MITO COMMUNICATIONS

Taylor & Francis Taylor & Francis Group

OPEN ACCESS

Frequency and spectrum of *MT-TT* variants associated with Leber's hereditary optic neuropathy in a Chinese cohort of subjects

Yuanyuan Lyu^{a,b}, Man Xu^{a,b}, Jie Chen^{a,b}, YanChun Ji^c, Min-Xin Guan^{b,c} and Juanjuan Zhang^{a,b}

^aSchool of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China; ^bSchool of Laboratory Medicine and Life Sciences, Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; ^cSchool of Medicine, Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang, China

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease. In our previous investigations, we have reported the spectrum and frequency of mitochondrial *MT-ND1*, *MT-ND4* and *MT-ND6* gene in Chinese LHON population. This study aimed to assess the molecular epidemiology of *MT-TT* mutations in Chinese families with LHON. A cohort of 352 Chinese Han probands lacking the known LHON-associated mtDNA mutations and 376 control subjects underwent molecular analysis of mtDNA. All variants were evaluated for evolutionary conservation, structural and functional consequences. Fifteen variants were identified in the *MT-TT* gene by mitochondrial genome analysis of LHON pedigrees, which was substantially higher than that of individuals from general Chinese populations. The incidences of the two known LHON-associated mutations, m.15927G > A and m.15951A > G, were 2.27% and 1.14%, respectively. Nine putative LHON-associated variants were identified in 20 probands, translated into 2.1% cases of this cohort. Moreover, mtDNAs in 41 probands carrying the *MT-TT* mutation(s) were widely dispersed among nine Eastern Asian haplogroups. Our results suggest that the *MT-TT* gene is a mutational hotspot for these 352 Chinese families lacking the known LHON-associated mutations. These data further showed the molecular epidemiology of *MT-TT* mutations in Chinese Han LHON pedigrees.

ARTICLE HISTORY

Received 1 January 2019 Accepted 17 May 2019

KEYWORDS

Leber's hereditary optic neuropathy (LHON); MT-TT gene; variant; spectrum; Chinese

Introduction

Leber's hereditary optic neuropathy (LHON, #535000) is a maternally inherited mitochondrial disorder leading to vision failure by the preferential loss of retinal ganglion cells (RGCs), and marked adult male bias (Yu-Wai-Man et al. 2011; Jurkute and Yu-Wai-Man 2017). The minimum prevalence of visual impairment due to LHON was 3.22 per 100,000 in northeast of England (Yu-Wai-Man et al. 2003). Maternal inheritance of LHON indicated the involvement of mutations in mitochondrial DNA (mtDNA) (Wallace et al. 1988; Howell 2003). The human mitochondrial genome is a 16,569 bp, doublestranded, circular molecule that codes for 13 subunits of respiratory chain complexes, two rRNAs (12S and 16S rRNA) and 22 mitochondrial tRNAs (Andrews et al. 1999). The majority of subjects with LHON (90%-95%) harbor one of three primary LHON-associated mtDNA mutations (m.3460G > A, m.11778G > A, and m.14484T > C) in some western countries (Brown et al. 1995; Mackey et al. 1996; Mashima et al. 1998), while these mutations are only responsible for 38.3% and 41.1% cases in two large cohorts of Chinese LHON subjects, respectively (Jia et al. 2006; Liang et al. 2014; Jiang et al. 2015; Ji et al. 2016). Thus, other mtDNA genes including mitochondrial tRNA genes are the hotspots associated with

LHON (Ruiz-Pesini et al. 2007; Zheng et al. 2012; Xue et al. 2016). In our previous four investigations, four tRNA mutations (MT-TM 4435A > G, MT-TE 14693A > G, MT-TT 15927G > A and 15951A > G) have been identified as LHONassociated mutations (Li et al. 2006; Qu et al. 2006; Tong et al. 2007; Zhang et al. 2018). These studies tested only in relatively small sized samples of pedigrees, while the association of MT-TT mutations with LHON in a large population remains to be explored. The purpose of this present study was to perform a comprehensive test of the hypothesis that MT-TT variants play an important role in the pathogenesis of LHON. For this objective, we recruited a cohort of 352 genetically unrelated Chinese Han patients with LHON (269 males and 82 females) and 376 Chinese control subjects performed the Sanger sequence analysis of the DNA fragments spanning MT-TT gene, and then, investigated mutational spectrum and incidences of MT-TT gene. This analysis showed the identification of 15 nucleotide changes among MT-TT gene. To identify deleterious mutations from polymorphisms, these variants were further evaluated using the criteria shown in the previous studies (Bandelt et al. 2009; Zheng et al. 2012; Kirchner and Ignatova 2015; Xue et al. 2016). These analyses showed that 9 tRNA variants might have higher evolutionary

CONTACT Juanjuan Zhang 😒 zhangjuanjuan2008@126.com 🗈 School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

conservation index, structural and functional alterations. Moreover, these mtDNAs of 20 subjects carrying the putative variants were assigned to the Asian mtDNA haplogroups using the nomenclature of mtDNA haplogroups (Tanaka et al. 2004; Kong et al. 2006).

Materials and methods

Subjects

A totally of 352 unrelated Han Chinese LHON subjects lacking the known LHON-associated mtDNA mutations were recruited for this investigation. This study was in compliance with the Declaration of Helsinki (Liang et al. 2014; Jiang et al. 2015; Ji et al. 2016). The institutional review boards of Wenzhou Medical University and Zhejiang University approved this study. A cohort of 376 Chinese control subjects obtained from the same areas were screened for the presence of mtDNA variants.

Ophthalmologic examinations

These probands and other members of these families received ophthalmological examinations at School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University and were diagnosed as LHON. The degree of visual impairment was defined according to the visual acuity as follows: normal > 0.3, mild = 0.3-0.1, moderate < 0.1-0.05, severe < 0.05-0.02, and profound < 0.02 (Qu et al. 2009; Liu et al. 2011).

Mutational analysis of mitochondrial genomes

Genomic DNA was isolated from whole blood of participants (352 probands lacking the known LHON-associated mutations and 376 Chinese control subjects) using QIAamp DNA Mini Kit (Qiagen). Subjects' DNA fragments spanning the MT-TT gene were amplified, purified and subsequently analyzed by direct sequencing in an ABI 3700 automated DNA sequencer using the BigDye Terminator Cycle sequencing reaction kit (Applied Biosystems) (Jia et al. 2018; Zhang et al. 2018). These sequence results were compared with the revised Cambridge Reference Sequence (rCRS, NC_012920.1) (Bandelt et al. 2014). For defining the mitochondrial haplogroups, the entire mitochondrial genomes of 41 subjects with MT-TT mutations were PCR amplified in 24 overlapping fragments using sets of the light (L) strand and the heavy (H) strand oligonucleotide primers, as described previously (Rieder et al. 1998). The analysis of variants was evaluated according to the previous description (Zou et al. 2010; Zhang et al. 2011, 2012).

Evolutionary conservation and structural analysis

Evolutionary conservation analysis for certain mtDNA variant was performed by comparing human mtDNA to 43 different vertebrate species, as shown in our previous studies (Ruiz-Pesini and Wallace 2006; Carelli et al. 2017). The conservation index (CI) of certain variant was defined by the percentage of species for a list of 44 different vertebrate species (including *Homo* species). The secondary cloverleaf and tertiary structure of human *MT-TT* were analyzed by the online software (Sprinzl and Vassilenko 2005; Jühling et al. 2009; Lott et al. 2013).

Haplogroup classification

The mtDNA sequences of eight probands carrying m.15927G > A, four subjects carrying the m.15951A > G mutation, as well as 20 subjects carrying the putative *MT-TT* variants are assigned to the Asian mtDNA haplogroups by using the nomenclature of mitochondrial haplogroups (Kong et al. 2006; Zou et al. 2010).

Statistical analysis

Statistical analysis was performed by the χ^2 test contained in Microsoft Office Excel (Version 2017). p value indicates the significance, according to the χ^2 test, of the difference between mutant and control mean. Differences were considered significant at a p < .05.

Results

Study samples

The study samples lacking the known LHON-associated mtDNA mutations consisted of 269 males and 83 females. All participants were Han Chinese subjects recruited from eye clinics of 25 provinces in China, as shown in Figure 1. Ophthalmologic evaluation showed that all affected subjects exhibited the variable severity and age at onset of optic neuropathy. Of these, 38 subjects exhibited profound visual impairment, 50 subjects had severe visual impairment, 53 individuals suffered from moderate visual impairment, and 212 subjects had mild visual impairment. The age at onset of optic neuropathy ranged from 1 to 52 years, with an average of 17.5 years. Comprehensive family medical histories of those probands showed no other clinical abnormalities, including diabetes, muscular diseases, hearing loss, and other neurological disorders.

