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Abstract

Transcription factors (TFs) regulate gene expression through binding to specific target DNA sites.

Accurate annotation of transcription factor binding sites (TFBSs) at genome scale represents an es-

sential step toward our understanding of gene regulation networks. In this article, we present a

structure-based method for computational prediction of TFBSs using a novel, integrative energy

(IE) function. The new energy function combines a multibody (MB) knowledge-based potential and

two atomic energy terms (hydrogen bond and p interaction) that might not be accurately captured

by the knowledge-based potential owing to the mean force nature and low count problem. We

applied the new energy function to the TFBS prediction using a non-redundant dataset that con-

sists of TFs from 12 different families. Our results show that the new IE function improves the pre-

diction accuracy over the knowledge-based, statistical potentials, especially for homeodomain TFs,

the second largest TF family in mammals.

Contact: jguo4@uncc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription factors (TFs) regulate gene expression by interacting

with specific DNA sequences called transcription factor binding sites

(TFBSs) (Lemon and Tjian, 2000; Levine and Tjian, 2003).

Identification of TFBSs on a genomic scale, a crucial step in genomic

annotation and in deciphering transcription regulatory networks, re-

mains a great challenge in post-genomic bioinformatics. With the

rapid increase of available genomic data, effective sequence-based

methods for TFBS predictions have been developed (Stormo, 2000).

However, one issue of sequence-based methods is the high number

of false-positive results, especially when the binding signal is weak

or the TF’s DNA-binding site is significantly different from the con-

sensus sequence.

Structure-based prediction methods, on the other hand, focus on

protein–DNA interactions rather than sequence conservation.

Therefore, they are not constrained by sequence information. These

prediction methods mimic real binding and recognition events be-

cause specific binding between a TF and its binding sites in the cell

relies on biophysical interactions. Whereas the sequence-based

methods and experimental technologies can identify the genome

binding site locations and binding site sequences, structure-based

methods can also explain why and how these TFs bind at these loca-

tions and sequences. Moreover, understanding the mechanisms and

effects of mutations on gene expression and diseases can guide ra-

tional design of therapeutic agents. Although research on protein–

DNA recognition began in the 1970s (Seeman et al., 1976),

structure-based methods for prediction of TFBSs were not developed

until years ago when the high-resolution protein structures became

available in the Protein Data Bank (PDB) (Berman et al., 2000).

One of the major issues in structure-based TFBS prediction is the

scoring function for evaluating binding affinity or binding energy

between proteins and DNA. There are two major types of energy

functions for studying protein–DNA interactions, the physics-based

molecular mechanics force fields and the knowledge-based statistical

potentials. Physics-based energy functions consist of physicochemi-

cal interactions including electrostatic interactions, van der Waals

(VDW) forces, solvation energy and others (Liu and Bradley, 2012).

These physics-based potentials rely on approximations and often as-

sume fixed charges. They have been applied to protein–DNA inter-

action studies with some success (Alibes et al., 2010; Havranek

et al., 2004; Morozov et al., 2005; Siggers and Honig, 2007).

Besides the general terms such as VDW and electrostatic interactions

that include hydrogen bonds, p-cation and p–p interactions have

also been studied in protein–DNA recognition. It was previously

thought that these interactions have a primary role in establishing

the stability of the protein–DNA complexes, but new data suggest

that these interactions may have a bigger role in protein–DNA
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recognition (Baker and Grant, 2007; Luscombe et al., 2001).

Although the physics-based energies can accurately describe

protein–DNA interactions, they are computationally expensive. In

addition, protein–DNA complexes are intrinsically dynamic. A

protein–DNA complex structure used for TFBS prediction only rep-

resents a snapshot of the structure with a large number of possible

conformations. Different conformations may result in different

TFBS predictions because physics-based energy functions are sensi-

tive to conformational changes.

Knowledge-based potentials are derived from statistical analysis

of a set of known, non-redundant protein–DNA complexes. They are

often preferred because they are relatively simple, less computa-

tionally expensive and less sensitive to conformational changes while

producing results comparable with physics-based predictions.

