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With the increasing use of polygenic risk scores (PRS) there is a need for adapted

methods to evaluate the predictivity of these tools. In this work, we propose a new

pseudo-R2 criterion to evaluate PRS predictive accuracy for time-to-event data. This

new criterion is related to the score statistic derived under a two-component mixture

model. It evaluates the effect of the PRS on both the propensity to experience the

event and on the dynamic of the event among the susceptible subjects. Simulation

results show that our index has good properties. We compared our index to other

implemented pseudo-R2 for survival data. Along with our index, two other indices have

comparable good behavior when the PRS has a non-null propensity effect, and our

index is the only one to detect when the PRS has only a dynamic effect. We evaluated

the 5-year predictivity of an 18-single-nucleotide-polymorphism PRS for incident breast

cancer cases on the CARTaGENE cohort using several pseudo-R2 indices. We report

that our index, which summarizes both a propensity and a dynamic effect, had the highest

predictive accuracy. In conclusion, our proposed pseudo-R2 is easy to implement and

well suited to evaluate PRS for predicting incident events in cohort studies.

Keywords: pseudo-R2, polygenic risk score, survival models, survival mixture model, breast cancer

1. INTRODUCTION

With the power of genotyping technologies, genome-wide association studies (GWAS) focusing on
complex diseases have identified a large number of genetic variants associated with various traits of
interest (e.g., diabetes, cardiovascular diseases, cancer...) (Buniello et al., 2019). These large GWAS
have provided various lists of disease-related single nucleotide polymorphisms (SNP) together
with their effect size estimates (McCarthy et al., 2008). Based on these findings, there has been a
growing interest recently in deriving polygenic risk scores (PRS) in order to provide individual risk
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predictions for various phenotypes (Torkamani et al., 2018).
Broadly speaking, for each individual, a classical polygenic score
consists of a linear combination of the trait-associated alleles
carried by the subject and weighted by their effect sizes. The list
of these risk alleles and their corresponding weights are obtained
from published GWAS. Keeping in mind classical modeling
assumptions of linearity, additivity, and lack of interactions, these
PRS provide some estimates of the probabilistic susceptibility
of an individual to experience the disease and can be used for
disease risk stratification (Torkamani et al., 2018). As a result, in
recent years, a burgeoning literature has started to focus on the
evaluation of published PRS (for a few: International Multiple
Sclerosis Genetics Consortium et al., 2010; Machiela et al., 2011;
Khera et al., 2018).

The predictive accuracy of these PRS are usually assessed
by measures such as the coefficient of determination (noted
as R2) which is interpreted as the proportion of variation in
the phenotype that is explained by the PRS. For continuous
outcomes, the coefficient of determination is well-defined and
unique, however its extension to other outcomes such as binary
outcomes is not straightforward. By analogy with the linear
model and from different perspectives, various generalizations of
the R2 have been proposed (e.g., Hu et al., 2006). They are usually
referred to as pseudo-R2.

In practice, most of the pseudo-R2 that are used for
assessing the predictive accuracy of PRS focus on binary
outcomes. This is the case for cancer susceptibility where
most of the PRS studies have analyzed cancers as a binary
outcome (affected/not affected), irrespective of the age of
onset. However, as the occurrence of cancers is strongly
influenced by age, prediction modeling should not neglect
the dynamic of cancer occurrence over time. Thus, the
assessment of predictive accuracy of PRS for cancer susceptibility
based upon epidemiological cohorts should use time-
to-event data and provide predictivity for a defined risk
projection interval.

For such quantification with time-to-event data, a large
spectrum of pseudo-R2 have been proposed, most of them relying
on the classical Cox proportional hazards model (Cox, 1972).
These pseudo-R2 fall mainly into the categories of explained
randomness (entropy-based) or explained variation (variance-
based). This latter framework corresponds to the proportion
of the outcome variance that is explained by the studied
covariates. The estimates rely either on comparing empirical
survival functions with and without covariates or on statistical
quantities which are directly or indirectly related to the likelihood
function (O’Quigley, 2008; Flandre et al., 2017). In practice,
most of these pseudo-R2 have to maximize the log (partial)
likelihood of the full model. However, it is sometimes not a
straightforward issue, particularly for complex non-proportional
survival models.

We had to face such issue in a recent study relying upon
the Quebec population-based cohort CARTaGENE where our
main objective was to evaluate the 5-year predictivity of a
published PRS for breast cancer. To assess the 5-year predictivity,
we had to rely upon a non-standard survival model that

considers age as the time scale and takes into account that a
proportion of the individuals are not susceptible to develop
the disease within 5 years. Such survival model belongs to
the class of survival mixture models where the population
under study is a mixture of individuals with those at risk for
experiencing the event within 5 years and those who are not
at risk (Maller and Zhou, 1996). The motivation behind the
use of this survival model is that at a specified age and over
a 5-year horizon a woman can be either susceptible or non-
susceptible to experience breast cancer and her PRS may be
related to the propensity for experiencing the event. Moreover,
among the susceptible ones, some of them may experience
the event earlier than others and their PRS may be linked to
the dynamic of the event. In this context, we know that the
classical survival models are not well suited for quantifying
both effects.

This issue prompted us to derive a pseudo-R2 which relies
on time-to-event data and quantifies the 5-year predictivity
accuracy of PRS. This new criterion extends a previous work
(Rouam et al., 2010) on pseudo-R2 that was restricted to
classical proper survival models. The score statistic derived from
the partial likelihood under an entry-age-stratified age-scaled
working survival model enables the calculation of the pseudo-
R2. This criterion quantifies the predictive ability of the studied
factor to separate subject outcomes on both the probability of
experiencing the event and the occurrence dynamic.

