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The practice of intercropping, which involves growing more than one crop
simultaneously during the same growing season, is becoming more important for
increasing soil quality, land-use efficiency, and subsequently crop productivity. The
present study examined changes in soil physicochemical properties, enzymatic activity,
and microbial community composition when walnut (Juglans spp.) was intercropped
with tea (Camellia sinensis L.) plants in a forest and compared with a walnut and tea
monocropping system. The results showed that walnut–tea intercropping improved the
soil nutrient profile and enzymatic activity. The soil available nitrogen (AN), available
phosphorus (AP), available potassium (AK), organic matter (OM) content, and sucrase
activity were significantly boosted in intercropped walnut and tea than in monocropping
forests. The interaction between crops further increased bacterial and fungal diversity
when compared to monoculture tea forests. Proteobacteria, Bacteroidetes, Firmicutes,
Chlamydiae, Rozellomycota, and Zoopagomycota were found in greater abundance in
an intercropping pattern than in monoculture walnut and tea forest plantations. The
walnut–tea intercropping system also markedly impacted the abundance of several
bacterial and fungal operational taxonomic units (OTUs), which were previously shown to
support nutrient cycling, prevent diseases, and ameliorate abiotic stress. The results of
this study suggest that intercropping walnut with tea increased host fitness and growth
by positively influencing soil microbial populations.

Keywords: intercropping, soil nutrients, bacterial community, fungal community, microbial diversity, beneficial
microbiota

INTRODUCTION

Walnut (Juglans spp.) is a perennial deciduous angiosperm that has gained increasing attention
in recent years due to its economic importance. It is primarily grown for nut and wood products
but is also an attractive ornamental tree in parks (Mortier et al., 2020). Recently, many farmlands
have been transformed into walnut orchards in an attempt to increase walnut production and
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profitability (Bai et al., 2020). The farmers found that growing
maize, wheat, or vegetables beneath the walnut trees increased
output and revenue (Zhang W. et al., 2014; Pardon et al., 2019).
Walnut trees can also positively affect crops physiology (Zhang
W. et al., 2014). It has been previously shown that a combination
of forest trees and crops improves land-use efficiency, reduces
weed pressure, optimizes soil temperature, and conserves soil
moisture (Tsonkova et al., 2012; Zhang D. S. et al., 2014; Gebru,
2015; Torralba et al., 2016; Panozzo et al., 2019). Forest trees
regulate the climate underneath them by providing shelter and
limiting soil evaporation (Lasco et al., 2014; Pardon et al., 2017).
It may result in changes in soil microclimatic factors, such as
humidity and temperature, when compared to an open field (Lott
et al., 2009). In China, tea (Camellia sinensis L.) is also widely
intercropped with walnut trees in the southwest region and the
Daba Mountains (Wang et al., 2014; Tang et al., 2021). Although
walnut trees compete with tea for soil resources in intercropping
systems, they can also improve the growing conditions of tea
trees, especially by providing moderate shade and increasing
humidity in spring (Kulasegaram and Kathiravetpillai, 1976).
Several studies have examined intercropping between trees and
annual crops (Zhang W. et al., 2014; Arenas-Corraliza et al., 2018;
Pardon et al., 2019; Temani et al., 2021); however, very little
research has been conducted on intercropping between perennial
non-wood forest trees (walnut) and crops. Additionally, the
effects of tree–crop interactions on soil microbial diversity and
community composition are largely unknown.

Soil microbiota are an important component of both natural
and managed ecosystems (Fierer, 2017). Crop management
practices that shape soil microbial communities under field
conditions have greatly improved our understanding of how
management factors affect crop production, biogeochemical
cycling, and disease progression (Berthrong et al., 2013; Hussain
et al., 2018; Raza et al., 2019; Tao et al., 2020). Therefore, microbial
communities in relation to management strategies have become
an imperative aspect of research in sustainable agriculture
(Lacombe et al., 2009; Bainard et al., 2012b; Zhang M. M.
et al., 2019). Intercropping, growing two crops simultaneously
in proximity, not only affects crop yield but may also change
the structure and functions of the soil microbiota (Duchene
et al., 2017; Yu et al., 2019). In intercropping systems, soil
nutrients, enzymes, and microbes interact to enhance the micro-
ecological conditions of the soil by increasing the microbial
diversity and enzyme activity (Zhou et al., 2019). Microorganisms
influence soil nutrient turnover by decomposing soil organic
matter (OM), which in turn influences soil enzyme properties
and enzyme secretion (Peng et al., 2015). Soil enzymes (e.g.,
catalase, urease, and invertase) catalyze biochemical reactions
during the decomposition of microorganisms and plants debris,
which provide the soil with nutrients that plants need to survive
(Veres et al., 2015). Therefore, the soil enzyme activity is closely
linked to microbiological characteristics for improving soil-
plant health (Cleveland and Liptzin, 2007). In previous studies,
intercropping peanuts with maize changed the abundance of
nitrogen-fixing microbes in the rhizosphere (Chen et al., 2018).
Cassava–peanut intercropping enriched for Actinomycetes in
the rhizosphere of peanut that boosted soil available nutrients