Mutational analysis of MT-TT gene

Deoxyribonucleic acid fragments spanning *MT-TT* gene were PCR-amplified from genomic DNA of 352 Chinese subjects with LHON and 376 Han Chinese control individuals. Each fragment was purified and subsequently analyzed by DNA sequencing. Comparison of the resultant sequences in 352 affected subjects with the Cambridge consensus sequence identified 15 known nucleotide changes in the *MT-TT* gene (Lott et al. 2013), but only seven variants in this gene were identify in 376 control individuals, as shown in the Table 1. The m.15927G > A and m.15951A > G mutations were the two known LHON-associated *MT-TT* gene mutations (Li et al. 2006; Zhang et al. 2018). All the nucleotide changes were

Figure 1. Geographic locations of 352 Han Chinese subjects with LHON. The numbers in parenthesis indicate 41 patients with MT-TT mutations.

identified by sequence analysis of both strands and appeared to be homoplasmy. In the mutational screening, no *MT-TT* nucleotide changes were detected in the 311 patients and 353 controls, while at least one *MT-TT* variant was identified in 41 affected subjects and 23 control individuals (p = .0085). That indicates that *MT-TT* gene is a mutational hotspot for Chinese LHON pedigrees. Among these, 12 individuals carried one of the known LHON-associated *MT-TT* mutations, including eight subjects carrying the m.1592TG > A mutation and four individuals with the m.1595TA > G mutation.

Furthermore, the nine variants carrying in twenty probands were considered as putative LHON-associated variants and other four variants belonged to the polymorphisms.

Evaluation of the MT-TT variants

These variants in *MT-TT* were first evaluated by the phylogenetic analysis of these variants and amino acid sequences from other 43 vertebrates. The conservation index among

						No. of					
						affected	No. of		Reported	Reported	
				MC	Conservation	subjects	controls	Haplogroup	(population	(disorder	Reported
Position	Replacement	Location	Site ^a	base-pairs	index (%) ^b	(no./352)	(no./376)	specific variant ^c	context) ^d	context) ^d	(Mitomap) ^e
Known LHON	l-associated mui	tations									
15927	G-A	the anticodon stem	42	טר ר'ס	75.45	8(2.27)	0	Yes (B5b, G3b, etc.)	Yes	Yes	Yes
15951	A-G	the acceptor stem	71	¶U-A	70.45	4(1.14)	0	Yes (D4b1)	Yes	Yes	Yes
Putative LHO	N-associated va	iriants									
15900	T-C	the DHU loop	13		72.73	1(0.28)	1(0.27)	Yes (K1c1b)	Yes	No	Yes
15901	A-G	the DHU loop	14		100.00	1(0.28)	0	Yes (D4t)	No	No	Yes
15908	T-C	DHU-stem	23	Π-A	93.18	1(0.28)	1(0.27)	Yes (M33a, F4a2)	Yes	Yes	Yes
15924	A-G	the anticodon stem	39	¶U-A	90.91	9(2.56)	3(0.71)	Yes (D4e1a, M13, etc.)	Yes	Yes	Yes
15928	G-A	the anticodon stem	43	ט ר_ט	77.27	3(0.85)	2(0.53)	Yes (C7b, Z3a, etc.)	Yes	Yes	Yes
15931	A-C	the variable loop	46		97.73	1(0.28)	0	No	No	No	No
15940	T-Del	T-loop	56		22.73	1(0.28)	0	Yes (G4)	Yes	Yes	Yes
15943	1-C	T-stem	63	†U-A	79.55	2(0.57)	1(0.27)	No	No	Yes	Yes
15949	G-A	the acceptor stem	69	פ ט	88.64	1(0.28)	0	No	No	No	Yes
Other variant	S										
15907	A-G	the DHU loop	22		65.91	1(0.28)	0	Yes (U2e)	Yes	No	Yes
15930	G-A	the variable loop	45		25.00	2(0.57)	13(3.46)	Yes (B4d, C6, etc.)	Yes	Yes	Yes
15938	C-T	T-loop	54		40.91	1(0.28)	0	Yes (M39)	Yes	No	Yes
15941	T-C	T-loop	61		47.73	5(1.42)	2(0.53)	Yes (B4c1c)	Yes	No	Yes
^a Numbers rep	present the nuc	leotide positions accordin	ig to the	tRNAdb numberin	ng system (Sprinzl a	nd Vassilenko 20	05) and mitotRN	Adb http://mttrna.bioinf.uni-leip	zig.de/mtDataOutput	(Juhling et al. 200	.(6
^b Conservation	n index indicate	s the conservative proper	rties of th	e nucleotides in 4	14 sneries					•	
CThe column		and the contact value property of the second s			the compression	in off all statistics	ida MMAta bhai	in the second second second second	industrial and the line	+ VIVU+m/ mtq nop	200 Duild 17. 10

Table 1. Variants in the MT-TT gene in 352 Chinese subjects with LHON.

^cThe column "Haplogroup specific variant" refers to the presence or absence of the corresponding variants in the world mtDNA phylogeny displayed at http://www.phylotree.org/tree/index.htm (mtDNA tree Build 17; 18 Feb 2016). ^dThe search was performed on 18 April 2019 following the described strategy (Bandelt et al. 2009). ^eAccording to MITOMAP (http://www.mitomap.org/MITOMAP). Database of reported mitochondrial DNA base substitution diseases: rRNA/tRNA mutations was last edited on March 06, 2019.

