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Genetically identical cells exhibit large variability (noise) in gene expression, with important consequences for cellular
function. Although the amount of noise decreases with and is thus partly determined by the mean expression level, the
extent to which different promoter sequences can deviate away from this trend is not fully known. Here, we present
a high-throughput method for measuring promoter-driven noise for thousands of designed synthetic promoters in
parallel. We use it to investigate how promoters encode different noise levels and find that the noise levels of promoters
with similar mean expression levels can vary more than one order of magnitude, with nucleosome-disfavoring sequences
resulting in lower noise and more transcription factor binding sites resulting in higher noise. We propose a kinetic model
of gene expression that takes into account the nonspecific DNA binding and one-dimensional sliding along the DNA,
which occurs when transcription factors search for their target sites. We show that this assumption can improve the
prediction of the mean-independent component of expression noise for our designed promoter sequences, suggesting that
a transcription factor target search may affect gene expression noise. Consistent with our findings in designed promoters,
we find that binding-site multiplicity in native promoters is associated with higher expression noise. Overall, our results
demonstrate that small changes in promoter DNA sequence can tune noise levels in a manner that is predictable and
partly decoupled from effects on the mean expression levels. These insights may assist in designing promoters with desired
noise levels.

[Supplemental material is available for this article.]

Stochastic cell-to-cell variability in gene expression (noise) can

lead to substantial phenotypic differences within a genetically

identical cell population grown in the same environment (Blake

et al. 2003; Munsky et al. 2012). Therefore, maintaining low or

high noise levels for specific genes may provide an evolutionary

advantage (Acar et al. 2008; Beaumont et al. 2009; Rainey et al.

2011). Indeed, genome-widemeasurements of protein levels reveal

that genes exhibit different levels of stochastic noise (Bar-Even

et al. 2006; Newman et al. 2006). These measurements display the

qualitative trend that is expected from a Poisson process of protein

production and degradation (Blake et al. 2003; Bar-Even et al. 2006;

Newman et al. 2006) in which noise decreases as mean expression

increases (Bar-Even et al. 2006; Newman et al. 2006). However, the

measured relationship betweennoise andmeanexpression does not

quantitatively match a Poisson process (Blake et al. 2003; Bar-Even

et al. 2006; Newman et al. 2006), and the results fit better to amodel

in which genes are transcribed in bursts that partly result from

promoters switching between active and inactive transcriptional

states (Paulsson 2004; Raser and O’Shea 2004; Friedman et al. 2006;

So et al. 2011). In this model, noise is affected by both the rate of

transcriptional activation and the size of the transcriptional bursts

(the number of mRNA molecules produced at each instance of

promoter activation) (Sherman and Cohen 2014) and the number

of proteins produced from each mRNA. Therefore, according to

this model, promoters can encode different combinations of

expression mean and noise by modulating transcriptional burst-

ing, as shown experimentally in several studies (Ozbudak et al.

2002; Choi and Kim 2009; Amit et al. 2011; Hornung et al. 2012;

Raveh-Sadka et al. 2012; Dadiani et al. 2013). However, we have

a poor understanding of the extent to which promoters regulate

noise beyond the level that is dictated by the mean and the se-

quence features by which such regulation is encoded.

Genome-widemeasurements of protein levels (Newman et al.

2006; Stewart-Ornstein et al. 2012) do not isolate the effect of the

promoter, since they represent the combined effect of all layers of

regulation. In addition, the local chromatin structure of the gene

may also affect its level of expression noise (Batenchuk et al. 2011).

One way to isolate this effect is to integrate the tested promoter

upstream of a reporter gene and within a fixed genomic context.

Moreover, since the sequence of native promoters differs by many

parameters, mutated versions of native promoters (Hornung et al.

2012), synthetic promoters built by random ligation of several

building blocks (Mogno et al. 2010), or designed synthetic pro-

moters (Murphy et al. 2007; Amit et al. 2011; Raveh-Sadka et al.

2012; Carey et al. 2013; Dadiani et al. 2013) are more suitable for

studying the rules by which promoter sequence affects noise.

Previous such studies show that nucleosome-disfavoring se-

quences increase expression and reduce noise (Choi andKim2009;
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Raveh-Sadka et al. 2012; Dadiani et al. 2013), whereas an equiva-

lent increase in mean expression that results from the addition of

an activator binding site increases noise (Dadiani et al. 2013), and

TATA boxes have little effect on noise (Mogno et al. 2010). How-

ever, due to the difficulties of constructing synthetic promoters,

these studies were done on at most dozens of promoters. Thus,

since no effective high-throughput method of measuring pro-

moter-driven noise exists, the effect on noise of much of the pos-

sible combinatorial complexity of promoter architecture has not

been tested to date.