absorption, increasing the peanut yield (Chen et al., 2020). It is
therefore necessary to conduct further research to understand
how tree–crop intercropping affects soil nutrient content, enzyme
activities, and microbial community diversity and structure that
would be crucial for evaluating the nutrient status and energy
outputs of soil microbes in forest ecosystems.

Since various intercropping patterns differentially affect
soil physicochemical properties and microbial characteristics,
this study examined the changes in the bacterial and fungal
communities as a result of the walnut–tea intercropping forest
system. We hypothesized that intercropping would greatly
affect soil physicochemical properties, increase enzyme activities
and microbial diversity, and change the microbial community
structure. Thus, the objectives of this study were to (1) explore
the effects of walnut–tea intercropping on soil physicochemical
properties and soil enzyme activity; (2) compare the response
of bacterial and fungal diversity and community composition
to intercropping with monoculture plantations of walnut and
tea; and (3) determine the relationship between soil microbial
communities and soil physicochemical properties and soil
enzyme activity.

MATERIALS AND METHODS

Site Description and Soil Sampling
Walnut and tea forest sites are located at Dianya, Baokang
County, Hubei Province, China (31◦ 25′28′′N, 111◦ 21′58′′E). In
this region, the average temperature is 17◦C, the mean annual
relative humidity is 71.2%, the average annual precipitation is
1,071 mm, and the frost-free season is 240 days. The forest soils
are yellow-brown earth with sandy loam texture, the slope is 10◦,
and the elevation is 538 m (Figure 1).

We selected three types of forest that include monoculture
tea forest (T), monoculture walnut forest (W), and walnut–tea
intercropping forests (W&T) to investigate how they influence
soil properties, enzyme activity, and microbial community
composition. In the spring of 1992, a tea forest was established
by sowing local tea seeds at a row spacing of 1.3∼1.5 m, cluster
spacing of 25∼33 cm, and 2∼3 plants per cluster. In the spring
of 2009, a walnut forest was established with 1-year-old grafted
seedlings of the variety “Qingxiang” at a plant row spacing of
4 m× 8 m. Similarly, an intercropping forest was also established
in the spring of 2009 by planting the 1-year-old grafted seeds of
“Qingxiang” in the 17-year-old pure tea forest based on the plant
row spacing of 4 m × 8 m. Each forest soil received fertilizer
twice a year. For the first time, organic fertilizer (compost of pig
manure; 11,250 kg·hm−2, broadcast fertilization) was broadcast
over the plant row in each forest and then covered with 5∼8-cm-
thick corn stalks. The second time, in May, each forest received
375 kg·hm−2 of urea.

We collected soil samples from each forest type using augers
(5 cm in diameter) at a depth of 20∼30 cm following the
S-sampling method. Ten cores of soil per forest were mixed
thoroughly in order to represent one replicate, and three
replicates were collected from each forest. The soil samples from
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FIGURE 1 | A map of sampling locations in the experimental areas of the Daba Mountains. A diagram showing the collection of soil samples from monoculture tea
(T) and walnut (W) forests and intercropping forests (W&T) in Dianya town. Green triangles, red squares, and blue stars represent monoculture tea forests (T),
monoculture walnut forests (W), and intercropping forests (W&T) in study sites, respectively.

each forest were sieved using a 2-mm mesh and transported to
the laboratory for further study.