Knowledge-based potentials vary in resolution from residue-based

(Aloy et al., 1998; Liu et al., 2005; Mandel-Gutfreund and Margalit,

1998; Takeda et al., 2013) to atom-based potentials (Donald et al.,

2007; Robertson and Varani, 2007; Zhang et al., 2005). They also

vary in their distance scales from distance independent (Aloy et al.,

1998; Mandel-Gutfreund and Margalit, 1998) to distance dependent

(Liu et al., 2005; Robertson and Varani, 2007; Takeda et al., 2013;

Zhang et al., 2005). Recent residue-level potentials have proven to

work well in protein–DNA interaction studies (Liu et al., 2005;

Takeda et al., 2013). However, statistical potentials may be limited

by two factors. One is the mean force nature of the knowledge-based

potentials. For example, amino acids arginine and lysine can contrib-

ute to both specific interactions with DNA through hydrogen bonding

and non-specific interactions through electrostatic interaction with

the DNA backbone. Though the hydrogen bonds are implicitly cap-

tured in knowledge-based potentials, they are ‘averaged’ with the

non-specific interactions. The other is caused by the low count prob-

lem. More recent studies have suggested that p interactions between

aromatic amino acids and DNA bases are more prevalent than previ-

ously thought, though little is known about their critical role in spe-

cific protein–DNA binding (Wilson et al., 2014; Wilson and

Wetmore, 2015). Through comparative analysis, we recently found

that tyrosine and histidine are enriched in interacting with DNA bases

in highly specific DNA-binding proteins (Corona and Guo, 2016).

We hypothesize that p interactions between aromatic residues and

DNA bases contribute to TF–DNA binding specificity. However,

these interactions may not be accurately captured in knowledge-based

potentials, as the number of aromatic residues that are involved in

protein–DNA interactions is relatively low.

Here, we propose a novel, integrative energy (IE) function that

combines a knowledge-based MB potential with hydrogen bond and

p interaction information for prediction of TFBSs and apply it to the

binding site prediction of non-redundant datasets of TFs. The results

show that TFBS prediction using our new IE function improves ac-

curacy when compared with other residue-level and atomic-level

knowledge-based potentials.

2 Methods

IE function
The IE function consists of a knowledge-based MB potential (Liu

et al., 2005) and two physics-based terms, hydrogen bond energy

and electrostatic potentials from p interactions:

ETotal ¼WMBEMB þWHBEHB þWpEp (1)

where ETotal is the total energy, EMB, EHB, and Ep represent the nor-

malized MB energy, hydrogen bond energy and p interaction energy,

respectively, and WMB, WHB and Wp are weights for each term. As

there are only a limited number of non-redundant TF–DNA com-

plexes with known TFBSs, we were unable to use training methods

to get an optimal set of weights. We used 1, 1 and 0.5 for WMB,

WHB and Wp, respectively, in this study. The hydrogen bond energy

has equal weight to the knowledge-based potential owing to its im-

portant contribution to protein–DNA binding specificity (Luscombe

et al., 2001). The weight for p interaction is half the weight of the

MB and hydrogen bond terms because it is less abundant and its

role in specific protein–DNA interaction is not as well defined as the

hydrogen bonds.

The knowledge-based, MB statistical potential
We have previously developed two residue-level knowledge-based

potentials, a MB potential and an orientation potential, for assessing

protein–DNA interactions in TFBS prediction and protein–DNA

docking (Liu et al., 2005; Takeda et al., 2013). The MB potential

uses structural environment for accurate assessment, whereas the

orientation potential uses both distance and angle information to

better capture hydrogen bond information implicitly. As we propose

an explicit hydrogen bond term in our new IE function to capture

the key hydrogen bond interactions, we chose the MB potential over

the orientation potential to minimize the overlap between the hydro-

gen bond energy and the orientation potential while taking the struc-

tural environment into consideration. In addition, we found that

even though the orientation potential performs better than the MB

potential for TF–DNA docking (Liu et al., 2005; Takeda et al.,

2013), the MB potential predicts TF–DNA binding motifs better

than the orientation potential possibly because of the capture of

interaction context, as structure-based prediction of TFBSs and pro-

tein–DNA docking are two different computational problems (data

not shown). The MB potential uses the distance between an amino

acid’s b-carbon and the geometric center of a nucleotide triplet. The

position of a nucleotide is represented by the N1 atom in pyrimidines

or the N9 atom in purines (Liu et al., 2005; Takeda et al., 2013).