Here, we study the effect of promoter sequence on noise in

gene expression using noise measurements of thousands of fully

designed synthetic promoters with systematic changes to the

number, location, and spacing of several regulatory elements. For

this aim, we devised a novel high-throughput method, which is

an extension of our previously developed method (Sharon et al.

2012) that enables us to obtain these thousands of different noise

measurements in a single experiment with a high agreement to

measurements of isolated strains (Pearson’s R2 = 0.80) and high

reproducibility (Pearson’s R2 = 0.78). Notably, we found that pro-

moters with similar mean expression levels in this set can vary by

more than one order of magnitude in their noise levels, and that

this large variation is similar to the variation found in native pro-

moters (Bar-Even et al. 2006; Carey et al. 2013). By examining the

effect of various promoter sequence elements on expression, we

find that nucleosome-disfavoring sequences in the promoter in-

crease expression and decrease noise in a manner that correlates

with their length, consistent with observations on small sets of

promoters (Raveh-Sadka et al. 2012). In addition, we find that

larger and more dense clusters of transcriptional activator binding

sites yield noisier expression for a givenmean expression level. We

show that a simple linear model can predict a large part of the

variation in noise that is independent of themean expression, and

that fitting two alternative kinetic models to the data, which as-

sume different transcription factorDNAbinding schemes, suggests

that nonspecific DNA binding and one-dimensional sliding along

the DNA of transcription factors may play a role in how promoter

sequence affects noise (Li et al. 2009; Hammar et al. 2012). Finally,

we show that in native genes, binding-site multiplicity is associ-

ated with higher noise.

Our work presents the largest measurement to date of pro-

moter-driven noise and an investigation of how small and system-

atic changes in the promoter sequence affect single-cell expression.

The insights afforded by our work may provide the ability to tune

noise with little effect on mean expression and enhance our un-

derstanding of how native promoters encode their noise levels. In

addition, the method presented in this work, which achieves at

least an order of magnitude more data points than previous stud-

ies, is scalable to other systems and organisms and should be

a useful tool for studyingDNA-encoded single-cell gene expression

in various systems.

Results

Measuring the noise of thousands of designed promoters

To study the rules by which promoter sequences determine noise,

we used a set of 6500 designed synthetic promoters with system-

atic manipulations to the affinity, location, spacing, and several

different regulatory elements. By devising new analysis methods

for an experimental approach that we previously developed

(Sharon et al. 2012), we extracted accurate noisemeasurements for

each of these promoters. Briefly, a pool of cells containing all 6500

promoters (one promoter per cell with each promoter integrated

upstream of a yellow fluorescent protein [YFP]) are first sorted by

their YFP expression level into 32 expression bins using fluores-

cence-activated cell sorting (FACS). Next, the promoters of every

expression bin are amplified and sequenced using parallel se-

quencing. By counting the number of sequencing reads obtained

for each strain in every expression bin, we reconstruct the single-

cell expression distribution of each promoter and from it, extract

both its mean expression and noise (Fig. 1A–C; see Methods). We

found that our method is highly reproducible across replicates in

terms of mean expression (Pearson’s R2 = 0.99) (Supplemental Fig.

S1C), noise (Pearson’s R2 = 0.78) (Supplemental Fig. S1A, measured

as the variance divided by the mean squared, also termed the

squared coefficient of variation [CV2]), andnoise strength (Pearson’s

R2 = 0.75) (Supplemental Fig. S1B, measured as the variance di-

vided by the mean, also termed the Fano factor). More impor-

tantly, our measurements are highly accurate compared to mea-

surements of 54 isolated strains for mean (Pearson’s R2 = 0.97)

Figure 1. Measuring the single-cell gene expression distribution of thousands of designed promoter sequences within a single experiment. (A) Cells of
the pooled library of 6500 strains are sorted into 32 expression bins. (B) The single-cell expression distribution of each strain is reconstructed by de-
termining the fraction of cells that contain each promoter in every expression bin using parallel sequencing of the promoter region. Shown are single-cell
expression distributions of six strains from the library. The mean, noise, and noise strength of each strain are then extracted from these distributions (see
Methods). (C ) Shown is the mean expression (x-axis) and noise (y-axis) of each of the 6500 different library strains. Colored points correspond to the six
strains shown in B. Also shown is a vertical line corresponding to a nearly two orders of magnitude range in noise.
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(Supplemental Fig. S1F), noise (Pearson’s R2 = 0.80) (Supplemental

Fig. S1D), and noise strength (Pearson’s R2 = 0.88) (Supplemental

Fig. S1E). Thus, these results show that our approach can measure

the noise of thousands of fully designedpromoters with an accuracy

that approaches that obtained when constructing and measuring

each strain individually.

Examining the range of values spanned by our library, we

found that the dynamic range of both the mean expression and

the noise of our synthetic promoters is similar to that of native

promoters, suggesting that our library is highly relevant for native

transcriptional regulation (Supplemental Fig. S2). Notably, the

noise levels of our synthetic promoters span more than one order

of magnitude even at similar mean expression levels (Fig. 1C).