(A)																(B)
Organism	Acc-ster	al i	D-sten	D-loop	D-ste	2	Ac-stem	Anticd-	Ac-ster	n V-region	n T-stem	T-loop	T-sten	Acc-ster	n (Acceptor stem
	1	8	10		22	26	27	32	39	44	49		61	66	73	
Homo sapiens	GTCCTTG	TA	GTAT	AAACTA	ATAC	A	CCAGT	CTTGTAA	ACCGG	AGAT	GAAAA	CCT	TTTTC	CAAGGAC	A	
Cebus albifrons	GTCCTTG	TA	GTAT	ATCCAA	TTAC	с	CCGGC	CTTGTAN	ACCGG	AAAA	GGAGG	CACGCTA	ACTCC	CCAGGAC	A	
Chlorocebus aethiops	GCCCTTG	TA	GTAT	AAACTA	ATAC	A	CTAGT	CTTGTAA	ACTAG	AAAT	GAGAC	TTAC	AGCCC	CTAGGAC	A	T → A → 15951
Chlorocebus pygerythrus	GCCCTTG	78	GTAT	AAACTA	ATAC	A	CTAGT	CTTGTAA	ACTAG	AGAT	GAGAC	TTAG	AGCCC	CTAGGAC	A	C–G
Chlorocebus sabaeus	GCCCTTG	TA	GTAT	AAACTA	ATAC	λ	CTAGT	CTTGTAA	ACTAG	AGAT	GAGAC	TCAT	AACCC	CTAGGAC	A	C = G → 15949
Chlorocebus tantalus	GCCCTTG	TA	GTAT	AAACTA	ATAC	A	CTAGT	CTTGTAA	ACTAG	AGAT	GAGAC	TTAT	AGCCC	CTAGGAC	A	
Colobus guereza	GCCCTCG	TA	GTAC	AAACTA	GTAT	Α	CCGGT	CTTGTAA	ACCGA	AGAT	GGAGA	CT	TCTCC	CTAGGAC	A	15901 8 G C 55 15943
Daubentonia madagascariensis	GTCCTCG	TA	GTAT	ATTTCA	TTAC	7	TTGGT	CTTGTAA	ACCAA	AAAT	GGCGG	ACCCC	TOCOC	CTAGGAC	A	14 ⁵⁹⁰⁰ 61
Eulemur fulvus fulvus	GTCCTTG	TA	GTAC	AAACACA	ATAC	С	CTGGT	CTTGTAN	ACCAG	AAAT	GGGGA	ACCC	TCTCC	CAAGGAC	A	
Eulemur fulvus mayottensis	GTCCTTG	Tλ	GTAC	AAACACA	ATAC	С	CTGGT	CTTGTAN	ACCAG	AAAT	GGGGA	ACCC	TCTCC	CAAGGAC	A	D-stem loop 49 C T-stem loop
Eulemur macaco macaco	GTCCTTG	TA	GTAT	AAACTTA	ATAC	С	CTGGT	CTTGTAA	ACCAG	AAAT	GGAGA	ACC	TCTCC	CAAGGAC	A	
Eulemur mongoz	GTCCTTG	TA	GTAC	AAACTTA	ATAC	С	CTGGT	CTTGTAN	ACCAG	AAAT	GGAGA	ACC	TCTCC	CAAGGAC	A	I A 22 26 A A →15931 54
Galago senegalensis	GTCCTAG	TA	GTAT	AACCTA	ATAC	T	TTGGC	CTTGTAN	ACCAA	AAAT	GAGGG	CTTCC	CCCTC	CTAAGAC	A	15908 27 C-G -G+15928
Gorilla gorilla	GCCCTTG	TA	GTAC	AGACCA	ATAC	A	CCAGT	CTTGTAA	ACCOG	AAAC	GAAGA	CCT	CCTTC	CAAGGGC	A	$C = C \rightarrow 15927$
Gorilla gorilla gorilla	GCCCTTG	TA	GTAC	AGACCA	ATAC	Α	CCAGT	CTTGTAN	ACCGG	AAAC	GAAGA	CCT	CCTTC	CAAGGGC	A	
Homo sapiens neanderthalensis	GTCCTTG	TA	GTAT	AAACTA	ATAC	λ	CCAGT	CTTGTAN	ACCGG	AGAT	GAAAA	CCT	TTTTC	CAAGGAC	A	T = A → 15924
Hylobates lar	GCCCTTG	TA	GTAT	AAGCCA	ATAC	A	CCGGT	CTTGTAA	GCCGG	AACT	GAAAT	CTT	OCTTC	CAAGGAC	A	32 0 A
Lemur catta	GCCCTTG	TA	GTAT	AACTTA	ATAC	с	CTGGT	CTTGTAR	ACCAG	ACAT	GGAGA	ACCCCCT	OCTOC	CAAGGAC	A	
Loris tardigradus	GTCCCAG	TA	GTAT	AACTCAA	TTAC	7	CCGGT	CTTGTAN	ACCGA	AAAT	GGGAA	ACCTA	ATCCC	CTAGGAC	A	
Macaca mulatta	GCCCTCG	TA	GTAT	AAATTA	GTAC	Α	CTGGC	CTTGTAA	ACCAG	AAAT	GAACA	с	TCTTC	CTAGGGC	A	G
Macaca sylvanus	GCCCTCG	TA	GTAT	AAATTA	ATAC	λ	CTGGC	CTTGTAA	ACCAG	AAAT	GAAAC	λT	TCCTC	CTAGGGC	A	to the day loss
Nasalis larvatus	GCCCTTG	TA	GTAT	AAATTA	ATAC	Α	CCGGT	CTTGTAA	ACCAG	AAAC	GGATA	TC	TTTCC	CCAGGGC	A	Anncodon stem-toop
Nycticebus coucang	GCCCTAG	TA	GTAT	AACACCA	TTAC	С	CCGGT	CTTGTAA	ACCGA	AAAC	GGAGC	ACCC	GCTCC	CTAGGAC	A	
Otolemur crassicaudatus	GTCCTAG	TA	GTAC	AATTCA	GTAC	C	CTGGT	CTTGTAN	ACCAG	AAAT	GGAAA	TCACA	CTTCC	CTAAGAC	A	(C)
Pan paniscus	GCCCTTG	TA	GTAT	AAGCTA	ATAC	Α	CCGGT	CTTGTAR	ACCGG	AAAC	GAAAA	CTT	TATTC	CAAGGAC	A	15908
Pan troglodytes	GCCCTTG	TA	GTAT	AAACTA	ATAC	Α	CCGGT	CTTGTAN	ACCGG	AAAC	GAAAA	CTT	TCTTC	CAAGGAC	A	Anticodon stern D-stern 55
Papio hamadryas	GCCCTTG	TA	GTAC	AAACTA	ATAC	Α	CTGGT	CTTGTAN	ACCAG	AAAT	GGAGC	Α	COTCC	CCAGGGT	A	MTGACCACATAA
Perodicticus potto	GTCCTAG	TA	GTAT	AACCCA	TTAC	С	CTOGT	CTTGTAN	ACCAG	AAAC	GGAGA	ATCCCT	TCTCC	CTAGGAC	с	
Piliocolobus badius	GCCCTTG	TA	ATAT	AAAGCA	ATAT	Α	CCGGT	CTTGTAA	ATCGG	AAAC	GGAAA	CCTC	TCTCC	CCAGGGC	A	A C C G G A G T A T A A
Pongo pygmaeus	GCCCCTG	TA	GTAC	AAATAA	GTAC	G	CCAGC	CTTGTAA	CCTGA	AAAT	GAAGC	CCC	CCTTC	CACGGGC	Α	
Pongo pygmaeus abelii	GCCCCTG	TA	GTAC	AAATAA	GTAC	Α	CCAGC	CTTGTAA	CCTGA	AAAT	GAAGA	000	TCTTC	CATGGGC	Α	15924 15927 45 9 7 1 1
Presbytis melalophos	GTCCCTG	78	GTAT	AAACAA	ATAC	Α	CCAGT	CTTGTAA	ACTGG	AAAC	GGACA	0000	CCCTC	CAAGGAC	Α	1928
Propithecus coquereli	GCCCTTG	TA	GTAC	ATCTAA	TACC	С	CGGTC	CTTGTAA	ACCGG	AAAT	GGAGA	ATCCC	TCTCC	CCAGGGC	A	variable rygion T
Pygathrix nemaeus	GCCCTTG	Tλ	GTAT	AGACTA	ATAC	λ	CCGGT	CTTGTAR	ACCGG	AGAC	GGATA	00	TTTCC	CCAGGGC	A	15930 15900
Rhinopithecus roxellana	GCCCTTG	Tλ	GTAT	AAACCA	ATAC	Α	CCGGT	CTTGTAN	ACCGG	AGAC	GGATA	TC	TCTCC	CCAGGGC	A	TA
Saimiri sciureus	GTCCTTG	Tλ	GTAT	AACCCA	TTAC	С	CTGGT	CTTGTAA	ACCAG	алал	GGAGA	CACACCC	GCTCC	CCAGGAC	A	T A S
Semnopithecus entellus	GCCCTCG	Tλ	GTAT	AAATTCA	GTAC	Α	CCGGT	CTTGTAR	ACCGG	AGAT	GGACA	λT	TCTCC	CTAGGAC	A	C G =+15949
Tarsius bancanus	GTCCTCG	Tλ	GTAT	AACCA	TTAC	С	TTGGT	CTTGTAA	ACCAA	AAAT	GAAGG	AACCCAA	OCTOC	CTAGGAC	C	CG
Tarsius syrichta	GTCCTTG	TA	GTAT	AACTA	TTAC	7	TTGGT	TTTGTAA	ACCAA	GAAT	GAAGG	AAATCAA	CCTCC	CTAGGAC	Т	I A
Trachypithecus obscurus	GCCCCTG	TA	GTAT	AGACCA	ATAC	Α	TCAGT	CTTGTAA	ACTGG	AAAC	GGACA	TTC	ATTCC	CTGGGGC	A	1 G C 72
Varecia variegata variegata	GTCCCTG	TA	GTAT	AACCT	AACT	Α	CTTTG	GCCTTGT	AAACC	AAAA	GAGAA	TTCC	CCTCC	CAAGGAC	Α	5' 🔺
Bos taurus	GTCTTTG	TA	GTAC	ATCTA	ATAT	A	CTGGT	CTTGTAA	ACCAG	AGAA	GGAGA	ACAACTAA	CCTCC	CTAAGAC	т	C
Mus musculus	GTCTTGA	TA	GTAT	AAACA	TTAC	7	CTGGT	CTTGTAA	ACCTG	AAAT	GAAGA	TCTTC	TCTTC	TCAAGAC	A	
Xenopus laevis	GTCCTGA	TA	GCTT	AATTTA	AAGC	Α	TCGGT	CTTGTAA	GCCGA	AGAT	TGAGG	CTAAAAC	CCTCC	TCAAGAC	Т	21

Figure 2. Analysis of *MT-TT* variants. (A) Sequence alignment of 44 vertebrates *MT-TT*; summary of two LHON-associated mutations (Red) and nine putative LHON-associated variants at the cloverleaf (B) and tertiary (C) structures of canonical tRNA^{Thr}.

Table 2. Summa	ry of the clinical and	I molecular data for 20 Han	Chinese probands carryin	g one of the putative MT-TT variants.
----------------	------------------------	-----------------------------	--------------------------	---------------------------------------