In this work, we present this new criterion and report
the results obtained from a simulation study. We show its
practical interest for evaluating the accuracy of published PRS for
predicting incident breast cancer cases in the following 5 years
using the Quebec population-based cohort CARTaGENE.

2. MATERIALS AND METHODS

2.1. Materials: The CARTaGENE Study
CARTaGENE (www.cartagene.qc.ca) is a population cohort
consisting of 43,037 Quebec residents aged between 40 and
69 years at recruitment (Awadalla et al., 2013). Enrollment
of participants began in July 2009 and was carried out in
two phases in six metropolitan areas. On their enrollment
date, each participant filled out a questionnaire about health,
lifestyle, individual, and familial history of disease, and prescribed
medication. Only the women were included in the breast cancer
study (n = 23,797).

Linkage with administrative databases was included in the
participant consent form: 1/the Quebec administrative health
database MED-ÉCHO contains hospitalizations, claims, and
date of death of insured patients (about 98% of Quebec
residents) (data available from January 1st, 1998 to March
31st, 2016); 2/the Quebec Breast Cancer Registry contains
information about the Quebec Breast Cancer Screening Program,
such as mammogram results and breast cancers histological
confirmation (data available from May 15th, 1998 to December
31st, 2017).

To comprehensively define women with a breast cancer
(invasive or in situ), we used an algorithm based on a
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previous report from the Institut National de Santé Publique
du Québec (INSPQ) (Théberge et al., 2003). Using the Breast
Cancer Registry, we retrieved the incidence date of histologically
confirmed breast cancers. Then, we selected all women having
an abnormal mammography and retrieved, if available, the
incidence date from the MED-ÉCHO database for women with
at least two claims in 2 years or one hospitalization with the
corresponding ICD-9 (174, 2330) and ICD-10 (C50, D05) codes.

For the breast cancer study, only the women with genetic
data available and who did not have a breast cancer before their
enrollment in the CARTaGENE cohort were selected (n = 4,554).

2.2. Polygenic Risk Scores
Based on the study of Evans et al. (2017), we computed a PRS
for each woman. This PRS uses 18 SNP that have been shown
to be associated with breast cancer risk in general European
populations together with the published per-allele ORs. Each PRS
is the linear combination of the number of risk alleles for each of
the 18 SNP weighted by their corresponding log odds-ratios.

Genotyping data has been generated through different
projects and using different chips and platforms (Illumina
Omni 2.5M, Illumina Infinium Global Screening Array, and
Affymetrix Axiom UK biobank). Among the 18 SNP composing
the Evans PRS, three were not available in our study and nine
had missing data. To impute the missing SNP, we used the
Michigan Imputation Server with the Minimac4 algorithm (Das
et al., 2016). Imputation reference panel was the HRC r1.1 2016
European population, and the phasing was performed with Eagle
v2.4 (Loh et al., 2016). A genetic quality control (QC) was made
before the imputation. After imputation, QC was performed on
individuals based on the Anderson et al. protocol (Anderson
et al., 2010), using all individuals genotyped with the Illumina
Infinium Global Screening Array. Individuals with a call rate
lower than 95% and a heterozygosity higher than three standard
deviations were removed. In pairs of individuals with an identity
by state (IBD) higher than 0.1875, the individual with the lowest
call rate was removed. To remove participants with divergent
European ancestries, we used the first two principal components
with the HapMap phase 3 reference panel (The International
HapMap 3 Consortium, 2010).

All the QC procedures were performed using PLINK (Purcell
et al., 2007) and R package Gaston (Perdry and Dandine-
Roulland, 2019).

2.3. Outcomes
The outcome was the age at occurrence of breast cancer. Patients
without breast cancer occurrence were censored. Censoring time
was age at the end of the 5-year study period (administrative
censoring) or age at death.

For taking into account the age effect, our survival model
was stratified by age at cohort entry with four groups: [39–50],
[50–55], [55–60], [60–69].

2.4. Methods: The Pseudo-R2 Criterion
2.4.1. Notations and Survival Model
In this work, we considered a survival model with age as the
time scale and stratification on age at entry in the study. Let A0

denote a random variable that corresponds to the age at which
the individual free of disease enters the cohort. Let A be the
age at which the individual is experiencing the event of interest
with A = A0 + T⋆ where T⋆ is the event time (i.e., the time
elapsed between the enrollment in the cohort and the date of
event). Let C be the age at which the individual is censored with
C = A0+C⋆ where C⋆ is the censoring time (i.e., the time elapsed
between the enrollment in the cohort and the date of analysis or
last follow-up). Conditionally on A0, let the random variables A
and C assumed to satisfy the condition of independent censoring
(Fleming and Harrington, 2005).

In the following, we consider J strata for age at entry. For a
subject i in stratum j (j = 1, .., J), let Xij = min(Aij,Cij) be the
observed follow-up time on the age scale, δij = 1(Xij=Aij) the
indicator of event and Yij(s) = 1(Xij≥s) the indicator of being at
risk for the event at age s. Yij(s) = 1 indicates that subject i in
stratum j is at risk just before time s, Yij(s) = 0 otherwise. Let Zij
be the value of the PRS computed for individual i in stratum j. For
each individual, the observed data consists of (Xij, δij,A0ij,Zij).

Since we focus on a 5-year projection interval, we have to take
into account that some individuals who enter the cohort are non-
susceptible subjects for the event of interest whereas the other are
susceptible subjects who may experience the event by the end of
the 5 years or may be censored prior to experiencing the event.

Thus, we consider the following two-part semi-parametric
multiplicative model whose marginal survival distribution is
expressed as:

S(a|j,Z = z) = exp
[

−θje
αz
]

+

{

1− exp
[

−θje
αz
]

}

× exp
[

−30j(a)e
βz
]

(1)

where exp
[

−θje
αz
]

is the probability of being a non-susceptible
individual for a subject in stratum j. This latter quantity
(sometimes called the tail defect) depends upon the age at
entry and the PRS. Here, θj > 0 is an unknown positive age-
stratum parameter and α an unknown parameter of interest
which quantifies the impact of the PRS on the propensity of being
a non-susceptible individual.