Since we designed the library such that many promoters differ by

a small number of base pair changes (e.g., changes to a single TFBS

location or affinity), these results demonstrate that even small base

pair changes may result in large effects on noise.

Promoter sequence features determine the relationship
between expression mean and noise

To study the rules by which promoter sequence determines gene

expression noise, we examined the effect on noise of systematic

changes to the number and length of poly(dT:dA) nucleosome-

disfavoring elements and to the number, location, and spacing of

transcription factor binding sites (TFBSs). For poly(dT:dA) tracts,

we compared the expression of 1268 pairs of promoters that each

differ by only a single insertion of a 15-bp tract and found that

addition of such tracts results in a significant increase in the mean

expression (Supplemental Fig. S3A, Student’s t-test P < 10�170;

Supplemental Fig. S3D, median increase of 86% with 95% confi-

dence intervals [CI]: 76%–93%) and a significant decrease in the

noise (Supplemental Fig. S3B, Student’s t-test P < 10�26; Supple-

mental Fig. S3D, median decrease of 60% with 95% CI: 57%–63%)

but has a significant though relatively smaller effect on the noise

strength (Supplemental Fig. S3C, Student’s t-test P < 10�3; Sup-

plemental Fig. S3D, median decrease of 12% with 95% CI: 7%–

16%). Consistent with this effect of poly(dT:dA) tracts, we also

found that longer tracts, and separately,more tracts, increasemean

expression, decrease noise, and have little effect on noise strength

(Fig. 2A; Supplemental Figs. S4, S5). Assuming the promoter ON-

OFF switching model (Raser and O’Shea 2004), these results are

qualitatively in line with poly(dT:dA) tracts increasing expression

mainly through an increase in the promoter on-switching rate

(burst frequency) rather than through an increase in promoter

transcription rate (which is linearly correlated with burst size) (see

Supplemental Material for an investigation of this model).

Next, we compared the effect on noise of increasing themean

expression by adding an activator binding site versus adding a poly

(dT:dA) tract, because a recent study that we performed on a few

strains showed that these two different strategies for increasing the

mean expressionhave opposing effects onnoise.Notably, in 309 of

417 (74%) promoters from our library, for which adding a poly(dT:

dA) tract resulted in a similar increase in mean expression as did

addition of an activator binding site, adding a poly(dT:dA) tract

resulted in significantly lower noise (binomial test P < 10�22) (Fig.

2B; Supplemental Fig. S6). These results thus considerably expand

the scope of our previous observations (Dadiani et al. 2013) and

suggest that nucleosome-disfavoring sequences are an efficient

tool for increasing expression while maintaining low noise.

To examine the effect of varying the number and configura-

tion of transcription activator binding sites on noise, we examined

a set of 643 promoters that contains 0–7 Gcn4 binding sites in

various positions and background sequences. Notably, we found

that for a given expression level, promoters that contain more

Gcn4 binding sites are noisier (ANOVA test P < 10�19) (Fig. 2C;

Supplemental Fig. S7). This result also holds in a set of 443 pro-

moters with up to two binding sites for the transcription activator

Leu3 (Supplemental Fig. S8). These results thus suggest that in-

creasing the number of binding sites of transcription activating

factors will result in noisier expression.

Figure 2. (Legend on next page)
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To quantify the effect of promoter sequence features on the

mean-independent component of noise, we constructed a linear

model that predicts mean expression from promoter sequence fea-

tures and noise from either mean expression or from both mean

expression and promoter sequence features. We applied this model

to two sets of promoters, one consisting of 457 promoters with

a single Gcn4 binding site in various configurations and another

consisting of 128 promoters with multiple Gcn4 binding sites (all

combinations of placing 0–7Gcn4binding sites in seven predefined

positions). We evaluated the performance of our model using

a fivefold cross-validation, in which we split the data into five

subsets and predicted the expression of each promoter using

amodel thatwas trained on the four subsets that did not include the

predicted promoter (Fig. 3; Supplemental Figs. S9, S10). Notably, we

found that although mean expression alone explains nearly two-

thirds (Pearson’s R2 = 0.63; Spearman’s r = 0.74) and one-third

(Pearson’s R2 = 0.33; Spearman’s r = 0.68) of the noise in both pro-

moter sets (Fig. 3A,D), more than half of the remaining noise can be

explained by adding only a few sequence features to the model

(Pearson’s R2 = 0.82; Spearman’s r = 0.89; Pearson’s R2 = 0.77;

Spearman’s r = 0.88, respectively) (Fig. 3B,E). Examining the set of

features used by the model (via their respective standardized

weights; see Methods for details), we found that TFBS affinity and

multiplicity are the strongest predictors of the mean-independent

component of noise (Fig. 3C,F). We note that the latter might be

expected because it is the major parameter changing between

promoters. Since part of the variation in our data is due to ex-

perimental error (Supplemental Fig. S1), the preceding values are

likely an underestimation. Overall, these results demonstrate that

a simple combination of changes to properties of nucleosome-

disfavoring elements and TF binding sites can account for much

of the effect of promoter sequence on the mean-independent

component of noise.