					•		
Putative variants	Proband	Sex	Age at onset, yr	Visual acuity, right/left	Level of visual loss	Family of visual loss	mtDNA haplogroup
m.15900T > C	WZ1001-III-3	М	8	0.1/0.2	Mild	No	H2
m.15901A > G	WZ1002-III-2	М	20	0.3/0.1	Mild	No	D4
m.15908T > C	WZ1003-III-1	М	15	0.2/0.3	Mild	No	F4
m.15924A > G	WZ1004-II-3	М	1	0.15/0.1	Mild	No	D4e1a
	WZ1005-III-1	М	13	0.02/0.01	Profound	No	F1a1
	WZ1006-II-3	М	21	0.01/0.01	Profound	No	D4e1a
	WZ1007-III-9	М	19	0.19/0.1	Mild	No	D4e1a
	WZ1008-III-3	F	25	0.01/0.02	Profound	Yes	F1a′c
	WZ1009-II-5	М	17	0.3/0.3	Mild	No	D4e1a
	WZ1010-III-2	F	3	0.1/0.1	Mild	No	D4e1a
	WZ1011-IV-1	М	20	0.02/0.04	Serve	Yes	F1a1
	WZ1012-III-3	М	5	0.011/0.04	Serve	Yes	B4
m.15928G > A	WZ1013-III-5	F	15	0.1/0.2	Mild	No	M7b
	WZ1014-III-3	М	41	0.2/0.3	Mild	Yes	Y1
	WZ1015-III-2	М	12	0.1/0.04	Mild	No	Z
m.15931A > C	WZ1016-III-2	F	18	0.1/0.3	Mild	No	А
m.15940DelT	WZ1017-III-3	М	20	0.2/0.2	Mild	No	Z
m.15943T > C	WZ1018-IV-2	М	18	0.02/0.03	Serve	No	F3a
	WZ1019-II-6	F	35	0.1/0.1	Mild	No	D4
m.15949G > A	WZ1020-III-1	М	23	0.01/0.01	Profound	Yes	F1a′c

these residues ranged from 22.7% to 100%, as shown in Table 1. Of these, conservation indexes of 9 variants were greater than 70%, with potential functional significance (Figure 2) (Ruiz-Pesini and Wallace 2006). As shown in Table 1, eight variants were absent in 376 Chinese controls, while the frequencies of 7 variants ranged from 0.27% to 3.46% in this control population. Furthermore, we analyzed the structural alteration of tRNA^{Thr} by these variants based on the predicated secondary and tertiary structure. As shown in Figure 2, cloverleaf and tertiary structure of human *MT-TT* consists of the acceptor stem, DHU-stem, D-loop, the

anticodon stem, anticodon loop, variable region, T-stem and T-loop. Two variants (m.15927G > A and m.15949G > A), localized at the acceptor stem, and three variants (m.15927G > A, m.15924A > G, and m.15928G > A) resided at the anticodon stem. In addition to the known LHON-associated m.15927G > A and m.15951A > G mutations, six variants (m.15908T > C, m.15924A > G, m.15928G > A, m.15940DeIT, m.15943T > C, m.15949G > A), which were absent in 376 Chinese controls and whose conservation indexes were greater than 70%, were the putative LHON-associated variants. On the other hand, four other variants (m.15907A > G,

Figure 3. Twenty Han Chinese pedigrees with LHON. Visually-impaired individuals indicated by filled symbols. Arrowhead denotes probands.

m.15930G > A, m.15938C > T, m.15941T > C), which were present in the controls or lower conservation indexes, appeared to be the polymorphisms.

species. There were no other known LHON-associated mutations found.

Characterization of 20 Chinese probands

Comprehensive medical histories of 20 probands carrying one of nine putative LHON-associated MT-TT variants and other members in these families showed no other clinical abnormalities, including diabetes, muscular diseases, hearing loss, and neurological disorders. As shown in Table 2 and Figure 3, these families exhibited a wide range of severity, age at onset, and penetrance of optic neuropathy. Of these, only one matrilineal relative per family in fifteen pedigrees suffered from optic neuropathy, while five pedigrees (WZ1008, WZ1011, WZ1012, WZ1014, and WZ1020) had a history of optic neuropathy. The putative variants were first examined in all available members of these pedigrees. The mtDNA mutations were presented in matrilineal relatives in each family in the homoplasmic form, but not in other members of every family. To assess the contribution that mtDNA variants make toward the variable penetrance and expressivity of optic neuropathy in these Chinese pedigrees, we analyzed entire mtDNA sequences in 20 Chinese probands (Genbank accession numbers: MK795825-MK795844). These affected individuals exhibited distinct sets of mtDNA polymorphisms including 217 known and 4 novel variants (Table 3), belonging to Eastern Asian haplogroups A, D4, F, H2, G2, M7, B2, Y1 and Z, respectively (Figure 4) (Kong et al. 2006). These variants in RNAs and polypeptides were further evaluated by phylogenetic analysis of these variants and sequences from other 43 vertebrates. The *MT-ND1* 3391G > A (G29S), MT-ND4 11204T > C (F149L), and MT-ND6 14178T > C (I166V) variants showed high evolutionary conservation in these

Analysis of entire mtDNA sequences in probands

The past study examined the entire mtDNA sequences of 8 subjects consisted of five females and three males carrying the m.15927G > A mutation (Zhang et al. 2018). MT-TT m.15951A > G mutation may have a potential modifier role in increasing the penetrance and expressivity of the primary LHON-associated m.11778G > A mutation in a Chinese family (Li et al. 2006). In this study, we determined the complete mtDNA sequence analysis of additional four probands carrying m.15951A > G mutation. Furthermore, these probands exhibited distinct sets of mtDNA polymorphisms including 70 known variants. We further performed the haplogroup analysis of mtDNAs carrying the m.15951A > G mutation. As shown in Table 4, the mtDNAs from four Chinese families carrying the m.15951A > G mutation belong to Eastern Asian mtDNA haplogroup D. The frequency of mtDNA haplogroups D in 41 LHON families carrying the MT-TT mutation were 29.3%; while that of 376 Chinese controls was 21.5%. And then, we determined the complete mtDNA sequence analysis of additional 20 probands carrying putative LHONassociated variants, these probands exhibited distinct sets of mtDNA polymorphisms including 217 known variants and 4 unknown variants (Table 3). Thus, the frequency of haplogroup B in the Chinese pedigrees carrying the MT-TT mutations were significantly higher than that in 376 Chinese controls and other Asian populations. Meanwhile, that of haplogroup M8 was much lower than control individuals. This discrepancy between the different ethnic origins may be attributed to evolution.

Previously reported ^a	Vor		Yes	Yes	Yes	Yes	Yes	>	Yes	Yes	Yes	Yec	- >	Yes	Yes	Yes	Yes	- vov	0	Yes	Yes	Yes	Yes	Yes		£ ;	Yes	Yes	Yes	Yes	Yes	Yes	γeγ γ	Vac Vac	- Yev	- >	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	A N			Yes	Yes	Yes	Yes	Yes	>	Yes	Yes	Yes	Yes	202
WZ1020	e	פ														U			-	Del A	ט		Ъ	5					A				٩		L	ر																						υ		
WZ1019	ų	כ													ט						ט		Ŭ	ي ر	י																				⊢			F	-										υ	
WZ1018	ų	כ														J	A			Del A	ט		Ľ	5							U																		F	_					L	ر				
WZ1017	ų	כ				⊢	L	,	פ											Del A	ט		JT	2																⊢					⊢				F	_					L	، ر	ט			
WZ1016	ų	פ																Ľ	כ				Ľ	2		-	Del C	Del A																	⊢									⊢	-					
WZ1015	e	פ					L	J											-	Del A	ט		UL L	, ; ر	J															F					F				۲	_					Ċ	ر				
WZ1014	e	פ	ţ	ر																	ט		Ľ	5								L	,			٢	_									L	,				⊢									
WZ1013	e	פ			-								ļ	ر							ט		Ľ	ر ج	J								٩	:								⊢			⊢								U	,						
WZ1012	e	פ																			ט		Ľ	2		-	Del C	Del A					٩	:				U	U		U			L	1															
WZ1011	e	פ																	-	Del A	ט		Ľ	2		-	Del C	Del A					٩	: ינ	, c	ر																						υ		
WZ1010	e	ס <	A																		ט		ULC	، ; ر	J					U			٩	:											⊢															
WZ1009	e	ס <	A				L	J								J	A	:			ט		U L	ى ر	יי	פ				U															⊢															
WZ1008	e	פ														U			-	Del A	ט		Ъ	5		-	Del C	Del A					٩	:	L	ر																						υ		
WZ1007	ų	ס -	A																		ט		U U U	, ; ر	J					U															⊢															
WZ1006	ų	ס <	A																		ט		U L	ي ر	J					U															⊢															
WZ1005	e	פ																	-	Del A	ט		JT	2		-	Del C	Del A					۵	: ני	, c	ر																						υ		
WZ1004	e	ס <	A							ט	⊢										ט		Ľ	ر ج	J											٢	_								F															
WZ1003	ų	פ	ţ	ر																Del A	ט	ט	Ľ	5		-	Del C	Del A			U									⊢			ט															υ		
WZ1002	ų	פ																					Ľ	ى ر	J																				⊢															
WZ1001	e	פ										L	ر								ט		UL L	-												٢	_								⊢		Δ	c												
Number of control (Number/376)	CUC	202	7	3/	63	8	75	2	0	-	8	18	2	73	2	23	28	21		69	303	-	747	116		0	101	91	0	21	23	7	. 4	; ;	71	۲.		38	87	10	112	13	2	<i>cc</i>	183	ſ	n c	4 5	10	8	2	13	0	23	5	43	0	47	56	
Replacement		ס - ד ע	4-P	<u>ر</u> _	C-T	С-Т	L-C	, (- <	A-G	A-G	C-T	ں . 1 ت	- F	<u>ر</u> _	A-G	Ч Ч	G-A			DelA	A-G	A-G	T-TC/CTC		- 4	י-ר רי		Del A	Ϋ́́	1-C	Ч С	۲-ر	Q-₽	<u>م</u> -6) F	۔ ا	A-O	A-C	С-Т С	ц-С	C-T	A-G	L-C	C-T	Ľ	Q-∆	¢ F	- F	<u>-</u> ر-	C-T	G-A	1-C	: <u>-</u> -	- () F	، ب -	9-9	Ŷ	Ч Н	
Position	C.F.	0.0	94	140	150	151	152	1.1	561	189	194	195		199	200	204	207	735		249	263	281	310	489	508	000	523	524	16025	16092	16093	16126	16129	16162	16172	77101	161/6	16182	16183	16185	16189	16192	16207	16217	16223	16231	16237	76261	00001	16260	16266	16274	16288	16290	00001	86791	16302	16304	16311	
Gene	000	dool-n																																																										