In this model, exp
[

−30j(a)eβz
]

is the conditional survival
distribution of time-to-event for stratum j for those who are
susceptible to experience the event within the projection interval.
Here, 30j(a) is an unspecified conditional baseline cumulative
hazard function for stratum j and β is an unknown parameter of
interest which quantifies the impact of the PRS on the dynamic
of the event’s occurrence.

In the following, we re-write the survival model presented
above in terms of the multiplicative hazard functions as:

h(a|j,Z = z) = λ0j(a)(1− e−θje
αz
)eβze−30j(a)eβze−log(S(a|j,z))

where λ0j(a) is the first derivative of 30j(a).
From this multiplicative model, a partial likelihood can be

written as follows:

Frontiers in Genetics | www.frontiersin.org 3 April 2020 | Volume 11 | Article 408

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Duhazé et al. Predictive Accuracy of a PRS

L(α,β , θj,30j) =
J
∏

j=1

{ nj
∏

i=1

[

(1− e−θje
αzi )eβzie−30 j(ai)e

βzi
e−log(Sj(ai|zi))

∑nj
m=1 Ym(ai)(1− e−θjeαzm )eβzme−30 j(ai)eβzm e−log(Sj(ai|zm))

]δi }

with nj the number of individuals in stratum j and N = n1 +

... + nJ the total number of individuals. Here, Sj(a) and 30j(a)
are the marginal survival function and the conditional baseline
cumulative hazard function for stratum j, respectively.

2.4.2. Scores Components
From what precedes, we can easily obtain the two components of
the log partial likelihood score function evaluated under the null
hypothesis of no PRS effectH0 :β = α = 0:

U1ij =
∂LLij
∂α

= δiw1(ai)

{

zi −

∑

l∈Rij
Yl(ai)w1(ai)zl

∑

l∈Rij
Yl(ai)w1(ai)

}

U2ij =
∂LLij
∂β

= δiw2(ai)

{

zi −

∑

l∈Rij
Yl(ai)w2(ai)zl

∑

l∈Rij
Yl(ai)w2(ai)

}

where Rij is the risk set of stratum j including the individual

that experienced the event at time ai. Here w1(s) = e−θjθjS
−1
j (s)

and w2(s) =
[

e−θj (1− e−30j(s) − 30j(s))+ e−30j(s)
]

S−1
j (s)

are the weights for the two components, respectively. The
nuisance parameters, e−θj , 30j and Sj(s) are the tail defect,
the conditional cumulative hazard function and the marginal
survival distribution for stratum j computed under the
null hypothesis.

From a biological perspective, the quantity U1ij can
be linked to differences in the propensity of being a
non-susceptible individual and U2ij to differences in the
dynamic of the occurrence of the event of interest for
susceptible individuals.

2.4.3. Scores as Measures of Separability
Following a previous work (Rouam et al., 2010), the non-
null quantities U1ij and U2ij computed at event time can be
reformulated as two measures of separability that quantify the
ability of the PRS to separate individuals from the stratum j
who experience the event at time ai from those who are still
at risk.

The first quantity U1ij can be re-written as:

U1ij = δiw1(ai)

(

∑

l∈R∗
ij
Yl(ai)w1(ai)

∑

l∈Rij
Yl(ai)w1(ai)

)

×

{

zi −

∑

l∈R∗
ij
Yl(ai)w1(ai)zl

∑

l∈R∗
ij
Yl(ai)w1(ai)

}

U1ij = δiw1(ai)

(

∑

l∈R∗
ij
Yl(ai)w1(ai)

∑

l∈Rij
Yl(ai)w1(ai)

)

×
(

zi − zw1

)

In like manner, the second one is as:

U2ij = δiw2(ai)

(

∑

l∈R∗
ij
Yl(ai)w2(ai)

∑

l∈Rij
Yl(ai)w2(ai)

)

×
(

zi − zw2

)

where R∗
i is the risk set of stratum j without the individual that

experienced the event at time ai.
The two non-null componentsU1ij andU2ij can be interpreted

as a weighted differences between the mean value of the genomic
score for the individuals who experience the event at time ai
and the weighted mean for those who are still at risk (i.e., the
mixture of individuals who do not experience the event at time
ai). Differences close to zero indicate a weak or null separability.
Large differences indicate that the individuals are well-separated.

2.4.4. Shifted Score Components
In the following, we introduce the shifted scores (or robust
scores) W1ij and W2ij derived from the seminal work of Lin and
Wei (1989). The shifts take into account the dependence between
the individuals scores U1ij and U2ij. The shifted scores W1ij and
W2ij are independent and identically distributed (Lachin, 2011)
and are as:

W1ij = U1ij − Ũ1ij =

δiw1(ai)

(

zi −

∑

l∈Rij
Yl(ai)w1(ai)zl

∑

l∈Rij
Yl(ai)

)

−

nj
∑

l=1

Yi(tl)δlw1(al)
∑

r∈Rlj
Yr(al)

(

zi −

∑

r∈Rlj
Yr(al)w1(al)zr

∑

r∈Rlj
Yr(al)

)

W2ij = U2ij − Ũ2ij =

δiw2(ai)

(

zi −

∑

l∈Rij
Yl(ai)w2(ai)zl

∑

l∈Rij
Yl(ai)

)

−

nj
∑

l=1

Yi(tl)δlw2(al)
∑

r∈Rlj
Yr(al)

(

zi −

∑

r∈Rlj
Yl(ai)w2(al)zr

∑

r∈Rlj
Yr(al)

)

The practical expressions of these latter quantities are obtained
by plugging the two estimates ŵ1(s) and ŵ2(s) where we replace
Sj(s) by the left-continuous version of the Fleming-Harrington
estimator obtained under H0 using the Nelson-Aalen estimator.
The nuisance parameter θ is estimated by θ̂j = −log(1−Sj(tmax))

where tmax is the last observed failure time. The shifts Ũ1ij =

Ê(Û1ij) and Ũ2ij = Ê(Û1ij) are weighted average of the score
calculated at times s prior to time ai.