Hydrogen bond energy
The hydrogen bond energy is calculated using the model described

by Thorpe et al. (Eq. 2), which was adapted from Dahiyat et al.

(1997; Thorpe et al., 2001).

EHB ¼ V0 5
d0

d

� �12

� 6
d0

d

� �10
( )

F h;/;uð Þ (2)

where d0 (2.8 Å) and V0 (8 kcal/mol) are the hydrogen bond equilib-

rium distance and well-depth, respectively, and d is the distance be-

tween the donor and the acceptor. The angle function, F, varies

depending on the hybridization state of the acceptor and donor

atoms (Dahiyat et al., 1997; Thorpe et al., 2001). We used FIRST

(Jacobs et al., 2001), which implements Equation (2), to calculate

the hydrogen bond energy between amino acids and nucleotides in

the protein–DNA complexes (Abecasis et al., 2010).

p interaction energy
p Interactions typically exist between aromatic compounds and cat-

ions, partially charged atoms or other aromatic compounds. These

interactions consist of VDW forces and electrostatic interactions

(Gromiha et al., 2004; Luscombe et al., 2001; McGaughey et al.,

1998; Wintjens et al., 2000). In aromatic compounds, p�p
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interactions occur when the partially positive charges on the edges

of an aromatic molecule interact with the negatively charged elec-

tron cloud of another aromatic compound. These interactions can

be in a parallel stacked, parallel displaced or edge-to-face conform-

ation (Fig. 1). It appears that the VDW forces do not have a major

impact on DNA-binding specificity of TFs, but they assist greatly in

protein–DNA complex stability (2008; Gromiha et al., 2004;

Wintjens et al., 2000). However, the electrostatic charges on the

edges of the bases, especially in the major groove, are different in the

four DNA bases. Figure 2 shows the electronic landscape of the

atoms on each base at the resonant state, assuming a physiological

pH. The partially charged edges of the bases exposed in the major

groove (Table 1) were determined using MarvinSketch 6.1.4, a soft-

ware package from Chemaxon (Marvin6.1.4, 2013).

Mecozzi et al. calculated the binding energies of benzene as well

as other aromatic compounds of biological and medicinal interest

(Mecozzi et al., 1996). Based on the relationships between the bind-

ing energy of benzene and the binding energy of the side chains of

the aromatic compounds, we estimated the charges on the electron

clouds of the aromatic residues (Table 2).

The electrostatic potential was then calculated using:

DEac ¼
keNAqaqc

er
(3)

where DEac is the energy between an atom a on the base and the

electron cloud c on the aromatic amino acid, ke is Coulomb’s con-

stant, NA is Avogadro’s number, qa and qc are the charges of the

atom and the electron cloud, respectively, e is the dielectric constant

and r is the distance between the point charges (meters). The electro-

static potential is then converted from joules/mol to kcal/mol using

the conversion factor of 2.39 � 10�1. The electrostatic potential of

each atom on the base with direct access to the electron cloud on the

amino acid is summed together to calculate the total p interaction

energy between the amino acid and base (Equation (4)).

Ep ¼
XNa

a
DEac (4)

where Ep is the total p–p interaction energy between the base and

the amino acid, Na is the number of atoms of the base that have an

unblocked pathway to the electron cloud on the aromatic residue

and DEac is the energy between an atom a on the base and the elec-

tron cloud c.

Prediction algorithm
The flowchart for the structure-based TFBS prediction is shown in

Figure 3. It begins with a TF–DNA complex structure consisting of a

single TF-chain/domain interacting with a duplex DNA. Hydrogen

atoms were added to the complex structure, which are needed for

hydrogen bond calculations, using UCSF Chimera 1.8 (Pettersen

et al., 2004). The addition of hydrogen atoms may introduce steric

clashes, which was addressed by energy minimization using

Chimera with the following parameters: 100 steepest descent steps

with a step size of 0.02, 100 conjugate gradient steps with a step size

of 0.02 and an update interval of 10. A total of 8 bp, which include

residues contacting bases and flanking bases, were used for the en-

ergy calculation. A residue-base contact is defined if the atom dis-

tance between the residue side chain and the base is within 3.9 Å.