Previously renorted ^a	reputed	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yec Vec	Yes	Yes	Yes	Yes	Yes	Yes Voc	Yes Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes Vor	C I I I	Vac	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes Vor	res	Vac	Yes	Yes	ntinued)
0001270	NZ 1020						ţ	כ		Ŀ	,		U			L	,		Yes							No			J	U	ט	ۍ ن	5	NO			U			F							res			(CO
010171/1	61017M	,	U		υ		L	פ		Ċ	,		ט	A																		L	5	Ľ) H	-		A												
W71018	0101700	-	U				∢ ۷	פ		Ċ	,		J									F										U	5												ע ע	פ		ט	1	
71017W	/1017			ט			ţ	J (ر	Ŀ	,		ט						ט												ט	ţ	J													<	¥			
01015W	0101700	,	U			ט	ţ	פ		Ċ	ט ט		ט															υ				ţ	5 0	פ																
W/71015	C1017AA						ſ	פ		Ċ	,		ט																		ט	L	ט																	
M71014	WZ1014			ט	υ		ţ	פ		Ċ)		ט								A											ţ	ט										A						ט	
W71013	CI017M						ţ	פ		Ŀ)		ט										۷	F			ט					ţ	J									ט		۷						
C1017W	71017						L	פ		Ċ	,		ט																			L	ט			L	,													
MZ1011	11017			ט	υ		ţ	פ		Ċ	,		ט									F			⊢							L	ט								ט									
M71010			U				L	פ		Ċ	,	ט	ט	A	<	¢	⊢			A												L	ט		F	-		A									L	J		
M/71000	6001700	,	U				ţ	כ		Ŀ	,	ט	ט	۷	<	c																ţ	J		F	-		۷									J	J		
W/71008	00017M				υ		U	כ		Ŀ	,		ט			L	,					F									ט	L	J																	
W/71007	10012W	,	U				ţ	כ		Ŀ	,		ט	۷	<	¢										U						ţ	J		F	-		٩									ر	J		
2001ZW	0001744	,	U				L	פ		Ċ	,		ט	٨	<	¢		A														L	ט		F	-		٩									L	J		
W/71005	COD 1 744			ט	υ		ţ	פ		ى)		ט									⊢			⊢							ų	ט								ט									
0017W	WZ 1004	,	U				ţ	כ		Ŀ	,		ט	۷	<	c																ţ	J		F	-		۷									ر	J		
50017W	C001744			ט	υ		ţ	כ		Ŀ	,		ט	U	ر							F										ţ	J						⊢											
C00171W		,	U				ţ	כ		Ŀ	,		ט	A																		ţ	J		F	-		A												
1001 1001		-			υ		ţ	כ	Ľ	ט פ	,		ט																			ţ	J																	
mber of ontrol								_																																										
N		9	114	9	146	20	67	24C		330	192	0	343	60	7 0 7		0	r) 1		0	m	58	sn) 13	24	16		m) 20	0	0	27	0	343	d) 21	77		0	et) 77	m	0	0	10	29) 11 11	9 1	n	-	- 6	0	
alacament and	hiaceilleilt		Ŷ	A-G	Ϋ́́	9-9 9-7	4 ر و ح	J A F	י ר ס-	5-9-4	P Q-A	P-G	P-G	۹ ر ۹	ו-ר אדויעדויי		: - <u>-</u>	(Gly295e	2	G-A	G-A	Ċ-T	Asp248A	C-T	C-T	0	P-G	(lle314lle	P-G	9-9	P-Q-	ט פֿי א	A-G Th:110AI	0	, L	- u L	9-9-4	Leu237M	C-T	Ċ-T	P-G	A-G	G-A	(Ala331Th	۹ ر 5 <	ף-ג א-ג	ہ ہے ب	- 9 -	P-G	
Be																		G-A					G-A (Ļ						ה-ג ג				C-A (G-A						
Docition	LOSITIO	16355	16362	16399	16519	663	7109	05/	/ 7 4 813	1438	1736	1864	2706	3010	3290	3368	3372	3391	3434	3480	3834	3970	4048	4071	4086	4163	4164	4248	4685	4702	4715	4722	4769	4024	1883	5003	5139	5178	5263	5304	5315	5351	5417	5460	5585	1012	51962	5978	6272	
ana	מכווב					125 rRNA					16S rRNA																		ND2																NCN NCN					

ntinued.	
ē	
m.	
Table	

Previously reported ^a	Yes	Yes	Yes	Vac	Vac	νον Γ	res	Yes	Yes	Yes	Yes	Yes	Vec	Yec	Yes	Vec	Yes		Yac	Vac	Yes Ves	Yes		Vac	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes Vac	<u>נ</u> י						
WZ1020	U		L	,					A	⊢																			Ċ	פ		٩	:										⊢			A						U	
WZ1019										⊢													F	-			L,	פ	Ċ	פ							U					ט							ט	F			
WZ1018	U									⊢																			Ċ	פ											υ					A	A				ט		
WZ1017							,	ט		⊢	۷														۷	c	L	פ	Ċ	פ			U	I			U												ט	F			
WZ1016										F														Ċ	פ			F	- ບ	פ																							
WZ1015							,	0		⊢	A				A					Δ					۷	c	C	פ	Ċ	פ			U	1			U		A					υ					ט	⊢			
WZ1014										⊢			ט									Δ							Ċ	פ																		υ	ט				
WZ1013		F			L	ر				F				L	,	A											C	פ	Ċ	פ							U			U									ט	F			
WZ1012										⊢		J	1						9hnDel								C	פ	Ċ	פ	L	,																				ر	ار
WZ1011	U								A	⊢																			Ċ	כ		٩	:		ט			A								A						U	
WZ1010										⊢													F	-			ļ	פ	Ċ	כ						⊢	U												ט	⊢			
WZ1009										⊢													F	-			ļ	פ	Ċ	כ						⊢	U												ט	⊢			
WZ1008	U		L	,					A	⊢																			Ċ	פ		٩	:													A						U	
WZ1007										F								U	,				F	-			L,	פ	Ċ	פ						F	U												ט	F			
WZ1006						<	¥			⊢													⊢	-			ļ	פ	Ċ	כ						⊢	U												ט	⊢			
WZ1005	U								A	F																			Ċ	כ		٩	:		U			A								A						U	
WZ1004										⊢													⊢	-			Ĺ	פ	Ċ	פ						⊢	U												ט	⊢			
WZ1003	U									⊢																			Ċ	פ																A							
WZ1002										⊢													⊢	-			ļ	פ	Ċ	כ							U												ט	⊢			
WZ1001				L	J					F							J)			Ċ)				L	ر		Ċ	י כ	J			ט											ט								
:ontrol nber/376)										~																		_	-	+							~												~	c '			
(NUL	56	0	· ~		0		77	10	29	336	34	4	-	17	0	17	0		71			о v	e) 57		р) 5 2 2 2 1 2		0.01	a) 10(-) 23				in) 25	6	il) 15	-	8	160	11	0	26	2	0	0	8	0	56	8 (i	0	la) 195	162	-	ır) 29 0	>
Replacement	0-T	C-T	A-9	C-F	, , -) < - (4-5 -	D-A	G-A	C-T	C-A	A-G	A-G	L L	G-A	G-A (Val90lle	A-G	i Ç	9hnDal	12000C	С-Р Р-Р	<u>م</u> -2	C-T (Len17Ph		A-G(ASI152AS)			A-D (INC9AL) ערד ר-T(His90Tvr		עקוווון ווא ד-ר	, , , -	G-A (Ser176As	T-C	A-G(Val218Va	A-G	Ċ	0-L	G-A	G-A	0-L	T-C	A-G	A-G	Ŷ	A-G	G-A	G-A (Val88lle	T-C	A-G (Thr114A	C-T	A-G	T-C (Met47Th T-C	ر -
Position	6392	6455	6515	6674	6680	0000	0/34	6752	6962	7028	7196	7364	7424	7684	7775	7853	7975	8119	8771 9	8797	8296	8397	8414	110	8584 201	8618	00100	8794	0900	0000 8078	8952	9053	0606	9180	9494	9536	9540	9548	9713	9824	9854	10086	10188	10208	10289	10310	10320	10370	10398	10400	10499	10609	2 1 2 1
Gene														600					NC7			ATPR			ΔΤΡ6										CO3							ND3									ND4L		