In the following, as we focus on separability measures we will
consider only the shifted score components associated with event
times that we denoted asW∗

1ij andW∗
2ij.

2.4.5. Pseudo-R2 Criterion
In the following we derive a pseudo-R2 criteria which is
interpreted as the proportion of variation of separability that
is explained by the PRS. Since the classical score contributions
(Uij) are based on a partial rather than a full likelihood, they
are not independently and identically distributed. However,
the shifted score contributions (Wij) introduced by Lin and
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Wei (1989) are independent and identically distributed. As our
pseudo-R2 quantifies the proportion of variance explained by
the PRS, it relies on variance estimates and this latter condition
is important for estimation purposes. Moreover, since our
individual score contributions can be expressed as differences
between the means of the PRS of the group of patients observed
experiencing the event of interest and the group of those
observed not experiencing the event, the considered shifted score
contributions are those calculated at each occurrence of the event.

We recall that the quantities W∗
1ij and W∗

2ij represent the
measures of separability that are calculated at an event time.
We denote kj the number of event times for stratum j. The
total number of events is denoted by K. In practice, we use
the generalized variance of the two-dimensional random vector
W = (W∗

1 ,W
∗
2 ) that is defined as the determinant of its variance-

covariance matrix. Then, we derive a pseudo-R2 which is based
on the relative difference between an estimate of the variance-
covariance matrix of the shifted scores computed under the null
hypothesis (H0: no effect of the PRS; E[W] = 0) and an estimate
calculated under the alternative hypothesis (H1: effect of the PRS;
E[W] 6= 0).

Under the null hypothesis (H0 :α = β = 0), we have:

σ̂ 2(W∗
1 ) =

1
K−1

∑J
j=1

(

∑kj
i=1W

∗
1ij

2
)

σ̂ (W∗
12) =

1
K−1

∑J
j=1

(

∑kj
i=1W

∗
1ijW

∗
2ij

)

σ̂ 2(W∗
2 ) =

1
K−1

∑J
j=1

(

∑kj
i=1W

∗
2ij

2
)

.

Then (omitting the term 1
K−1 ) we have :

det(6) =

J
∑

j=1





kj
∑

i=1

W∗
1ij

2





J
∑

j=1





kj
∑

i=1

W∗
2ij

2





−
(

J
∑

j=1





kj
∑

i=1

W∗
1ijW

∗
2ij





)2

Under the alternative hypothesis (H1), we have:

σ̂ 2(W∗
1 ) =

1
K−1

∑J
j=1

(

∑kj
i=1W

∗
1ij

2 − 1
kj

∑K
i=1(W

∗
1ij)

2
)

σ̂ (W∗
12) =

1
K−1

∑J
j=1

(

∑kj
i=1W

∗
1ijW

∗
2i −

1
kj

{
∑K

i=1W
∗
1ij

∑K
i=1W

∗
2ij

}

)

σ̂ 2(W∗
2 ) =

1
K−1

∑J
j=1

(

∑kj
i=1W

∗
2ij

2 − 1
kj

∑k
i=1(W

∗
2ij)

2
)

.

Then:

det(6⋆) =
J
∑

j=1

(

∑

W∗
1ij

2
−

1

kj

(

∑

W∗
1ij

)2 )

×
∑J

j=1

(

∑

W∗
2ij

2 − 1
kj

(

∑

W∗
2ij

)2 )

−

(

J
∑

j=1

(

∑

W∗
1ijW

∗
2ij −

1

kj

(

∑

W∗
1ij

∑

W∗
2ij

) )

)2

Finally, 1 = det(6)−det(6⋆)
det(6) is the pseudo-R2 criterion.

This quantity measures the global predictive accuracy of
the PRS. As shown from the Supplementary Material and the

simulation study, the pseudo-R2 is unit-less, ranges from zero
to one, increases with the effect related with either the tail
defect proportion or the dynamic of the occurrence of the event
of interest.

2.5. Simulation-Based Studies
The objective of this section is to evaluate the behavior of
the proposed index 1 for different levels of tail defect, values
of parameters α and β , sample sizes n and percentages of
censoring. We compare the values of 1 to those of the pseudo-
R2 proposed by Nagelkerke (N) based on a transformation of
the partial likelihood ratio test (Nagelkerke, 1991), by O’Quigley
and Flandre (OF) based on Schoenfeld residuals (O’Quigley
and Flandre, 1994), by Xu and O’Quigley (XO) (Ronghui Xu
and O’ quigley, 1999), by O’Quigley et al. (OXS) (O’Quigley
et al., 2005) based on explained randomness measures relying
on a transformation of the Kullback-Leibler information gain
and by Rouam et al. (RMB) (Rouam et al., 2010) based on the
robust score statistic. These indexes are implemented in the R
packages “survAUC” (Potapov et al., 2015) (forN, XO, andOXS),
“PHeval” (Chauvel, 2018) (for OF), and “survival” (Therneau,
2015) (for RMB).

For the sake of simplicity and without loss of generality, we
evaluated the behavior of the test with only one stratum for
most of the simulation scenarios. However, in order to check the
behavior of the indice with strata, we performed an additional
simulation scheme in a case with two strata.