A kinetic model of transcription factor target search can partly
explain the mean-independent expression noise

To obtain insights into the mechanism by which noise increases

with TFBS number, we explored the possibility that this effect

partly results from the way in which TFs search for their target

sites. Transcription factors are known to search for their sites

through some combination of nonspecific DNA binding via three-

dimensional (3D) diffusion and subsequent sliding across

the DNA via one-dimensional (1D) diffusion (Hammar et al.

2012; Khazanov et al. 2013). However, the extent to which these

mechanisms affect transcriptional regulation is not well under-

stood. A recent study (Hammar et al. 2012) showed that adjacent

TFBSs result in slower binding rates to each site, likely because a TF

molecule bound to one of the sites may limit the size of the region

in which a second TF molecule can slide in search of its target.

Based on this observation, we hypothesized that if 1D sliding is

indeed a major determinant of TF binding rate, then promoters

with multiple sites may have relatively slower TF binding kinetics

and therefore slower switching rates between transcriptionally

active and inactive states, possibly resulting in noisier expression.

To examine this hypothesis, we modeled a set of promoters

withmultiple Gcn4 binding sites (all 128 combinations of 0–7 sites

at seven predefined positions in two different sequence contexts

that differ by their GC content) using two models that differ in

their assumptions about how TFs search for their target sites. The

first model (denoted 3Dmodel) assumes that TFs search their sites

using only 3D-diffusion, whereas the second (denoted 3D+1D

model) assumes a combination of 3D-diffusion and 1D-sliding.

Therefore, in the second model, the presence of a binding site can

affect TF binding to a neighboring site, whereas in the first model,

the TF binds directly to each site independently of other neigh-

boring sites. The parameters of both models were the same except

for an additional TF sliding distance parameter in the 3D + 1D

model (see Methods for details). For bothmodels, we predict mean

expression and noise by mapping each binding site configuration

to a unique kinetic scheme that is simulated or solved analytically

(Fig. 4A, see Methods). We used a fivefold cross-validation scheme

to compare the ability of the two models to predict the expression

mean and noise (Fig. 4B,C). We estimated their performance both

using the coefficient of determination (R2) and the Spearman’s

rank correlation coefficient (r) of the predictions to the measure-

ments. We found that the performance of the 3D + 1D model on

expressionmean (R2
3D+1D = 0.806 0.05; r3D+1D = 0.866 0.08) and

expression noise (R2
3D+1D = 0.51 6 0.15; r3D+1D = 0.77 6 0.9) is

significantly better than the performance of the 3D model on ex-

pression mean (R2
3D = 0.68 6 0.09; r3D = 0.83 6 0.05) and ex-

pression noise (R2
3D = 0.17 6 0.2; r3D = 0.57 6 1.3) as shown by

a Wilcoxon rank sum test on the distributions of R2 values for

mean (P < 10�7) and noise (P < 10�6) and on the distributions of

Spearman’s correlation (r) values formean (P < 0.05) and noise (P <

10�6). Although additional mechanisms, such as cooperative

binding (Giniger and Ptashne 1988; Miller and Widom 2003) and

allosteric effects (Amit et al. 2011; Kim et al. 2013) likely have ef-

fects, these results suggest TF 1D sliding along the DNA as another

mechanism which may affect gene expression noise and could

explain the observation that more TF binding sites result in higher

noise for the same mean expression level. Consistent with this

idea, we found that native promoters (Stewart-Ornstein et al. 2012)

with higher affinity to TFs (Basehoar et al. 2004; MacIsaac et al.

2006; Portales-Casamar et al. 2010; Pachkov et al. 2013) or with

higher levels of TF binding (Venters et al. 2011) drive noisier gene

expression (Supplemental Fig. S13).

