs the union of

the class labels that are predicted by the M classifiers:

fy1,y2, � � � ,yMg, ð10Þ

where yj[f{1,z1g(j~1,2, � � � , M) is the result predicted by the

j-th classifier, yj~z1 representing the query protein belonging to

the j-th subcellular location site, otherwise not. To provide an

intuitive picture, it is shown in Fig. 2 to illustrate the complete

process of BR method.

BR is conceptually simple and easy to implement, whereas may

be less effective since it don’t take label correlations into account.

In the experiment below, we will compare our proposed ECC

method with the BR method in order for proving the effectiveness

of considering label correlations.

Now we begin to introduce ECC algorithm. ECC algorithm is

proposed by J.Read in [82], which aggregates multiple CC

(Classifier Chain). CC is the core of the ECC algorithm, which is

based on the framework of BR and consists of M classifiers as in

BR. However, in contrast to BR, classifiers are linked along a

chain where each classifier is responsible for prediction of presence

or absence of one class label. The feature space of each classifier in

the chain is extended with the 0/1 class label associations of all

previous classifiers. In other words, assuming that the classifier

chain fCk1
,Ck2

, � � � ,CkM
g (fk1,k2, � � � ,kMg is a random permuta-

tion of f1,2, � � � ,Mg) is constructed, each classifier Ckj
in the chain

is responsible for predicting the binary association of class label kj

given the feature space, augmented by all prior binary relevance

associations in the chain k1, � � � ,kj{1. An intuitive illustration is

provided in Fig. 3.

The chaining method passes label information between

classifiers, allowing CC to take into account label correlations

and thus overcoming the label independence problem of BR

method. However, the order of the chain itself clearly has an effect

on accuracy. In [82], the issue is solved by using an ensemble

framework with a random chain ordering for each iteration.

In contrast to the traditional single-label ensemble learning,

ECC is an ensemble of multiple multi-label methods, i.e. the CC

Figure 3. Figure to illustrate the complete process of ECC
method.
doi:10.1371/journal.pone.0036317.g003

Figure 4. A flowchart to show the prediction process of Euk-ECC-mPLoc.
doi:10.1371/journal.pone.0036317.g004
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method. Following the typical strategy of ensemble learning, ECC

also has two steps, in which the first is to train q CC classifiers

C1,C2, � � � ,Cq and the second is to combine their predictions. In

the first step, each Ck is trained with both a random chain

ordering and a random subset of original training data set. In the

second step, multi-label predictions of each Ck classifier are

summed by label so that each label gets some votes, and then, we

use a threshold to select the most possible labels which form the

final multi-label prediction. Specifically, each Ck classifier predicts

a vector yk~(lk
1 , � � � ,lk

q )[ 0,1f gM
. The sums are stored in a vector

W~(l1, � � � ,lq)[Rq such that lj~
Pq

k~1 lk
j . Hence each lj[W

represents the sum of the votes for the jth label. We then

normalize W to W norm, which represents a distribution of scores

for each label in [0, 1]. A threshold is used to choose the final

multi-label set Y such that class label j[Y if lj§t for threshold t.
Here we simply set the threshold to be 0:5. Hence the relevant

labels in Y represent the final multi-label prediction.

Support vector machine (SVM) [84] is a powerful binary

classifier in the field of machine learning and pattern recognition.

The basic ideas behind SVM is to map the input vectors into a

high dimensional feature space and then find an Optimal

Separating Hyperplane (OSH) which maximizes the margin, i.e.,

the distances between the hyperplane and the nearest data points

of each class in the mapped feature space. SVM classifier has been

largely and successfully used in the field of prediction of protein

subcellular localization [3–5,8–11]. In this study, we also use

Support vector machine (SVM) as base classifier in both BR and

ECC. The software package used to train SVM with default

parameters is the very efficient LIBLINEAR library [85] which is

specially designed for large scale and high dimensional datasets as

the benchmark eukaryotic protein dataset for the current study.

The entire predictor thus established is called Euk-ECC-
mPLoc, which can predict the subcellular localization of both

singleplex and multiplex eukaryotic proteins. To provide an

intuitive picture, a flowchart is provided in Fig. 4 to illustrate the

prediction process of Euk-ECC-mPLoc.

Results and Discussion

In statistical prediction, it is needed to evaluate the quality of

different prediction methods. The following three commonly used

methods, that is, the independent data set test, K-fold cross

validation test, and jackknife test, are often used for evaluating the

power of a statistical prediction method. Of the three methods, the

jackknife test is deemed as the most objective because it always

generates a unique result for a given benchmark dataset, as

elucidated in a comprehensive review [18]. Therefore, the

jackknife test has been increasingly and widely employed by

researchers to examine the accuracy of various prediction methods

(see, e.g., [23,24,26,86–88]). Accordingly, in the present study, we

use jackknife test to evaluate the power of Euk-ECC-mPLoc.