2.5.1. Simulation Scheme
Survival times were generated according to the two-part survival
model presented in the previous section with baseline conditional
cumulative hazard function 30(s) = s. The baseline probability
of being a non-susceptible was chosen such as exp(−θ) was equal
to 0.3, 0.5, or 0.7. For each subject, we simulated a variable Z (its
PRS) from a standard Normal distribution [N (0, 1)].

In order to see the behaviors of the different indices and in
particular if they were able to attain values close to one, the
following configurations were considered for the hazard ratio
(HR) values eα and eβ (termed as “propensity effect” and “dynamic
effect”, respectively): 1 (no effect), 1.5, 2, 2.5, 3, 4, 5, 10, 20, 50,
or 500. These values explore a large range of effects from small
[log(1.5) ≈ 0.41] to huge [log(500) ≈ 6.21] for α and β . The
number of subjects was 500.

For investigating the robustness of the proposed pseudo-R2 to
model misspecification, we performed simulations with survival
times generated according to an improper Gompertz distribution
such as S(s|Z = z) = exp(−θeαz(1− exp(−seβz)).

For investigating the robustness of the indice to the
distribution of the covariate, we simulated a variable Z from
a Student distribution with ten degrees of freedom. The effect
of censoring was investigated by generating independently
censoring times from a uniform distribution over [0, u]. Values
for u were computed from the chosen percentage of censoring
and from the parameters of the considered distributions. The
percentage of censoring refers to the percentage of censored

Frontiers in Genetics | www.frontiersin.org 5 April 2020 | Volume 11 | Article 408

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Duhazé et al. Predictive Accuracy of a PRS

FIGURE 1 | Display of the behavior of different pseudo-R2 indices when the effects of the evaluated criterion on the propensity (α) and on the dynamic (β) vary. The

graphic shows 1 with 0% (A) and 20% (B) censoring and other indexes with 0% censoring : OXS (C), OF (D), XO (E), N (F), and RMB (G), for 500 subjects and a tail

defect of 70%.
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FIGURE 2 | Comparison of the evolution of different pseudo-R2 indices

according to the effect of the evaluated polygenic risk score on the dynamic

(β) when the criterion has no effect on the propensity (α), for 500 subjects, a

tail defect of 70% and no censoring.

observations without the fraction of non-susceptible subjects.
Here, 20% censoring were considered.

For all these simulations, values eα and eβ were :1, 1.25, 1.5
and 1, 1.5, 2, respectively. The number of subjects was 500.

For investigating the robustness of the proposed pseudo-R2

to the number of subjects, we performed additional simulations
with 200, 500, and 1, 000 subjects. We also performed additional
simulations where we generated a stratification variable from a
Bernoulli distribution with parameter 0.5.

For each configuration, 1, 000 replications were performed.

3. RESULTS

3.1. Simulation Results
Figure 1 displays the behavior of 1, OF, OXS, XO, N, and RMB
according to α and β for a tail defect of 70% with 500 subjects
and no censoring. Our simulations showed that the value of 1

increases with the value of the strength of the PRS’ effect (through
the hazards ratio eα and eβ ). In our simulation study, 1 ranges
from 0 when both α and β are null, to near 1 for very large effects
of α and β . In the range of effects presented in this paper, the
maximum value reached by 1 is 0.96 when both α and β take
value of 6.21 (corresponding to a HR of 500) (see Figure 1A).
We can see that 1 is able to quantify an effect on the dynamic
(β) when there is no propensity effect (α) related to the PRS. For
example, when α is null and β = 0.92 (corresponding to a HR
of eβ = 2.5) we have 1 = 0.52. The other studied indices are
not able to quantify a dynamic effect when there is no propensity
effect (see Figures 1A,C–F, 2).

When the propensity effect is not null, all indices, including
ours, are able to quantify themixture of both effects. The different
configurations show that 1, OF, and OXS lead to higher values
than XO and N. Figure 3 displays the values of the indices
according to the propensity and dynamic effects, when both the
parameters α and β have the same value.1 has the highest values
when α = β ≤ 0.91 (eα = eβ ≤ 2.5) and ranks in third place for
higher values of α and β .

Figure 4 shows that 1 quantifies both the propensity effect
and the dynamic effect. However, the reported predictive
accuracy is not symmetrical and is higher for the propensity effect
(α) as compared to the dynamic effect (β). For example, when α is
null and β = 0.92 (HR of 2.5),1 = 0.21, whereas when α = 0.92
and β is null, then 1 = 0.42 (see Figure 4).

Table 1 displays the results obtained with the pseudo-R2s for
uncensored cases with various tail defects. These results show
that the proposed pseudo-R2 is the only one able to quantify
the dynamic effect. As an example, for a tail defect of 30% with
eα = 1.25 and eβ = 2.50, its value is of 37% whereas the highest
value for the other indices is 16% (with OXS). The same behavior
of the proposed pseudo-R2 is observed for the different values of
the tail defect.

Table 2 displays the results obtained for the proposed pseudo-
R2 under various tail defects and simulation schemes: (i)
Two-part survival model with no censoring and Normally
distributed explanatory variables, (ii) Two-part survival model
with 20% censoring and Normally distributed explanatory
variables, (iii) Two-part survival model with no censoring
and Student distributed explanatory variables, (iv) Improper
Gompertz model with no censoring and Normally distributed
explanatory variables.

In case of 20% censoring, simulation results show that the
mean and standard error values of the proposed indice are
slightly increased. When looking to the simulation results under
an improper Gompertz model, simulation results show that
the proposed indice is only slightly affected by model mis-
specification. For a Student distribution, we can see that the
estimatedmean values of the proposed indice are very close to the
Normal distribution. Table 3 shows that the estimated mean and
standard error values of the proposed indice are slightly increased
when the number of subjects decreases. It is worth noting that
the slight bias observed for the mean values with censored or
reduced samples is linked to the fact that our pseudo-R2 uses the
estimate of the tail defect. In these situations, the dispersion of
this nuisance parameter increases.