Discussion
In summary, we presented the first large-scale investigation of fully

designed systematic changes to promoter sequence features on

single-cell gene expression. For this aim, we developed a high-

throughput approach that produces highly accurate and re-

producible noise measurements for thousands of fully designed

sequences in a single experiment. We found that the noise of pro-

moters with similar mean expression can varymore than one order

Figure 2. The effect of nucleosome-disfavoring sequences and number
of binding sites on noise. (A) Mean expression and noise of 182 promoters
with zero (blue points), one (light blue points), or two (red points) poly
(dT:dA) of length 15 bp and a single Gcn4 site. Note that promoters with
more poly(dT:dA) tend to have higher expression and lower noise. (B)
Shown is a comparison of the effect on expression noise of increasing the
mean expression either by adding a TF binding site or by adding a nu-
cleosome-disfavoring sequence. Shown are 417 promoter pairs in which
adding a TF binding site or a poly(dT:dA) tract resulted in a similar increase
of themean expression (all promoters were divided into 50 bins according
to their log expression values, and promoters that share a bin are con-
sidered to have similar expression levels). In 309 (74%) of these 417
promoter pairs, adding a TF site resulted in noisier expression as compared
to adding a nucleosome-disfavoring sequence (binomial test P < 10�22).
(C ) Mean expression and noise of 643 promoters with zero (dark blue
points) to seven (dark red points) binding sites of Gcn4 and no other TF.
The black arrows (A,C ) point in the direction of expression and noise
change. Note the general increase in both expressionmean and noise that
results in the addition of Gcn4 binding sites.
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of magnitude, indicating that promoter sequence has a major effect

on noise beyond that which is mediated by the promoter’s mean

expression level. Specifically,we found that nucleosome-disfavoring

sequences increase expression and reduce noise, and promoters

with more transcriptional activator binding sites exhibit higher

noise. A linear model based on a small number of simple sequence

features, in a controlled setting, can predict much of the mean-

independent effect of promoter sequence on noise. We note that

although our model explains our synthetic designed promoters,

further development is required in order to apply similarmodels in

more general settings, i.e., on native promoter sequences. Finally,

we fit to our measurements two kinetic models of gene expres-

sion—one that assumes only TF three-dimensional diffusion and

a second model that assumes also TF one-dimensional sliding

along the DNA. The latter is able to better explain our measure-

ments, and therefore suggests that changes in binding kinetics,

when sites are clustered and due to one-dimensional sliding of TFs

along the DNA, may have an effect on expression noise.

We note that in our experimental system, the sole difference

between the strains is their promoter DNA sequence. Therefore, we

assume that the differences in mean expression and noise that we

measured are a result of changes to the binding kinetics of the

transcriptional machinery, in turn affecting the size and the

frequency of transcriptional bursts. In other words, we assume

that expression mean and noise changes reflect changes in

transcriptional bursting mediated by promoter DNA sequence

changes. Although we and others (Weinberger et al. 2005; Blake

et al. 2006; Raj et al. 2006; Zenklusen et al. 2008; Hornung et al.

2012; Carey et al. 2013; Dadiani et al. 2013) have previously

found convincing evidence for the validity of this assumption,

further work is necessary to prove if and to what extent tran-

scriptional bursting can have effects on noise at the protein level,

since this assumption was only proven for protein bursting

(Friedman et al. 2006).

In line with the preceding interpretation of the results and

assuming a promoter ON-OFF switching model (Raser and O’Shea

2004), our finding that nucleosome-disfavoring sequences in-

crease expression and reduce noise with significant though much

smaller effect on noise strength suggests that these elements may

increase expression mainly by increasing the promoter activation

frequency (promoter ON switching rate), perhaps by increasing

the promoter’s accessibility to transcriptional activators. This re-

sult is consistent with previous findings observed with a small set

of promoters (Raveh-Sadka et al. 2012; Dadiani et al. 2013).

Figure 3. A linear model based on promoter sequence features predicts a large fraction of the mean-independent component of the noise. (A,B,D,E)
Shown is a comparison of the predicted (x-axis) and measured (y-axis) noise for a model that predicts noise using only mean expression (A,D) and for
a model that also incorporates promoter sequence features (B,E). Results are shown for promoters with a single Gcn4 site (A,B) or multiple sites (D,E). The
noise of each promoter was predicted using amodel that was trained on the four subsets that did not include the promoter, out of five equally sized subsets
amongwhichwe split the data. Pearson’s R-squared value (R2) and Spearman’s rank correlation coefficient (r) are shown in eachmodel plot (A,B,D,E). (C,F)
The weights of the sequence features used in the linear models presented in B and E (the weight of the expression mean is not shown). The weights
correspond to the absolute value of the relative contribution of each feature to the prediction of the noise component that is independent of the mean.
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We also found that other sequence features, such as the af-

finity, number, and configuration of binding sites, affect themean-

independent component of the noise, and amodel based solely on

DNA sequence features can predict a large part of the expression

mean and noise. This modeling task benefits from the controlled

setting of our synthetic promoter library; and although it is beyond

the scope of this work, applying such models to native promoters

can improve our understanding of transcriptional regulation in

native settings.