σ
Ū.
Ē
=
.=
<u> </u>
_
0
Ū
-
m
d)
ă
able
Table

Previously reported ^a	Yes)	Vac	- Y	V -	2	Yes	Yes	Yes		Yes	Yes	Yes	Y es Vor	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes Ves	Yes	Yes	Yes	Yes	Yes	Yes	Y es V ec	Yes	Yes	Yes	Yes	Yes	Yes Vac	AP -	Yes	Yes	Yes	Yes Vor	Yes	ontinued)
WZ1020		Υеς	2			Υеς	2			No		A					۷							A	F	_																				U	פ	00)
WZ1019	U	,								ט		A										I	⊢																нн	-	ر		A			∢ נ	פ	
WZ1018					Ľ	7						A								⊢												υ							F	_	L	ر				Ċ	פ	
WZ1017	U	,										A										I	⊢																F	_ (ر		A				J	
WZ1016												A										I	⊢										,	_					F	-					U	Ċ	פ	
WZ1015	U	,										A										I	⊢							U)								F	- (ر		۷			< (פ	
WZ1014												A		<	د ر <u>ب</u>)						I	⊢			~	A					υ		ţ	ر				F	_						Ċ	פ	
WZ1013	U	,										A	ţ	פ		⊢						I	⊢																۲	- v	ر		٨	A		ע נ	פ	
WZ1012							U					A															ļ	פ											F	_						Ċ	פ	
WZ1011									ט			۷					۷					۷			۲	_					۷	υ							F	_						U	פ	
WZ1010	U	,				J	,	⊢				۷									A	I	⊢															U	⊢									
WZ1009	U	,						⊢				A										I	⊢															U	⊢⊦	_ (ر		A			ע ע	פ	
WZ1008												۷					۷							۷	٢	_					۷	υ							F	_						Ċ	פ	
WZ1007	U	,						⊢				A										I	⊢															U	н н	- (ر		A			< (פ	
WZ1006	U	,						⊢				۷										I	⊢						F									U	н н	- v	ر		۷			< ע	פ	
WZ1005									ט			۷					۷					۷			٢	_					۷	υ							F	_						Ċ	פ	
WZ1004	U	,				ر	J	⊢				A										I	⊢															U	н н	- ·	ر		٨			ע ע	פ	
WZ1003			L	י כ	,							ט	U						ט		A			,	ט							U	ט						۲	-						Ċ	פ	
WZ1002	U	,										A						υ				I	⊢					L	,										нн	- (ر		A			< (פ	
WZ1001											A	A										I	⊢												Ľ	, U	υ		F	_						Ċ	פ	
umber or control umber/376)	4	-										2											6								-									ייכ	ð					<u>.</u>	2	
ž	16	2 ر		0	1 1	•	eu) 1	11	m		0	32	- 0		a) 15	с, Г 11	e) 31	0	9	Ŝ	7	0	50	9	0 5	= 。	о ,	- c	00	0	hr) 19	'hr) 47		- ۲۰ -	c (le	n n	0	15	59	() () ()	9 -	+ C	9 6	-hr) 1	0		cc (blv	
Replacement	U L	2	ں۔ ۲	, , -	v-0-0		T-C (Phe149L	C-T	A-G	0	G-A	G-A		ס < ל ע	A-G (Thr9Al	C-T	G-A (Val24II	Т-С	A-G	C-T	G-A	6-A	Ч С-Т	G-A	A-2 ר	_ ڈ	¥ ر • 5	ט-ע א-ר	9-0-A	р Ч	G-A (Ala475T	G-C (Ser531T	A-G		I-ر (Ile 166۷ ۵-6	р Ч	T-C	Ч Ч	C-T C T (Tb. 711)	C-I (Inr/II6	י ר - ר	י ר בי בי	- P-0	G-A (Ala122T	Ч Ч	0-P		
Position	10873	10908	10909	10915	11065	11087	11204	11215	11380	11430	11581	11719	11776	11014	12361	12405	12406	12477	12612	12621	12630	12684	12705	12771	12819	12882	13194	13356	13416	13620	13759	13928	14016	14067	141/8	14311	14431	14470	14668	14/66	14/83	15040	15043	15110	15262	15301	15475	
Gene	ND4	2													ND5																				ND6				44.0	Lytb								

Discussion

The majority of patients with LHON (90%-95%) harbors one of three primary mtDNA point mutations, including m.3460G > A, m.11778G > A, and m.14484T > C, while these mutations are only responsible for 38.3% and 41.1% cases in two large cohorts of Chinese LHON subjects, respectively (Jia et al. 2006; Liang et al. 2014; Jiang et al. 2015; Ji et al. 2016). A number of LHON-associated mtDNA mutationts have been reported (Table 5), with some still awaiting full confirmation for pathogenicity, having been identified in only single families (Lott et al. 2013). MT-TT gene region is thought to be "mutational hotspot", harboring other LHON-causing mutations, in addition to m.15927G > A and m.15951A > G (Li et al. 2006; Zhang et al. 2018). The coexistent of the m.15924A > G and m.3635G > A in some Chinese families indicate that m.15924A > G mutation may play a synergistic role in the phenotypic manifestation of LHON associated MT-ND1 3635G > A mutation (Zhang et al. 2014). The marked male bias and variability in the clinical phenotypes suggest nuclear modifier gene(s) or environmental factor(s) appear to play a role in the phenotypic expression in these 20 Chinese pedigrees (Yu-Wai-Man et al. 2011). Nuclear modifier genes were proposed to increase the susceptibility to LHON-associated mtDNA mutations (Chen et al. 2015). Three studies using microsatellite markers have confirmed significant linkage on the X-chromosome, with some of these candidate regions showing areas of overlap (Shankar et al. 2008; Ji et al. 2010). A genome-wide study of nine large m.11778G > A Thai pedigrees found two SNPs (rs3749446 and rs1402000), located within PARL (Presenilin-associated rhomboid-like) were associated with a statistically increased risk of phenotypic expression among LHON carriers (Phasukkijwatana et al. 2010). However, the association between these two PARL SNPs and visual loss was not replicated in an independent cohort of Chinese m.11778G > A LHON pedigrees (Zhang et al. 2010). In our previous study, we identified a mutation in YARS2 as a nuclear modifier for LHON-associated the phenotypic manifestation of m.11778G > A mutation (Jiang et al. 2016).

In the present study, using the Sanger sequence of MT-TT gene, we identified 15 known variants in MT-TT gene were identified in a cohort of 352 Han Chinese subjects with LHON. These variants could have potential structural alterations and functional significance of MT-TT. In particular, these variants could affect the processing of the tRNAs from the primary transcripts, stability of the folded secondary structure, the charging of the tRNA, or the codon-anticodon interaction in the process of translation. Seven variants at tRNA stems, abolishing the Watson-Crick (WC) base pairs of mitochondrial tRNAs, likely lead to the tRNA aminoacylation, editing, and modification, which might result in low efficiency and accuracy of mitochondrial protein synthesis (Wang et al. 2018). The m.15908T > C mutation affected a highly conserved thymine at position 23 at the DHU-stem of MT-TT, destabilizing the conservative base pairing (12A-23T). That may alter the secondary structure and function of MT-TT, Two mutations at the acceptor stem 15951A > G and 15949G > A may alter the secondary structure and function

Figure 4. Classification tree of 20 complete mtDNA sequences, plus the revised Cambridge reference sequence (rCRS). The synonymous and non-synonymous coding-region variants in the mtDNA sequences are denoted by "/s" and "/ns," respectively. Variants in the ribosomal RNA genes and tRNA genes are denoted by "/r" and "/t." Recurrent mutations are underlined.

Table 4. mtDNA haplogroup from	1 Han Chinese LHON p	probands carrying MT-TT	variants and 376 control subject
--------------------------------	----------------------	-------------------------	----------------------------------

		Macrogr	oup M			Ν	<i>N</i> acrogroup	N	
Frequency of mtDNA haplogroup, %	D	G	M7	M8	А	В	Ν	H2	F
All subjects with <i>MT-TT</i> mutations, $n = 41$	29.3	4.9	2.4	4.9	2.4	31.7	2.4	4.9	17.1
Subjects with the m.15951A > G mutation, $n = 4$	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Subjects with the m.15927G > A mutation, $n = 8$	0.0	25.0	0.0	0.0	0.0	62.5	0.0	0.0	12.5
Subjects with the putative <i>MT-TT</i> mutations, $n = 20$	28.6	0.0	4.8	4.8	0.0	28.6	4.8	0.0	28.6
Control, $n = 376$	21.5	4.3	6.9	10.6	6.6	18.6	8.8	0.8	16.0

of tRNAs, as in the case of the *MT-TS* 7511T > C (A4) (Li et al. 2006) and *MT-TH* 12201T > C (U68) (Gong et al. 2014) mutations. Moreover, two variants (m.15924A > G and m.15928G > A) at the anticodon stem may affect the function of tRNAs, as in the case of the *MT-TT* 15927G > A mutation

(Jia et al. 2018; Zhang et al. 2018). Finally, m.15943T > C at the T-stem may also affect the structure and function of tRNAs. However, the functional significances of these putative LHON-associated tRNA variants should be further investigated.