As expected, results obtained for the proposed pseudo-R2s
with and without strata are the same (Table 4).

It should be noted that comparison of the values of the
pseudo-R2 across different tail defect values are difficult to
interpret and can be misleading since the dynamic/propensity
effects should be interpreted conditionally upon the defective
survival distributions that are not normalized to one but to
different values according to the defect. This is also the case for
the other indices that increase when the proportion of susceptible
subjects increase. For example, with eα = 1.5 and eβ = 2.5,
values of the OXS are 29, 25, and 20% for a tail defect of 30, 50,
and 70%, respectively.
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FIGURE 3 | Comparison of the evolution of different pseudo-R2 indices according to the effect of the evaluated polygenic risk score on the dynamic (β) and the

propensity (α), when α = β, for 500 subjects, a tail defect of 70% and no censoring.

FIGURE 4 | Display of the behavior of the pseudo-R2 1 according to the effect of the evaluated polygenic risk score on the dynamic (β) or the propensity (α), when α

or β is null, for 500 subjects, a tail defect of 70% and no censoring.
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TABLE 1 | Comparison of the different pseudo-R2 indices in simulations.

eα 1 1.25 1.5

Index eβ 1 2 2.5 1 2 2.5 1 2 2.5

OXS Mean 0.00 0.03 0.05 0.04 0.14 0.16 0.11 0.25 0.29

SD 0.01 0.02 0.02 0.02 0.04 0.04 0.03 0.05 0.04

XO Mean 0.00 0.02 0.03 0.03 0.10 0.12 0.07 0.18 0.21

SD 0.00 0.01 0.02 0.01 0.03 0.03 0.02 0.03 0.03

N Mean 0.00 0.02 0.03 0.03 0.10 0.12 0.07 0.18 0.21

SD 0.00 0.01 0.02 0.01 0.03 0.03 0.02 0.03 0.03

OF Mean 0.00 0.02 0.03 0.04 0.12 0.14 0.10 0.24 0.26

SD 0.01 0.02 0.02 0.02 0.04 0.04 0.03 0.04 0.04

RMB Mean 0.00 0.03 0.04 0.04 0.12 0.14 0.11 0.23 0.25

SD 0.01 0.02 0.02 0.02 0.03 0.04 0.03 0.04 0.04

1 Mean 0.01 0.21 0.27 0.06 0.31 0.37 0.15 0.39 0.45

SD 0.01 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04

(A) Tail defect of 30%

eα 1 1.25 1.5

Index eβ 1 2 2.5 1 2 2.5 1 2 2.5

OXS Mean 0.00 0.02 0.02 0.05 0.10 0.11 0.13 0.22 0.24

SD 0.01 0.01 0.02 0.03 0.04 0.04 0.04 0.05 0.05

XO Mean 0.00 0.01 0.01 0.02 0.05 0.06 0.07 0.12 0.13

SD 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03

n Mean 0.00 0.01 0.01 0.02 0.05 0.06 0.07 0.12 0.13

SD 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03

OF Mean 0.00 0.01 0.01 0.05 0.09 0.10 0.13 0.21 0.22

SD 0.01 0.01 0.01 0.03 0.04 0.04 0.04 0.05 0.05

RMB Mean 0.00 0.01 0.02 0.05 0.09 0.10 0.14 0.20 0.21

SD 0.01 0.01 0.02 0.03 0.03 0.04 0.04 0.05 0.05

1 Mean 0.01 0.18 0.22 0.06 0.26 0.31 0.15 0.33 0.38

SD 0.01 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04

(B) Tail defect of 50%

eα 1 1.25 1.5

Index eβ 1 2 2.5 1 2 2.5 1 2 2.5

OXS Mean 0.01 0.01 0.01 0.05 0.08 0.08 0.14 0.19 0.20

SD 0.01 0.01 0.01 0.03 0.04 0.04 0.05 0.06 0.06

XO Mean 0.00 0.00 0.00 0.02 0.02 0.03 0.05 0.07 0.07

SD 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.02

N Mean 0.00 0.00 0.00 0.02 0.03 0.03 0.05 0.07 0.07

SD 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.02

OF Mean 0.01 0.01 0.01 0.05 0.07 0.08 0.14 0.18 0.18

SD 0.01 0.01 0.01 0.03 0.04 0.04 0.05 0.06 0.06

RMB Mean 0.01 0.01 0.01 0.05 0.07 0.08 0.14 0.17 0.18

SD 0.01 0.01 0.01 0.03 0.04 0.04 0.05 0.05 0.05

1 Mean 0.01 0.17 0.21 0.06 0.24 0.28 0.15 0.31 0.35

SD 0.01 0.04 0.04 0.03 0.05 0.04 0.05 0.05 0.04

(C) Tail defect of 70%.

OXS, pseudo-R2 index from O’Quigley et al. (2005); N, pseudo-R2 index from Nagelkerke (1991); XO, pseudo-R2 index from Ronghui Xu and O’ quigley (1999); OF, pseudo-R2 index

from O’Quigley and Flandre (1994); RMB, pseudo-R2 index from Rouam et al. (2010); 1, the pseudo-R2 index we propose in this work; eα , propensity effect; eβ , dynamic effect; SD,

standard deviation. Simulations were performed with 500 subjects.
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TABLE 2 | 1 pseudo-R2 indices in simulations with various simulation designs.