Actually, for such a stringent and complicated dataset contain-

ing both single-location and multiple-location eukaryotic proteins

distributed among 22 subcellular location sites, so far only three

existing predictors, i.e., Euk-mPLoc [22], Euk-mPLoc 2.0 [23]

and iLoc-Euk [24], were able to deal with it. It has been reported

from [23] that, Euk-mPLoc 2.0, which is an updated version of

Euk-mPLoc, can significantly outperform Euk-mPLoc. More-

over, as can be seen from [24], the overall jackknife success rate

achieved by iLoc-Euk was about 15% higher than that by Euk-
mPLoc 2.0 when tested on the dataset X. As a result, iLoc-Euk
is currently the best one. Therefore, to demonstrate the power of

the proposed predictor, it would suffice to just compare Euk-
ECC-mPLoc with iLoc-Euk.

Table 2 reports the detailed results on the 22 eukaryotic

subcellular locations obtained with iLoc-Euk and Euk-ECC-
mPLoc on the aforementioned benchmark dataset X by the

jackknife test. For a fair algorithmic comparison between Euk-
ECC-mPLoc and iLoc-Euk, we use the same GOA database

version that is described in this study to extract GO features for

Euk-ECC-mPLoc and iLoc-Euk. As can be seen from Table 2,

for such a stringent and complicated dataset, the average jackknife

success rate achieved by Euk-ECC-mPLoc is 69.70%, which is

about 19% higher than that achieved by iLoc-Euk [24]. Euk-
ECC-mPLoc achieves very satisfactory performance on most

subcellular locations, whereas iLoc-Euk achieves very poor

performance on some subcellular locations, e.g., ‘‘acrosome’’,

‘‘endosome’’, ‘‘hydrogenosome’’, ‘‘melanosome’’ and ‘‘micro-

some’’. It is indicated that Euk-ECC-mPLoc is more balanced

than iLoc-Euk. Meanwhile, Euk-ECC-mPLoc obtains 81.54%

overall jackknife success rate, with about 3% performance

improvement against iLoc-Euk. For the benchmark dataset

containing both singleplex and multiplex eukaryotic proteins, the

prediction accuracy is mainly influenced by the multiplex

characteristics of proteins in that location. Roughly speaking, the

bigger multiplex protein ratio in a location, the lower success rate

will be obtained. For example, there are about 32% and 60%

Table 2. A comparison of the jackknife success rates by iLoc-
Euk [24] and the proposed Euk-ECC-mPLoc on the benchmark
dataset X that covers 22 location sites of eukaryotic proteins
in which none of the proteins included has §25% pairwise
sequence identity to any other in a same location.

Code Subcellular location Success rate by jackknife test

iLoc-Euk Euk-ECC-mPLoc

1 Acrosome 7.14% 71.43%

2 Cell membrane 80.49% 79.20%

3 Cell wall 16.33% 51.02%

4 Centrosome 69.79% 66.67%

5 Chloroplast 87.79% 87.01%

6 Cyanelle 64.56% 60.76%

7 Cytoplasm 76.72% 77.77%

8 Cytoskeleton 27.34% 28.78%

9 Endoplasmic reticulum 89.06% 87.96%

10 Endosome 7.32% 36.59%

11 Extracellular 90.46% 91.60%

12 Golgi apparatus 63.39% 69.29%

13 Hydrogenosome 0.00% 90.00%

14 Lysosome 31.58% 73.68%

15 Melanosome 2.13% 53.19%

16 Microsome 0.00% 38.46%

17 Mitochondrion 77.05% 83.11%

18 Nucleus 87.93% 87.28%

19 Peroxisome 54.55% 85.45%

20 Spindle pole body 66.18% 83.82%

21 Synapse 38.30% 46.81%

22 Vacuole 71.76% 83.53%

Average 50.45% 69.70%

Overall 79.06% 81.54%

doi:10.1371/journal.pone.0036317.t002
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proteins respectively in the ‘‘melanosome’’ and ‘‘synapse’’ location

belonging to two or more locations, iLoc-Euk obtains only 2.13%

and 38.30% success rates respectively. Euk-ECC-mPLoc,

however, achieves 53.19% and 46.81% success rates in the two

locations respectively, with largely 51% improvement in the

‘‘melanosome’’ location and over 8% improvement in the

‘‘synapse’’ location. The main reason is that correlations between

different subcellular location sites have been taken into account in

our proposed Euk-ECC-mPLoc, while iLoc-Euk only trans-

forms the problem of predicting multiplex eukaryotic protein

subcellular locations to a number of problems of prediction of

singleplex eukaryotic protein subcellular localization, and thus

iLoc-Euk lose much important information related to multi-label

learning problems, e.g., correlations between different subcellular

locations as utilized in Euk-ECC-mPLoc. Therefore, Euk-
ECC-mPLoc reaches better performance than iLoc-Euk in

predicting multiplex proteins. Moreover, for some subcellular

locations with smaller number of training proteins, the success

rates achieved by Euk-ECC-mPLoc are 35%*90% higher than

those by iLoc-Euk. For example, the success rate by Euk-ECC-
mPLoc in ‘‘hydrogenosome’’ is 90% higher than that by iLoc-
Euk, and the success rate by Euk-ECC-mPLoc in ‘‘acrosome’’ is

about 64% higher than that by iLoc-Euk. This may be caused by

the inherent advantage of SVM base classifier used in Euk-ECC-
mPLoc.