Another notable finding is that the number and relative

spacing of TF binding sites may have large effects on noise. We

observed that promoters with larger and denser clusters of sites

give a higher noise level for a given mean expression in both our

designed promoters. Although such direct observation on native

promoters is still difficult due to their higher complexity, we did

find evidence for this behavior also in native promoters (Supple-

mental Fig. S13). In search of a mechanism that can explain this

observation, we suggested a novel model of expression regulation

that integrates TFs searching for their targets using a combination

of 3D diffusion and 1D sliding (Hammar et al. 2012) into the

commonmodel of transcription regulation that considers only 3D

diffusion of TFs (Gertz et al. 2009). We fitted these kinetic models

to expression measurements of promoters with all combinations

of seven predefined binding sites in two sequence contexts and

found that including 1D sliding significantly improves predicting

the expression mean and noise. Therefore, we suggest that slower

TF binding kinetics, due to decreased 1D sliding of TFs, may in part

explain how the number and configuration of binding sites can

affect promoter noise levels. Although it is known that TFs find

their targets by a combination of 3D diffusion and 1D sliding along

the DNA, the relative contribution of each of these mechanisms to

the resulting expression behavior is not well understood. Since

homotypic TFBS clustering is a general organization principle of

cis-regulatory regions, as suggested by enrichment of such clusters

in proximal promoters and distal enhancers and by their conser-

vation between vertebrate and invertebrates (Wunderlich and

Mirny 2009; Gotea et al. 2010; Weingarten-Gabbay and Segal

2014), it is important to understand their effect on dynamics of

transcription. Our results, combined with our findings in native

genes, suggest that competitive binding, as a result of densely

clustered binding sites, may be a mechanism that affects the ex-

pression noise of native promoters. Since native promoters alone

are possibly too diverse to perform a structural investigation on, it

will be interesting to conduct a similar study on a library of native

and mutated promoters. Although our kinetic modeling scheme is

limited in several aspects, because it ignores chromatin effects and

other more complex models of transcription initiation, and as-

sumes that transcriptional bursting is in part controlled by DNA

Figure 4. The effect of multiple transcription factor binding sites on noise is largely mediated by 1D sliding of the cognate transcription factor. For each
promoter with a different number and configuration of seven possible TFBS (A, top), we constructed a kinetic model. Each of the 127 possible config-
urations was represented by a unique kinetic scheme and transition matrix (A,middle). The rate parameters of the reactions in the matrix were computed
from the free parameters of the model using one of two alternative mappings that assume either that TFs search for their target through 3D diffusion (B,
left) or that they do so by a combination of 3D and 1D diffusion (B, right). The transition matrix, together with reactions for transcription, translation, and
mRNA and protein degradation, were simulated and solved analytically to obtain the steady-statemean protein abundance and noise (A, bottom). (C ) The
free parameters of the models were fitted in a leave-one-out cross-validation and the predictions (x-axis) of mean expression and CV2 were compared to
the measured (y-axis) (see Supplemental Fig. S12 for a 10-fold cross-validation). The results show that the model that incorporates both 3D and 1D
diffusion performs significantly better for both mean expression and noise than the model that assumes only 3D diffusion.
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sequence and has significant effect on the noise, its ability to fit

(in cross-validation) both mean expression and noise better than

a model that ignores one-dimensional sliding may suggest that

TF 1D diffusion behavior has some non-negligible consequences

for transcriptional noise and may be considered in any future

models of transcriptional regulation. In other words, although

further study is needed to prove the underling mechanisms, our

work can stimulate further research in this direction. Our results

may also have implications for the understanding of the selective

pressure shaping promoter sequences because the organism may

benefit from maintaining either low or high noise for specific

genes. Evidence of such selection is present in the finding that

yeast stress genes are noisier (Bar-Even et al. 2006; Newman et al.

2006).

Our approach has several limitations. First, the quality of our

pooled noise measurements is not as accurate as measuring isolated

strains. Second, although we analyze a relatively uniform cell pop-

ulation and normalize by our fixed promoter regulated mCherry

(red fluorescence) level, our results may include a pathway-specific

extrinsic noise component. However, previous work in our labora-

tory showed that the level of such noise is low (less than the lowest

observednoise level) (Carey et al. 2013), and that it accurately agrees

with a dual reporter assay that onlymeasures intrinsic noise (Elowitz

et al. 2002). Third, we assume that changes in transcriptional

bursting can be observed from changes in the protein level noise

(i.e., higher noise is bigger bursts). Although this has been sug-

gested in several studies (Elowitz et al. 2002; Cai et al. 2006;

Friedman et al. 2006; Pedraza and Paulsson 2008; Hornung et al.