eα 1 1.25 1.5

Design eβ 1 2 2.5 1 2 2.5 1 2 2.5

(i) Mean 0.01 0.21 0.27 0.06 0.31 0.37 0.15 0.39 0.45

SD 0.01 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04

(ii) Mean 0.01 0.22 0.29 0.05 0.31 0.39 0.12 0.40 0.46

SD 0.01 0.05 0.04 0.03 0.05 0.05 0.04 0.05 0.05

(iii) Mean 0.01 0.21 0.27 0.08 0.32 0.38 0.17 0.41 0.46

SD 0.01 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04

(iv) Mean 0.01 0.19 0.25 0.08 0.31 0.37 0.19 0.41 0.46

SD 0.01 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04

(A) Tail defect of 30%

eα 1 1.25 1.5

Design eβ 1 2 2.5 1 2 2.5 1 2 2.5

(i) Mean 0.01 0.18 0.22 0.06 0.26 0.31 0.15 0.33 0.38

SD 0.01 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04

(ii) Mean 0.01 0.18 0.25 0.05 0.27 0.33 0.13 0.35 0.40

SD 0.01 0.04 0.04 0.03 0.05 0.05 0.04 0.05 0.05

(iii) Mean 0.01 0.18 0.22 0.07 0.27 0.31 0.17 0.35 0.39

SD 0.01 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.04

(iv) Mean 0.01 0.17 0.21 0.06 0.26 0.31 0.16 0.34 0.38

SD 0.01 0.03 0.04 0.03 0.04 0.04 0.05 0.04 0.04

(B) Tail defect of 50%

eα 1 1.25 1.5

Design eβ 1 2 2.5 1 2 2.5 1 2 2.5

(i) Mean 0.01 0.17 0.21 0.06 0.24 0.28 0.15 0.31 0.35

SD 0.01 0.04 0.04 0.03 0.05 0.04 0.05 0.05 0.04

(ii) Mean 0.02 0.17 0.23 0.06 0.24 0.30 0.14 0.33 0.37

SD 0.02 0.05 0.05 0.04 0.06 0.05 0.06 0.06 0.05

(iii) Mean 0.01 0.17 0.21 0.07 0.25 0.29 0.17 0.32 0.35

SD 0.01 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04

(iv) Mean 0.01 0.17 0.21 0.06 0.24 0.29 0.15 0.31 0.35

SD 0.01 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.04

(C) Tail defect of 70%

eα , propensity effect; eβ , dynamic effect; SD, standard deviation. Simulations were performed with 500 subjects. Detail of the designs displayed in the table : (i) two-part survival model

with no censoring and Normally distributed explanatory variables; (ii) Two-part survival model with 20% censoring and Normally distributed explanatory variables (iii) Two-part survival

model with no censoring and Student distributed explanatory variables; (iv) Improper Gompertz model with no censoring and Normally distributed explanatory variables.
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TABLE 3 | 1 pseudo-R2 indices in simulations with various number of subjects.

eα 1 1.25 1.5

Subjects eβ 1 2 2.5 1 2 2.5 1 2 2.5

200 Mean 0.02 0.23 0.29 0.07 0.32 0.38 0.16 0.39 0.45

SD 0.02 0.06 0.06 0.04 0.07 0.07 0.06 0.07 0.06

500 Mean 0.01 0.21 0.27 0.06 0.31 0.37 0.15 0.39 0.45

SD 0.01 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04

1,000 Mean 0.00 0.20 0.26 0.06 0.30 0.37 0.15 0.39 0.45

SD 0.00 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03

(A) Tail defect of 30%

eα 1 1.25 1.5

Subjects eβ 1 2 2.5 1 2 2.5 1 2 2.5

200 Mean 0.02 0.20 0.25 0.07 0.27 0.32 0.15 0.33 0.39

SD 0.02 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.06

500 Mean 0.01 0.18 0.22 0.06 0.26 0.31 0.15 0.33 0.38

SD 0.01 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04

1,000 Mean 0.00 0.17 0.21 0.05 0.25 0.30 0.15 0.33 0.38

SD 0.00 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03

(B) Tail defect of 50%

eα 1 1.25 1.5

Subjects eβ 1 2 2.5 1 2 2.5 1 2 2.5

200 Mean 0.04 0.20 0.24 0.08 0.25 0.30 0.16 0.32 0.36

SD 0.03 0.06 0.06 0.06 0.08 0.07 0.08 0.08 0.07

500 Mean 0.01 0.17 0.21 0.06 0.24 0.28 0.15 0.31 0.35

SD 0.01 0.04 0.04 0.03 0.05 0.04 0.05 0.05 0.04

1,000 Mean 0.01 0.16 0.20 0.05 0.23 0.28 0.14 0.30 0.34

SD 0.01 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.03

(C) Tail defect of 70%

eα : propensity effect; eβ : dynamic effect; SD : standard deviation.

TABLE 4 | 1 pseudo-R2 index in simulations with strata.

eα 1 1.25 1.5

Tail defect eβ 1 2 2.5 1 2 2.5 1 2 2.5

0.3 Mean 0.01 0.22 0.28 0.06 0.31 0.37 0.15 0.39 0.45

SD 0.01 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04

0.5 Mean 0.01 0.19 0.23 0.06 0.26 0.31 0.15 0.33 0.38

SD 0.01 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.04

0.7 Mean 0.01 0.18 0.23 0.06 0.25 0.29 0.15 0.30 0.35

SD 0.01 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.04

eα , propensity effect; eβ , dynamic effect; SD, standard deviation.

3.2. CARTaGENE Results
Among the 4,554 women selected for the analysis, 60 (1.32%) had
breast cancer during the 5 years of follow-up. The PRS’ mean

(Evan’s score) was higher among participants with a diagnosed
breast cancer within the 5 years (0.57) than for those free of event
at 5 years (0.44).
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FIGURE 5 | Distribution of Evans’ polygenic risk score in the CARTaGENE cohort (n = 4,554) (A), control women QQ-plot with confidence bands based on an

inversion of the Kolmogorov–Smirnov test (B) and incidence of breast cancer in the cohort according to the Evans’ score (C).