The native DNA sequence in the TF–DNA complex was mutated to

generate all possible combinations of the 8 bases, 65 536 sequences,

using 3DNA (Lu and Olson, 2003). The three energy terms were

then calculated for each of the 65 536 TF–DNA complex structures.

The score for each of the three terms, MB energy, hydrogen bond

energy and p interaction energy, was normalized using Equation (5):

EN ¼
E–Emax

Emin�Emax
(5)

where EN is the normalized energy, E is the energy for a specific

complex with a sequence and Emax and Emin are the maximum and

Fig. 1. Geometries of p Interactions between aromatic structures. (A) Parallel

stacked geometry, the least energetically favorable geometry. (B) Parallel dis-

placed geometry, the most energetically favorable geometry. (C) T-shaped or

edge-to-face geometry, more energetically favorable than the parallel stacked

geometry but less favorable than the parallel displaced geometry

Fig. 2. Electronic landscape of the bases. Charge distributions of the four

bases in the major groove. The blue regions represent partial positive

charges, whereas the red regions represent partial negative charges. The

gray regions are neutral. MarvinSketch 6.1.4, a software package from

Chemaxon (Marvin6.1.4), was used to generate the electronic landscape and

calculate the charges on the atoms

Table 1. Quantified charges on nucleotide major groove atoms

(blue and red regions on the electronic landscapes illustrated in

Fig. 2)

Atom A C G T

N/O 0.34(N6) 0.34(N4) �0.44(O6) �0.478(O4)

C5 �0.015 0.066 0.007 0.087

C6 – 0.085 – 0.096

N7 �0.21 – �0.215 –

C8 0.115 – 0.107 –

Table 2. Estimated electron cloud charges of aromatic amino acids

Molecule Electron cloud charge

Benzene �0.372

Tyrosine �0.369

Phenylalanine �0.372

Tryptophan �0.447
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minimum energies in the set of 65 536 TF–DNA complexes, respect-

ively. The total energy is then calculated using Equation (1). The dis-

tribution of IE scores is generated using R, and a significance level a

is used to select the statistically significant sequences. In this study,

we used a of 0.01 divided by the number of contacted DNA bases to

normalize the number of expected sequences. The rationale of using

adjusted a is that for a fixed number of DNA binding sequences, if

more bases are involved in TF–DNA interaction and are conserved,

the expected number of binding sequences should be smaller. The

sequences with energy scores in the adjusted a region were then

selected to generate a position weight matrix (PWM) and motif logo

(Fig. 3).

PWM prediction and validation
PWMs are generated using the selected sequences from the distribu-

tion of IE scores. First, a 4 � 8 position frequency matrix (PFM) is

generated using these sequences. The PFM is then converted to a

PWM and subsequently converted to a motif logo using the method

described by Schnieder and Stephens (Crooks et al., 2004; Schneider

and Stephens, 1990).

The predicted PWMs were compared with their corresponding

JASPAR PWMs (Mathelier et al., 2014). We used three quantitative

measures to score the similarity between the predicted and the refer-

ence PWMs: Chi-square test, averaged Kullback–Leibler (AKL) di-

vergence (Wu et al., 2001; Xu and Su, 2010) and Euclidean distance

(Blaisdell, 1986; Xu and Su, 2010). We also used a method called in-

formation content (IC)-weighted Pearson correlation coefficient

(PCC) (Persikov and Singh, 2014), developed recently by Persikov

and Singh, to measure the similarity of corresponding columns from

the predicted and reference PWMs. These columns represent aligned

base positions in the binding motif. A predicted column is con-

sidered to be a correct prediction if the IC-weighted PCC between

the corresponding predicted and reference columns is at least 0.25

(Persikov and Singh, 2014).