TABLE 5.	LHON-associated	mtDNA	mutations	that	have	been	reported	in t	he	Mitomap	Websit
----------	-----------------	-------	-----------	------	------	------	----------	------	----	---------	--------

Top 21 primary	LHON mutations		Other candidate LHON mutations					
Gene	Mutation	Amino acid change	Gene	Mutation	Amino acid change			
MT-ND4	m.11778G > A	R340H	MT-ND1	m.3394T > C	Y30H			
MT-ND1	m.3460G > A	A52T		m.3472T > C	F56L			
	m.3866T > C	I187T		m.4025C > T	T240M			
<i>MT-ND6</i> L285P		m.14484T > C	M64V		m.4160T > C			
MT-ND1	m.3376G > A	E24K	MT-TM	m.4435A > G				
	m.3635G > A	S110N	MT-ND2	m.4640C > A	157M			
	m.3697G > A	G131S		m.5244G > A	G259S			
	m.3700G > A	A112T	MT-ATP6	m.9101T > C	I192T			
	m.3733G > A	E143K	MT-CO3	m.9804G > A	A200T			
	m.4171C > A	L289M	MT-ND3	m.10237T > C	160T			
MT-ND3	m.10197G > A	A47T	MT-ND4	m.11253T > C	I165T			
MT-ND4L	m.10663T > C	V65A		m.11696G > A	V312I			
MT-ND5	m.12338T > C	M1T	MT-ND5	m.12811T > C	Y159H			
	m.13051G > A	G239S		m.12848C > T	A171V			
	m.13094T > C	V253A		m.13637A > G	Q434R			
MT-ND6	m.14459G > A	A72V		m.13730G > A	G465E			
	m.14482C > A	M64I	MT-ND6	m.14279G > A	S132L			
	m.14482C > G	M64I		m.14325T > C	N117D			
	m.14495A > G	L60S		m.14498T > C	Y59C			
	m.14502T > C	158V		m.14596A > T	126M			
	m.14568C > T	G36S	MT-TE	m.14693A > G				
			MT-Cytb	m.14831G > A	A29T			
			MT-TT	m.15927G > A				
				m.15951A > G				

The failures in tRNA metabolisms caused by these putative LHON-associated variants would lead to the impairment of mitochondrial protein synthesis and deficient respirations, as in the case of other mitochondrial tRNA mutations (Li et al. 2006; Jiang et al. 2016; Xue et al. 2016; Jia et al. 2018; Zhang et al. 2018). The MT-TE m.14693A > G variant may act as modifiers influencing the phenotypic manifestation of LHONassociated m.3460G > A mutation (Tong et al. 2007). Furthermore, our previous investigation showed that MT-TM m.4435A > G and MT-TT m.15951A > G mutations modulate the phenotypic expression of the LHON-associated m.11778G > A mutation in Chinese families (Li et al. 2006; Qu et al. 2006). However, the tissue specificity of these tRNA variants is likely attributed to tissue-specific tRNA metabolism or the involvement of nuclear modifier genes (Dittmar et al. 2006; Chen et al. 2016). The homoplasmic nature of these mitochondrial tRNA variants hints to mild nature of mutations. These suggest that the tRNA variants may be insufficient to produce a clinical phenotype by itself but the inherited risk factor(s) is necessary for the development of LHON. Nuclear modifier genes, environmental and epigenetic factors, as well as personal lifestyles such as smoking and drinking may also contribute to the development of LHON in these subjects carrying the mtDNA variants (Carelli et al. 2016; Jiang et al. 2016).

Here, mtDNAs in 41 LHON families carrying the *MT-TT* variants were widely dispersed among 9 Eastern Asian subhaplogroups. Indeed, the occurrences of mtDNA haplogroups D in families carrying the m.15951A > G mutation were higher than those in controls. Moreover, the frequencies of mtDNAs in haplogroups G and B in eight Chinese families carrying the m.15927G > A mutation, while 20 pedigrees carrying one of nine putative variants were similar to those in controls. Thus, the frequencies of haplogroups G, B, and F in the LHON probands carrying the *MT-TT* mutations were significantly higher

than those in 478 Chinese controls and other Asian populations (Tanaka et al. 2004; Kong et al. 2006). mtDNA haplogroups M7b1'2 and M8a affect clinical expression of LHON in Chinese families with the m.11778G > A Mutation (Ji et al. 2008). This discrepancy implicates a role of mtDNA haplotypes in the phenotypic manifestation of LHON-associated mtDNA mutations (Liang et al. 2014; Jiang et al. 2015; Ji et al. 2016).

In summary, this is the first study to investigate the frequency and spectrum of mutations in *MT-TT* gene in Chinese subjects with LHON. The two known LHON-associated *MT-TT* mutations, m.15927G > A and m.15951A > G, in Chinese cohort accounted for 3.41% cases of 352 Chinese subjects with LHON. Furthermore, the nine putative LHON-associated mtDNA variants were the rare mutations, accounting for 5.66% cases in this Chinese cohort. A total of 41 subjects carrying one of the *MT-TT* mutations accounted for 9.07% cases of 352 Chinese subjects with LHON. These data further support that the *MT-TT* gene is a hotspot for mutations associated with LHON. Thus, our findings may provide valuable information for the further understanding of pathophysiology and management of LHON.

Availability of data and materials

The analyzed data and materials generated during the study are available from the corresponding author on reasonable request.

Ethical approval

The present study was approved by the Ethics Committee of Wenzhou Medical University. Written informed consent was obtained from each patient involved in the study.

Disclosure statement

All authors have no proprietary or commercial interest in any of materials discussed in this article.

Funding

This study was supported by a grant [81200724] from the National Natural Science Foundation of China, a Project from Zhejiang Province [2019RC219] and the Scientific Research and Development Grant from Eye Hospital of Wenzhou Medical University [YNCX3201901] to J. Z.

References

- Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N. 1999. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 23:147.
- Bandelt H-J, Kloss-Brandstätter A, Richards MB, Yao Y-G, Logan I. 2014. The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies. J Hum Genet. 59:66–77.
- Bandelt H-J, Salas A, Taylor RW, Yao Y-G. 2009. Exaggerated status of "novel" and "pathogenic" mtDNA sequence variants due to inadequate database searches. Hum Mutat. 30:191–196.
- Brown MD, Torroni A, Reckord CL, Wallace DC. 1995. Phylogenetic analysis of Leber's hereditary optic neuropathy mitochondrial DNA's indicates multiple independent occurrences of the common mutations. Hum Mutat. 6:311–325.
- Carelli V, d'Adamo P, Valentino ML, La Morgia C, Ross-Cisneros FN, Caporali L, Maresca A, Loguercio Polosa P, Barboni P, De Negri A, et al. 2016. Parsing the differences in affected with LHON: genetic versus environmental triggers of disease conversion. Brain. 139:e17.
- Carelli V, La Morgia C, Ross-Cisneros FN, Sadun AA. 2017. Optic neuropathies: the tip of the neurodegeneration iceberg. Hum Mol Genet. 26: R139–R150.
- Chen C, Chen Y, Guan MX. 2015. A peep into mitochondrial disorder: multifaceted from mitochondrial DNA mutations to nuclear gene modulation. Protein Cell 6:862–870.
- Chen D, Li F, Yang Q, Tian M, Zhang Z, Zhang Q, Chen Y, Guan M-X. 2016. The defective expression of gtpbp3 related to tRNA modification alters the mitochondrial function and development of zebrafish. Int J Biochem Cell Biol. 77:1–9.
- Dittmar KA, Goodenbour JM, Pan T. 2006. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2:e221.
- Gong S, Peng Y, Jiang P, Wang M, Fan M, Wang X, Zhou H, Li H, Yan Q, Huang T, et al. 2014. A deafness-associated tRNAHis mutation alters the mitochondrial function, ROS production and membrane potential. Nucleic Acids Res. 42:8039–8048.
- Howell N. 2003. LHON and other optic nerve atrophies: the mitochondrial connection. Dev Ophthalmol. 37:94–108.
- Jia X, Li S, Xiao X, Guo X, Zhang Q. 2006. Molecular epidemiology of mtDNA mutations in 903 Chinese families suspected with Leber hereditary optic neuropathy. J Hum Genet. 51:851–856.
- Jiang P, Jin X, Peng Y, Wang M, Liu H, Liu X, Zhang Z, Ji Y, Zhang J, Liang M, et al. 2016. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Hum Mol Genet. 25:584–596.
- Jiang P, Liang M, Zhang J, Gao Y, He Z, Yu H, Zhao F, Ji Y, Liu X, Zhang M, et al. 2015. Prevalence of mitochondrial ND4 mutations in 1281 Han Chinese subjects with Leber's hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 56:4778–4788.
- Ji Y, Jia X, Li S, Xiao X, Guo X, Zhang Q. 2010. Evaluation of the X-linked modifier loci for Leber hereditary optic neuropathy with the G11778A mutation in Chinese. Mol Vis. 16:416–424.