Figure 5 displays the distribution of the PRS in the cohort,
the normal quantile-quantile plot and the Kaplan-Meier estimate
of the probability of not experiencing breast cancer for the four
groups based on the PRS quartiles. A seen from Figures 5A,B,
the distribution of the PRS can be considered close to the Normal
distribution. From Figure 5C, we can see that higher the PRS,
higher the risk of breast cancer is.

Table 5 shows the results for1 and the five pseudo-R2 indices.
For these latter, pseudo-R2 measures are computed upon an
entry-age-stratified age-scaled Cox survival model. 1 was the
highest pseudo-R2 (17.8%), while OF, RMB, and OXS were equal
to 12.0, 12.1, and 14.0%, respectively. The indices XO and N had
values of 0.21 and 1.01%, respectively.

DISCUSSION

The evaluation of the PRS for clinical prediction has received a
lot of attention these last years. For binary or time-to-event traits,
prediction accuracy of PRS is usually assessed using likelihood-
based pseudo-R2 criteria that can be complicated to compute for
complex models. In this work, we have proposed a novel pseudo-
R2 test for assessing the accuracy prediction over a time period of
PRS for both the probability of occurrence of the event of interest
and the dynamic. This criterion is easy to compute since it avoids
maximizing Cox’s partial likelihood under the alternative.

As seen from the simulation study, our pseudo-R2 showed
good performances as compared to classical indices based on
the Cox proportional hazards model. As expected, it showed

TABLE 5 | Pseudo-R2 index values for Evans genetic risk score in the

CARTaGENE cohort (n = 4,554).

Pseudo-R2 (%)

OXS 14.1

N 1.01

XO 0.21

OF 12.0

RMB 12.1

1 17.8

OXS, pseudo-R2 index from O’Quigley et al. (2005); N, pseudo-R2 index from Nagelkerke

(1991); XO, pseudo-R2 index from Ronghui Xu and O’ quigley (1999); OF, pseudo-R2

index from O’Quigley and Flandre (1994); RMB, pseudo-R2 index from Rouam et al.

(2010); 1, the pseudo-R2 index we propose in this work.

very good performances when there is a dynamic effect related
to the PRS. Moreover, when the main effect of the PRS is
on the dynamic of the event among the susceptible subjects,
the proposed pseudo-R2 is the only one able to quantify this
effect. Our simulations have shown the good behaviors of the
indices proposed by O’Quigley and Flandre (based on Schoenfeld
residuals) (O’Quigley and Flandre, 1994), by O’Quigley et al.
(based on explained randomness measures) (O’Quigley et al.,
2005), and by Rouam et al. (2010). In contrast, the coefficient
proposed by Nagelkerke (1991) that is frequently used in the
literature showed poor results. Simulations results have shown
that the proposed indice is only barely affected by model

Frontiers in Genetics | www.frontiersin.org 12 April 2020 | Volume 11 | Article 408

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Duhazé et al. Predictive Accuracy of a PRS

misspecification and covariate distribution. It slightly increases
with reduced sample size or censoring. Based on our simulation
study, when a dynamical effect related to the PRS is expected,
we recommend using our proposed pseudo-R2. In other cases,
our index can be used together with the OF and OXS indices
since they show good performances. In contrast, we do not
recommend the use of the Nagelkerke index for quantifying
predictive accuracy of PRS for time to event outcomes.

Notwithstanding the good performance of the proposed
criteria, it has some shortcomings that should be mentioned.
We should first keep in mind that pseudo-R2s are always
model-based criteria. In our case, our pseudo-R2 measures the
proportion of variability in the outcome that is explained by
the PRS under the assumption that the PRS may be linked
to the dynamic and/or the propensity of the occurrence of
the event. In this work, it relies on a two-component survival
model which is potentially prone to misspecification. Thus, such
underlying assumption of a mixture model should be discussed
before considering the use of the proposed pseudo-R2. We
do not claim that our model represents the reality but that
it is a useful approximation of what we suppose the effects
(propensity/dynamic) are. Moreover, it is also worth noting
that pseudo-R2s and even the classical R2 are not robust to
outlier observations and non-normal distributions. Thus, we
should warn practitioners to be cautious and examine the PRS
distribution. Here, we have considered pseudo-R2 criteria since
our main interest was to focus on the percentage of variation in
the outcome explained by the PRS. Time-dependent ROC curves
(with incident cases/dynamic controls; Heagerty and Zheng,
2005) could also have been considered if the main objective was
to evaluate the prognostic potential of the PRS by focusing on the
correct classification rates. Moreover, it should be noted that our
pseudo-R2 is not designed for more complex situations such as
those with marker-dependent censoring. We plan to do further
work in this direction.

This novel pseudo-R2 was used to evaluate the 5-years
predictive accuracy of the PRS proposed by Evans et al. (2017)
for breast cancer occurrence on the CARTaGENE cohort. In this
study, we reported a pseudo-R2 of 17.8% for our novel index
which is higher than the values reported by OF and OXS indices.
Based on the results from our simulation study, we hypothesize
that the PRS has both a propensity effect and a dynamical effect.
This is not surprising since the selected SNP are located within
genes that encode for proteins that are involved in important
processes such as cell growth and division. It is worth noting
that for this analysis we have considered an age-dependent model
with four strata. Here, our pseudo-R2 provides a global predictive
measure that average all differences for both the propensity and
dynamic effects taking into account the stratum of age at entry.
Other strategies can be considered and easily implemented. We
should keep in mind that the majority of PRS were developed
and evaluated from case-control designs which raises some issues
about misspecification when applying these results for time-to-
event prediction (Lambert et al., 2019). With large prospective
cohorts, we may expect to see in a close future more published
polygenic hazard scores.

Finally, we think that the proposed novel pseudo-R2,
which is easy to implement with standard softwares, is worth
being used to evaluate PRS for predicting incident events in
cohort studies.
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