Datasets
The first dataset is a non-redundant set of TF chain-DNA com-

plexes. It was generated using all the high-quality crystal structures

of TF–DNA complexes in the PDB with corresponding JASPAR

PWMs. These structures were solved by X-ray crystallography with

a resolution <3Å and R-factors �0.3. All structures with a sequence

identity of 35% or greater were first grouped together. The TF–

DNA complex structure with a corresponding JASPAR PWM and

the highest resolution in a group was chosen as the group’s represen-

tative. This dataset has 29 non-redundant TF chain–DNA com-

plexes from 12 TF families: helix loop helix, zinc fingers,

homeodomains, leucine zippers, signal transducer and activator of

transcription 1 (STAT1), fork head, ETS family, high mobility group

(HMG), NFAT, SMAD, P53 DNA binding domain and runt do-

mains. The PDB chains in the dataset are 1AM9:A, 1BC8:C,

1BF5:A, 1DSZ:A, 1GU4:A, 1H8A:C, 1H9D:A, 1JNM:A, 1LLM:C,

1NKP:A, 1NLW:A, 1NLW:B, 1OZJ:A, 1P7h:M, 1PUF:A, 1PUF:B,

1T2K:A, 2A07:A, 2AC0:A, 2DRP:A, 2HDD:A, 2QL2:A, 2QL2:B,

2UZK:A, 2YPA:A, 3F27:A, 4F6M:A, 4HN5:A and 4IQR:A.

We also generated a second non-redundant set for special case

studies. Homeodomain proteins are involved in regulation of many

cellular processes in mammals and represent the second largest fam-

ily of TFs (Tupler et al., 2001). There are a large number of experi-

mentally determined PWMs for homeodomains and a relatively

large number of homeodomain–DNA complex structures in the

PDB. A homeodomain is a three a-helical DNA binding domain that

binds to both the major groove and minor groove of the target DNA

sequences (Gehring et al., 1994). To generate this dataset, we com-

bined both the protein sequence similarity and binding site similar-

ity. The homeodomain dataset consists of TF chain–DNA

complexes with a corresponding JASPAR PWM. Each pair of the

homeodomains in the dataset has <55% protein sequence similarity

and different annotated binding sites in JASPAR (based on the

IC-weighted PCC criteria of 0.25 or larger for the matching pos-

itions). This dataset includes 1B8I:A, 1B8I:B, 1IC8:A, 1IG7:A,

1JGG:B, 1PUF:A, 1PUF:B, 3RKQ:A, 2HDD:A, 3A01:A and

3A01:B. One exception is that we included both 1B8I:B and 1PUF:B

because they have different binding sites even though they share

82% sequence identity. This is to test the capability of the new IE

function to see if we can accurately predict different binding sites for

highly similar proteins.

3 Results

We applied the new IE function to the prediction of TFBSs using the

non-redundant dataset of 29 TF–DNA complex structures and com-

pared the prediction with MB potential and DDNA3, a knowledge-

based atomic-level protein–DNA interaction potential (Zhang et al.,

2005). Five examples of the predicted TF-binding motifs and the

corresponding JASPAR motifs are shown in Figure 4A (all 29 pre-

dicted motifs are available in Supplementary Fig. S1). We also

applied three different quantitative methods, Chi-square test, AKL

divergence and Euclidean distance, to compare the prediction accur-

acy as described in Section 2. The lower the AKL divergence value,

the more is the similarity between the predicted PWMs and JASPAR

PWMs. Figure 4B shows the results based on AKL divergence to

demonstrate the similarity between the predicted PWMs and the ref-

erence JASPAR PWMs. Results from the other two methods areFig. 3. Flowchart for structure-based TFBS prediction
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consistent with the AKL divergence results (data not shown). As

shown in Figure 4, IE outperforms both MB and DDNA3 or at least

one of them in the majority of the cases, for example, 1AM9:A and

1PUF:B. There are three cases where IE performs worse than MB

and/or DDNA3, such as 1BF5:A and 2UZK:A. In several cases, the

prediction accuracies are similar among all three energy functions,

for example, 1DSZ:A.

To check if the overall improvements are statistically significant,

we performed Wilcoxon signed rank test to compare the predictions

between IE and MB as well as between IE and DDNA3 based on the

predicted similarity to JASPAR PWMs. The null hypothesis is that

prediction accuracy of the IE method is equal or worse than the MB

(or DDNA3) method, whereas the alternative hypothesis is that the

prediction accuracy of the IE method is better than MB and

DDNA3. The P-values for the three comparison metrics, Chi-

square, AKL divergence and Euclidian distance are 0.003, 0.003 and

0.048 between IE and MB predictions and 0.003, 0.005 and 0.025

between IE and DDNA3, respectively, suggesting that the improve-

ments are statistically significant.