- Ji Y, Liang M, Zhang J, Zhu L, Zhang Z, Fu R, Liu X, Zhang M, Fu Q, Zhao F, et al. 2016. Mitochondrial ND1 variants in 1281 Chinese subjects with Leber's hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 57:2377–2389.
- Ji Y, Zhang A-M, Jia X, Zhang Y-P, Xiao X, Li S, Guo X, Bandelt H-J, Zhang Q, Yao Y-G, et al. 2008. Mitochondrial DNA haplogroups M7b1'2 and M8a affect clinical expression of Leber hereditary optic neuropathy in Chinese families with the m.11778G–>a mutation. Am J Hum Genet. 83:760–768.
- Jia Z, Zhang Y, Li Q, Ye Z, Liu Y, Fu C, Cang X, Wang M, Guan MX. 2018. A coronary artery disease-associated tRNAThr mutation altered mitochondrial function, apoptosis and angiogenesis. Nucleic Acids Res. 47(4):2056–2074.
- Jühling F, Mörl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J. 2009. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37:D159–D162.
- Jurkute N, Yu-Wai-Man P. 2017. Leber hereditary optic neuropathy: bridging the translational gap. Curr Opin Ophthalmol. 28:403–409.
- Kirchner S, Ignatova Z. 2015. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet. 16:98–112.
- Kong Q-P, Bandelt H-J, Sun C, Yao Y-G, Salas A, Achilli A, Wang C-Y, Zhong L, Zhu C-L, Wu S-F, et al. 2006. Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet. 15:2076–2086.
- Li R, Qu J, Zhou X, Tong Y, Hu Y, Qian Y, Lu F, Mo JQ, West CE, Guan M-X, et al. 2006. The mitochondrial tRNA(Thr) A15951G mutation may influence the phenotypic expression of the LHON-associated ND4 G11778A mutation in a Chinese family. Gene 376:79–86.
- Liang M, Jiang P, Li F, Zhang J, Ji Y, He Y, Xu M, Zhu J, Meng X, Zhao F, et al. 2014. Frequency and spectrum of mitochondrial ND6 mutations in 1218 Han Chinese subjects with Leber's hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 55:1321–1331.
- Liu X-L, Zhou X, Zhou J, Zhao F, Zhang J, Li C, Ji Y, Zhang Y, Wei Q-P, Sun Y-H, et al. 2011. Leber's hereditary optic neuropathy is associated with the T12338C mutation in mitochondrial ND5 gene in six Han Chinese families. Ophthalmology 118:978–985.
- Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D, Sarmady M, Procaccio V, Wallace DC. 2013. mtDNA variation and analysis using mitomap and mitomaster. Curr Protoc Bioinformatics. 44:1.23.21–26.
- Mackey DA, Oostra RJ, Rosenberg T, Nikoskelainen E, Bronte-Stewart J, Poulton J, Harding AE, Govan G, Bolhuis PA, Norby S, et al. 1996. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet. 59: 481–485.
- Mashima Y, Yamada K, Wakakura M, Kigasawa K, Kudoh J, Shimizu N, Oguchi Y. 1998. Spectrum of pathogenic mitochondrial DNA mutations and clinical features in Japanese families with Leber's hereditary optic neuropathy. Curr Eye Res. 17:403–408.
- Phasukkijwatana N, Kunhapan B, Stankovich J, Chuenkongkaew WL, Thomson R, Thornton T, Bahlo M, Mushiroda T, Nakamura Y, Mahasirimongkol S, et al. 2010. Genome-wide linkage scan and association study of PARL to the expression of LHON families in Thailand. Hum Genet. 128:39–49.
- Qu J, Li R, Zhou X, Tong Y, Lu F, Qian Y, Hu Y, Mo JQ, West CE, Guan M-X, et al. 2006. The novel A4435G mutation in the mitochondrial tRNAMet may modulate the phenotypic expression of the LHON-associated ND4 G11778A mutation. Invest Ophthalmol Vis Sci. 47:475–483.
- Qu J, Zhou X, Zhang J, Zhao F, Sun Y-H, Tong Y, Wei Q-P, Cai W, Yang L, West CE, et al. 2009. Extremely low penetrance of Leber's hereditary optic neuropathy in 8 Han Chinese families carrying the ND4 G11778A mutation. Ophthalmology 116:558–564 e553.
- Rieder MJ, Taylor SL, Tobe VO, Nickerson DA. 1998. Automating the identification of DNA variations using quality-based fluorescence resequencing: analysis of the human mitochondrial genome. Nucleic Acids Res. 26:967–973.
- Ruiz-Pesini E, Wallace DC. 2006. Evidence for adaptive selection acting on the tRNA and rRNA genes of human mitochondrial DNA. Hum Mutat. 27:1072–1081.
- Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, Yi C, Kreuziger J, Baldi P, Wallace DC, et al. 2007. An enhanced

MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 35:D823–D828.

- Shankar SP, Fingert JH, Carelli V, Valentino ML, King TM, Daiger SP, Salomao SR, Berezovsky A, Belfort R, Braun TA, et al. 2008. Evidence for a novel x-linked modifier locus for Leber hereditary optic neuropathy. Ophthalmic Genet. 29:17–24.
- Sprinzl M, Vassilenko KS. 2005. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 33:D139–D140.
- Tanaka M, Cabrera VM, González AM, Larruga JM, Takeyasu T, Fuku N, Guo L-J, Hirose R, Fujita Y, Kurata M, et al. 2004. Mitochondrial genome variation in Eastern Asia and the peopling of Japan. Genome Res. 14:1832–1850.
- Tong Y, Mao Y, Zhou X, Yang L, Zhang J, Cai W, Zhao F, Wang X, Lu F, Qu J, et al. 2007. The mitochondrial tRNA(Glu) A14693G mutation may influence the phenotypic manifestation of ND1 G3460A mutation in a Chinese family with Leber's hereditary optic neuropathy. Biochem Biophys Res Commun. 357:524–530.
- Wallace D, Singh G, Lott M, Hodge J, Schurr T, Lezza A, Elsas L, Nikoskelainen E. 1988. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science (New York, N.Y.). 242: 1427–1430.
- Wang Y, Zeng Q-Y, Zheng W-Q, Ji Q-Q, Zhou X-L, Wang E-D. 2018. A natural non-Watson-Crick base pair in human mitochondrial tRNAThr causes structural and functional susceptibility to local mutations. Nucleic Acids Res. 46:4662–4676.
- Xue L, Wang M, Li H, Wang H, Jiang F, Hou L, Geng J, Lin Z, Peng Y, Zhou H, et al. 2016. Mitochondrial tRNA mutations in 2070 Chinese Han subjects with hypertension. Mitochondrion. 30:208–221.

- Yu-Wai-Man P, Griffiths PG, Brown DT, et al. 2003. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet. 72:333–339.
- Yu-Wai-Man P, Griffiths PG, Chinnery PF. 2011. Mitochondrial optic neuropathies - disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 30:81–114.
- Zhang J, Jiang P, Jin X, et al. 2014. Leber's hereditary optic neuropathy caused by the homoplasmic ND1 m.3635G > A mutation in nine Han Chinese families. Mitochondrion. 18c:18–26.
- Zhang A-M, Bandelt H-J, Jia X, Zhang W, Li S, Yu D, Wang D, Zhuang X-Y, Zhang Q, Yao Y-G, et al. 2011. Is mitochondrial tRNA(phe) variant m.593T > C a synergistically pathogenic mutation in Chinese LHON families with m.11778G > A? PLoS One. 6:e26511.
- Zhang A-M, Jia X, Guo X, Zhang Q, Yao Y-G. 2012. Mitochondrial DNA mutation m.10680G > A is associated with Leber hereditary optic neuropathy in Chinese patients. J. Transl. Med. 10:43.
- Zhang A-M, Jia X, Zhang Q, Yao Y-G. 2010. No association between the SNPs (rs3749446 and rs1402000) in the PARL gene and LHON in Chinese patients with m.11778G > A. Hum Genet. 128:465–468.
- Zhang J, Ji Y, Liu X, Chen J, Wang B, Zhang M, Guan M-X. 2018. Leber's hereditary optic neuropathy caused by a mutation in mitochondrial tRNAThr gene in eight Chinese pedigrees. Mitochondrion 42:84–91.
- Zheng J, Ji Y, Guan MX. 2012. Mitochondrial tRNA mutations associated with deafness. Mitochondrion. 12:406–413.
- Zou Y, Jia X, Zhang A-M, Wang W-Z, Li S, Guo X, Kong Q-P, Zhang Q, Yao Y-G. 2010. The MT-ND1 and MT-ND5 genes are mutational hotspots for Chinese families with clinical features of LHON but lacking the three primary mutations. Biochem Biophys Res Commun. 399: 179–185.