Table 3 illustrates the ‘‘exact match’’ success rate between

predicted outputs and real annotations on the same benchmark

dataset X by the jackknife test. The ‘‘exact match’’ means that

both the predicted number and annotations of the subcellular

locations for a query protein are the same as real observations. For

a protein belonging to three subcellular locations, if only two of the

three are correctly predicted, or the predicted result contains a

location not belonging to the three, the prediction score will be

counted as 0. In other words, when and only when all the

subcellular locations of a query protein are exactly predicted

without any underprediction or overprediction, can the prediction

be scored with 1. Meanwhile, the success rates by the random

predictor are also shown. Because iLoc-Euk didn’t provide the

accuracy value specific to each subset in terms of the number of

subcellular locations, the corresponding values are set to be ‘‘-’’. As

can be seen from Table 3, the overall ‘‘exact match’’ success rate

Table 3. A comparison of the jackknife ‘‘exact match’’ success
rates by iLoc-Euk [24] and the proposed Euk-ECC-mPLoc on
the benchmark dataset X that covers 22 location sites of
eukaryotic proteins in which none of the proteins included
has §25% pairwise sequence identity to any other in a same
location.

Number of
Locations Euk-ECC-mPLoc iLoc-Euk Random

1 75% - 1

C1
22

~4:55%

2 59.09% - 1

C2
22

~0:43%

3 10.42% - 1

C3
22

~0:06%

4 0% - 1

C4
22

~0:01%

Overall 72.59% 71.27% -

doi:10.1371/journal.pone.0036317.t003

Table 4. the predicted outputs by iLoc-Euk and Euk-ECC-mPLoc as well as the corresponding experimental annotations from
DBMLoc [89].

UniProt entry
UniProt
entry name

Locations predicted
by iLoc-Euk

Locations predicted
by Euk-ECC-mPLoc Annotations in DBMLoc

P38143 GPX2_YEAST Cytoplasm Cytoplasm Cytoplasm

Nucleus Nucleus

P25823 TUD_DROME Mitochondrion Cytoplasm Cytoplasm

Mitochondrion Mitochondrion

P28829 BYR2_SCHPO Cytoplasm Cell membrane Cell membrane

Cytoplasm Cytoplasm

P32614 FRDS_YEAST Cytoplasm Cytoplasm Cytoplasm

Mitochondrion Mitochondrion Mitochondrion

Nucleus

Q9H190 SDCB2_HUMAN Cytoplasm Cell membrane Cell membrane

Cytoplasm Cytoplasm

Q9Y7Q2 GST1_SCHPO Cytoplasm Cytoplasm Cytoplasm

Nucleus Nucleus

O59827 GST2_SCHPO Cytoplasm Cytoplasm Cytoplasm

Nucleus Nucleus

P27476 NSR1_YEAST Nucleus Mitochondrion Mitochondrion

Nucleus Nucleus

P47119 ITPA_YEAST Nucleus Cytoplasm Cytoplasm

Nucleus Nucleus

doi:10.1371/journal.pone.0036317.t004
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achieved by Euk-ECC-mPLoc is 72.59%, which is slightly

higher than 71.27%, the corresponding ‘‘exact match’’ success rate

achieved by iLoc-Euk [24]. The ‘‘exact match’’ accuracy of Euk-
ECC-mPLoc is significantly superior to the random predictor.

Therefore, our approach is quite promising for handling multiplex

proteins, or at least play a complementary role to the existing

predictors in identifying the subcellular locations of eukaryotic

proteins.

In order to make the readers understand the superiority of our

approach than other existing predictors more easily and intuitive-

ly, several typical proteins that are localized in multiple subcellular

locations are selected from DBMLoc [89] which is a database of

proteins with multiple subcellular localizations, and thus make

prediction by inputting them into our Euk-ECC-mPLoc and

iLoc-Euk online web servers respectively. Results are listed in

Table 4 with the predicted outputs by the two predictors and the

corresponding experimental annotations. As can be seen from

Table 4, predicted subcellular locations achieved by our approach

are all identical to the corresponding true annotations, whereas

iLoc-Euk fails to get fully accurate results.

Conclusion
Prediction of protein subcellular localization is a challenging

problem, particularly when the system concerned contains both

singleplex and multiplex proteins. In this paper, we have proposed

a novel multi-label predictor, called Euk-ECC-mPLoc, for

predicting eukaryotic protein subcellular locations based on the

powerful ECC algorithm and a hybrid of GO and DC feature

extraction methods, which has been demonstrated powerful for

dealing with both singleplex and multiplex proteins. Since user-

friendly and publicly accessible web-servers represent the future

direction for developing practically more useful predictors [90],

here we have provided a web-server for the method presented in

this paper at http://levis.tongji.edu.cn:8080/bioinfo/Euk-ECC-

mPLoc/. The current approach represents a new strategy to deal

with the multi-label biological problems, and hence may become a

useful tool in the areas of bioinformatics and proteomics.
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