Zinc fingers and homeodomains represent the two largest and

extensively studied TF families. In our non-redundant dataset, we

found six zinc finger chains (Fig. 5) and three homeodomains

(Fig. 6). Zinc fingers usually function as a dimer or multimers. A sin-

gle zinc finger domain typically contains three to four conserved rec-

ognition bases (Persikov and Singh, 2014). Three of the six zinc

finger cases (1LLM:C, 2DRP:A and 4F6M:A) show better binding

site prediction using the IE function, whereas the other three have

no significant differences (1DSZ:A, 4HN5:A and 4IQR:A, Figs 4

and 5).

Homeodomains are the second largest TF family (Tupler et al.,

2001). Each homeodomain recognizes a variation of the typical

TAAT core binding site. There were three homeodomains in the

non-redundant dataset. Figure 6 shows the predicted binding motifs

and significant improvement in prediction accuracy when using the

IE function over the MB and DDNA3 statistical potentials. The

quantitative improvement is shown in Figure 4B. In all three cases,

predictions using the IE consistently outperform both MB and

DDNA3 potentials.

Homeodomain is a well-studied, highly conserved structural do-

main for DNA binding. As we have a relatively large number of high

quality homeodomain–DNA complex structures in the PDB and a

large number of experimentally derived homeodomain binding

motifs, we generated a larger dataset of homeodomains by combin-

ing the protein sequence similarity and binding site similarity as

Fig. 4. Comparison of IE prediction accuracy with MB and DDNA3 energies. (A) Five examples of the non-redundant dataset; (B) AKL divergence of the predicted

PWMs with JASPAR PWMs using the integrative function (IE: blue), multibody potential (MB: red) and DDNA3 (green)

Fig. 5. Comparison of zinc finger binding site predictions. Red lines under the JASPAR logos indicate the DNA sequences involved in binding to the

TF-chain/domain
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described in Section 2. Figure 7 shows the predicted binding motifs

using the IE (blue), MB (red) and DDNA3 (green) energy functions

and their accuracy when compared with the JASPAR motifs. The

data demonstrate that our new IE function can not only accurately

predict the binding sites of homeodomains with low sequence iden-

tity (Fig. 6), it can also accurately predict the binding sites of homeo-

domains with high sequence similarity but with different binding

sites (Fig. 7).

We also used a recently developed IC-weighted PCC method to

calculate the correctly predicted core-binding positions (PWM

columns) in the homeodomain dataset. Persikov and Singh suggested

that a reference column is correctly predicted if the IC-weighted

PCC between the corresponding predicted and reference columns is

at least 0.25 (Persikov and Singh, 2014). Figure 8 shows that ap-

proximately 93% of the core base positions (44 columns) are cor-

rectly predicted by the IE function, 86% by the MB potential and

63% by the DDNA3 potential. The columns predicted by the IE

function have a higher correlation to their corresponding JASPAR

columns than the MB and DDNA3 energy functions.

4 Discussion

We report here improved accuracy of structure-based TF binding

site prediction using an IE function. The IE function consists of the

MB potential (Liu et al., 2005), and two atomic terms: hydrogen

bond energy and p interaction energy. The MB energy is a residue-

level knowledge-based protein-DNA interaction potential derived

from the mean force theory. Even though this MB potential impli-

citly captures biophysical interactions including hydrogen bonds

and p interactions and showed its predictive power in both TF bind-

ing site prediction and protein-DNA docking studies (Liu et al.,

2005, 2008), the mean force nature and the typical low count prob-

lem limit its ability to accurately capture the key hydrogen bond and

p interactions. For example, arginine has the ability to form biden-

tate hydrogen bonds, which allows it to bind specifically to guanine

because guanine has two hydrogen acceptors present in the major

groove of DNA. Bidentate hydrogen bonds are considered key con-

tributors to protein-DNA binding specificity (Luscombe et al., 2001;

Seeman et al., 1976). In the case of arginine and lysine, both can

contribute to specific (through simple and complex hydrogen bond-

ing) and non-specific (through electrostatic interactions) inter-

actions; however, knowledge-based potentials cannot differentiate

these two types of interactions. Therefore, adding explicit hydrogen

bond terms can improve the accuracy of TFBS prediction by distin-

guishing hydrogen bonds that contribute to specificity from other

interaction energies. We found that adding the explicit hydrogen

bond term to the MB potential improves the TFBS prediction accur-

acy of 1B8I:B and 1IC8:A in the homeodomain dataset (Fig. 9A), as

it captures the hydrogen bonds formed between arginine 258 and ly-

sine 273, respectively, and the guanine of the conserved G:C base

pair (Fig. 9B and C).