2012) and previous work in our laboratory showed convincing

evidence that transcriptional bursting as measured by time-lapse

microscopy (Dadiani et al. 2013) can, at least in part, be con-

trolled by promoter sequence,much understanding is still lacking

on the validity and significance of this mechanism. We note that

our measured protein abundance distributions reflect bursts of

both transcription and translation (from the produced mRNAs

following the activation of the promoter). Fourth, current data

processing filters out promoters deriving multimodal expression

distribution. Since none of the isolated strains showed multi-

modal distributions and almost all of our promoters have at least

75% of their reads within a single distribution peak, we do not

expect that this filter removed a considerable number of pro-

moters that derive true multimodal expression distribution;

however, removing this filter is advised if the tested promoters

may produce such distributions. Fifth, since in our method the

promoters are integrated into plasmids in a fixed position, we do

not measure the effect of the local chromatin structure on the

promoter function (Batenchuk et al. 2011). It would be in-

teresting to investigate this effect by measuring the function of

our set of promoters in various genomic contexts. Finally, we note

that since the core promoter used by our library is fixed and

contains a TATA box, our results are limited to TATA-containing

core promoters. Since TATA-containing promoters are associated

with higher noise (Tirosh and Barkai 2008; Choi and Kim 2009;

Lehner 2010), it will be interesting to examine synthetic pro-

moters in the context of TATA-less promoters. In spite of these

limitations, our ability to measure the noise of thousands of se-

quences within a single experiment paves the way for examining

the effect on noise of other promoter sequence features and of

other regulatory layers such as post-transcriptional and trans-

lational regulation.

Taken together, we presented a method for measuring

designed promoter-driven noise in high-throughput and found

that promoter sequence has profound effects on gene expression

noise, and that many of these effects are independent of the effect

mediated by the mean expression level. Aside from the biological

insights that our results provide on the extent to which different

types of DNA sequence elements affect cell-to-cell expression

variability, our experimental framework offers powerful means by

which further research in this field may be carried out.

Methods

Promoter library design construction and measurements
The promoter library was designed, constructed, and measured as
described in Sharon et al. (2012), except for the differences below.
Briefly, a large collection of synthetic promoter reporter gene
strains was generated by a pooled ligation of 6500 fully designed
DNA oligos (obtained by synthesis on a microarray by Agilent
Technologies) (LeProust et al. 2010). The oligos were ligated up-
stream to a yellow fluorescent protein (YFP) gene with a short
(100 bp) core promoter sequence taken from HIS3 gene promoter
and into a low copy plasmid that also contains a TEF2 promoter
deriving red fluorescent protein (mCherry). The resulting plasmids
were then transformed into yeast (S. cerevisiae, strains: Y8205).
Next, the pool of cells was grown in amino acid starvation con-
dition (SCD without amino acid except histidine) and sorted
according to their YFP expression level into 32 expression bins
(mCherry was used for gating one plasmid copy cell and for nor-
malization). The DNA of the promoters in each bin was then
amplified and sent to multiplexed parallel sequencing. Each se-
quencing result was mapped to a specific promoter and expression
bin, resulting in a distribution of cells that contain each promoter
across all expression bins.

The following differences were applied relative to the de-
scription in Sharon et al. (2012). The medium used both for
growing the cells and for their sorting was SC-Glu-URA (synthetic
complete media with 2% glucose and without uracil) medium
without amino acids, except for histidine. In order to achieve ex-
pression distributions with high resolution that would allow good
assessment of expression noise, the library cells were sorted into 32
bins according to their ratio of YFP and mCherry expression level,
thereby normalizing for extrinsic noise effects. Each of the two
extreme expression bins contained 2%of the library cells, and each
of the remaining 30 bins contained 3.2%. We collected a total of
10,000,000 cells. As previously described, the mapping of cells to
bins involves parallel sequencing of the amplified promoter regions.
For this purpose, IlluminaHiSeq2000was used to obtain>30,000,000
mapped reads. The two replicates were separately generated from
the ssDNA oligo library and separately measured as described
above.

High-throughput measurement of expression mean
and variance

For each promoter, the fraction of cells with that promoter in each
expression bin was estimated as described in Sharon et al. (2012).
Several new computational procedures were then applied to filter
and improve the accuracy of the results (see also Supplemental
Material). First, strains that were represented by less than 1000
sequencing reads (20% of the library) were filtered. Second, the
distribution of each strain across the expression bins was exam-
ined, and the peak that contained the largest fraction of cells of
each strain was detected. The small fraction of cells outside of the
main peak was considered as technical noise and therefore set to
zero. Note that this assumes that the distribution is not multi-
modal, which holds for all of the isolated strains and therefore is
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most likely for the entire library. Of the strains for which the largest
peak contained <75% of the cells, 2.2% were filtered out (Supple-
mental Fig. S13A). Third, to further reduce the technical noise,
a gamma distribution was fitted to the cells’ distribution across the
bins (usingMATLAB [MATLAB and Statistics Toolbox Release 2012b,
The MathWorks]). Of the strains for which gamma fitting could
explain <80% of the variance of cells’ distribution across the bins,
2.4% were filtered out (Supplemental Fig. S13B), and the gamma
distributionwas used to compute themean and variance for the rest.
Finally, 5.8% of the cells for which the two replicates gave sub-
stantially different results (the 2.5% and 5% of smallest/largest ratio
of the two replicates’ mean and noise values, respectively, of un-
filtered data) were filtered out to get the final accurate results for
;65% of the designed library strains.