Fig. 6. Binding site prediction of three homeodomains in the non-redundant

dataset

Fig. 7. Prediction of homeodomain binding sites. (A) Quantitative comparison

between the predicted binding motifs and JASPAR motifs of the homeodo-

main dataset using the IE (blue), MB potential (red) and DDNA3 (green) using

AKL divergence. (B) Comparison of the predicted binding motifs

Fig. 8. Performance comparison of the IE (blue), MB (red) and DDNA3 (green)

based on IC-weighted PCC. (A) Distribution of IC-weighted PCC. For each

threshold of IC-weighted PCC score (x-axis), the fraction of predicted columns

that achieves a score that high or more when compared with their corres-

ponding JASPAR PWMs. (B) Percent of correctly predicted positions in the

core 4mer PWMs. The percent of proteins with correct columns (percentage)

using an IC-weighted PCC threshold of 0.25
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Aromatic residues can interact with DNA through p interactions

(Baker and Grant, 2007; Wilson et al., 2014). T-shaped p inter-

action with a base having partial positive charges in the major

groove can contribute to binding specificity because of the variations

of the electronic landscape of the bases in the major groove (Fig. 2).

However, these interactions are masked owing to the low count

problem and the mean force nature in knowledge-based potentials.

Adding an explicit p interaction term increases the accuracy of TFBS

prediction. For example, the explicit p interaction term captures the

p interaction formed between tyrosine 191 and the cytosine in the

conserved G:C pair in 3RKQ:A (Fig. 9B), improving the TFBS pre-

diction accuracy. This suggests that the partial positively charged

atoms (large blue spheres in Fig. 9C) of cytosine interact electrostati-

cally with the partial negatively charged atoms (large red spheres in

Fig. 9C) in the aromatic ring of tyrosine 191, which may contribute

to TF–DNA binding specificity.

The IE function shows an overall improvement in TFBS predic-

tion over other knowledge-based potentials. However, in several

cases in the multi-family dataset, the IE function does not perform

as well as the MB and DDNA3 potentials (Fig. 4). We investigated

the complex structures and performed rigidity tests using FIRST

(Jacobs et al., 2001) and found that in those cases, the amino acids

that interact with the DNA were from flexible regions or loops. For

example, in the STAT1–DNA complex (1BF5:A), the residues

involved in interacting with DNA are on the loops (Fig. 10). As dis-

cussed in the introduction, both hydrogen bonds and p interactions

are high-resolution functions that are sensitive to conformational

changes. For complex structures with highly flexible regions for

DNA contacts, there is a large variation of interaction energies for

different conformations of the complex and the structure used for

prediction is just a snapshot of multiple possible conformations. In

addition, if a TF structure is not in an ideal docked conformation

and the amino acids do not have favorable torsion angles to achieve

favorable bidentate hydrogen bonds with the DNA, then the sensi-

tive physical energies may not help the prediction, which is the case

in 1NLW:A and 2UZK:A. Future work will need to incorporate the

flexibility information into the prediction process.

5 Conclusion

We developed a novel IE function that consists of three components,

a knowledge-based MB potential, a hydrogen bond energy function

and an electrostatic potential for p interaction energy. We applied

the new IE function to the prediction of TFBSs. The results show an

overall improvement in binding site prediction, and there is a signifi-

cant improvement in predicting binding sites of homeodomains

when compared with the MB and DDNA3 potentials. The improved

accuracy using the integrative function demonstrates the importance

of considering hydrogen bonds and p�interactions explicitly in

structure-based TFBS predictions, as they are not accurately cap-

tured by the knowledge-based potentials.
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