Linear model of expression mean and noise with elastic-net
regularization

The sets of promoters were used to learn a regularized linear re-
gression model from sequence features that predicts the value of
mean expression, noise (CV2), and noise strength (Fano factor).
Learning was done using a fivefold cross-validation scheme,
whereby model parameter fitting was done only on training data,
and the model was evaluated on the held-out test data. The model
was regularized using elastic-net (Zou and Hastie 2005), where the
value of lambda (the penalty coefficient) was learned using a five-
fold internal cross-validation scheme on the training data (i.e.,
internally partitioning the training data to learning and validation
sets) and selecting the value that gave best results on the validation
set. The training R2 was calculated as the average R2 achieved using
internal cross-validation on the training set.

Kinetic model of gene expression

Gene expression is a function of TF binding to the promoter.
Therefore, the way in which TFs find their target has implications
for gene expression output. A recent study (Hammar et al. 2012)
presented two observations regarding TF search. First, it showed
that the proximity of two TFBSs affects the time that it takes the TF
to bind them (Kon) in a manner that depends on the distance be-
tween the sites. Second, the study showed that a DNA-bound
protein increases both the time between binding events (Kon) and
the bound TF dissociation (Koff) of a neighboring TFBS. These ideas
were used to integrate different mechanisms of TF search in
a model of gene expression.

Mean expression and expression noise for the set of all 27

combinations of seven TF binding sites in two sequence contexts
(see Supplemental Table S1) was predicted by mapping each pro-
moter configuration to a unique kinetic scheme in which the
reactions represent either binding or unbinding events at the
promoter. A promoter that has N sites has 2N possible promoter
states (each site is either bound or not bound) for which the
transitions between them are defined by a transition matrix K,
where Kij is the rate of going from state j to state i. Only binding or
unbinding events a single site at a time are allowed; all other re-
action rates are set to zero. Each promoter state has a transcription
rate defined in vector r, where ri is the transcription rate of state i.
This system was solved analytically by following the procedure de-
scribed by Sanchez et al. (2011) and assuming translation to happen
instantaneously, i.e., that the mRNA half-life is much shorter than
the protein half-life, so that it can be assumed that the number of
proteins produced per mRNA follows a geometric distribution with
mean (burst size) b. Proteindegradationhappenswith rate delta, but
is mostly a result of dilution from cell division due to the high sta-
bility of the fluorescent reporter. The described kinetic scheme is

solved analytically using the Master equation to obtain the mean
protein abundance and noise. Alternatively, the kinetic scheme
was solved numerically using stochastic simulations (Gillespie
algorithm) (Gillespie 1977).Wenote that bothmethods gave similar
results (R2 = 0.99) (see Supplemental Fig. S14).

Although the free parameter values of the model can be con-
strained to a biologically meaningful regime (see Supplemental
Material), the values of the free parameters were learned from our
measured data. In order to prevent overfitting, a 10-fold cross-vali-
dation schemewas used inwhich themodel performancewas tested
on a held-out subset of the data that was not used for learning.

For each of the two alternative models, a different mapping
between the free parameters of themodel and the transitionmatrix
K was specified. The 3D diffusion, specific-binding-only model
assumes that binding happens only at the specific site. All rates in
this model are independent of neighboring sites or bound TFs. The
nonspecific binding and 1D diffusion model assumes a general
nonspecific binding and unbinding rate and unique binding and
unbinding rates for each of the seven binding sites. Therefore, the
effective rates of binding and unbinding were computed using the
equations presented by Hammar et al. (2012) in which a 1D dif-
fusion coefficient, the nonspecific binding or unbinding rate, and
the distance to the neighboring site determine the effective rate of
binding or unbinding, respectively. A computation of this rate
involves two scenarios: (1) The neighboring site is empty, in which
case it is assumed that it ‘‘steals’’ effective binding from the current
site; and (2) the neighboring site is bound, in which case it acts as
a ‘‘roadblock’’ and decreases the effective rate of both binding and
unbinding. See Supplemental Material for the equations used.

Measurement of native S. cerevisiae promoter reporter library

Genomically integratednative promoter reporter strains fromKeren
et al. (2013) and isolated strains from the library were measured
using fluorescence-activated cell sorting (FACS) in SC-Glu-URA
(synthetic complete media with 2% glucose and without uracil)
medium without amino acids, except for histidine. For each strain
a minimum of 20,000 cells were collected.

Data access
Raw and processed data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/geo/) under accession number GSE55346. Code used for the
library construction and analysis is available in the Supplemental
Material and at http://genie.weizmann.ac.il/software/p_noise.html.
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