Soil Physicochemical Analyses
The chemical properties of soil samples were determined using
air-dried samples. Soil pH was determined with a pH meter
(FE-20, Swiss Mettler, Zürich, Switzerland) based on a soil-to-
water ratio of 1:2.5. Available nitrogen (AN) content of the
soil was measured using the DigiPREP TKN System (KJELTEC
8400, Foss, Denmark). Available phosphorus (AP) was measured
using a UV-visible spectrophotometer (UH5300, North Points
Ruili). Available potassium (AK) was quantified from soil using
an inductively coupled plasma (ICP) spectrometer (Spectro
Analytical Instruments, Spectro Arcos ICP, Kleve, Germany).
Soil OM content was quantified using the K2Cr2O7–H2SO4
oxidation method.

Soil Enzyme Activity Assay
We quantified the soil enzymes urease (UE), alkaline phosphatase
(ALP), peroxidase (POD), and sucrase (SC) involved in nitrogen,
carbon, and phosphorus degradation. The soil urease activity
was measured using urea as the substrate as described by Bao
(2000). A soil ALP assay was performed according to the protocol
of Dick et al. (2000). The soil peroxidase was measured in a
96-well microplate using the spectrophotometric method with L-
3,4-dihydroxyphenylalanine (L-DOPA) as substrate (Bach et al.,
2013). The soil sucrase activity was determined by measuring the
glucose released from a sucrose solution (8%) after incubation at
37◦C for 24 h (Chen et al., 2010).

DNA Extraction and Illumina MiSeq
Sequencing
Total soil DNA was extracted from 0.5 g of soil from
each sample using a Power Soil DNA Kit (MOBIO Inc.,
Carlsbad, CA, United States), according to the manufacturer’s
instructions. PCR was performed to amplify the V3–V4
region of the bacterial 16S rRNA gene using primer pair
338F 5′-ACTCCTACGGGAGGCAGCA-3′ and 806 R 5′-
GGACTACHVGGGTWTCTAAT-3′. For the fungal community,
the ITS1 region of ITS gene was amplified using primer pair
ITS5 5′-GGAAGTAAAAGTCGTAACAAGG-3′ and ITS2
5′-GCTGCGTTCTTCATCGATGC-3′. PCR generated DNA

amplicons were purified using the AxyPrepDNAGel Extraction
Kit (AXYGEN, Union City, CA, United States) and pooled in
equimolar concentrations. Finally, paired-end sequencing of
the bacteria and fungi was performed on an Illumina MiSeq
sequencer at Majorbio Technologies Co., Ltd. (Shanghai, China).
The raw sequence data have been deposited in the National
Genomics Data Center under BioProjectID PRJCA008251.

Bioinformatics and Statistical Analyses
The paired-end reads were initially trimmed using Mothur
(V1.30.2) to remove sequences with a quality score below 20.
The 16S rRNA and ITS1 sequences were quality-trimmed using
Trimmomatic v0.36 and assigned to samples based on barcodes
using Quantitative Insights into Microbial Ecology (QIIME,
V1.9.1). A number of de novo and reference-based chimeras
were checked, and those identified as chimeras were eliminated.
Bacterial and fungal sequences were grouped into operational
taxonomic units (OTUs) based on 97% sequence similarity using
UPARSE-pipeline (V 7.0.1090), and the most abundant sequences
from each OTU were selected as representative sequences. The
taxonomic configuration of bacterial and fungal OTUs was
done using the SILVA (V132) and UNITE (V8.0) databases,
respectively. Alpha diversity metrics were computed with R
package “vegan,” and the results were visualized in boxplots using
the R package “ggplot2.” In order to examine similarities and
differences between bacterial and fungal communities, a beta-
diversity analysis based on the Bray–Curtis dissimilarity matrix
was calculated using the function “vegdist” in the R package
“vegan.” Based on the classified OTU reads, relative abundance
(RA) (h) of the abundant phyla and genera was determined
and plotted using the R package “ggplot2.” An ANOVA was
performed to compare soil physicochemical properties, diversity
metrics, and taxonomic composition of bacterial and fungal
communities. The least significant difference (LSD) test was used
to distinguish differences between groups and was considered
significant when p < 0.05. We identified enriched bacterial
and fungal OTUs in tea forest, walnut forest, and walnut–tea
intercropping forest and visualized them in ternary plots using
a script developed by Bulgarelli et al. (2015), which employed
linear statistics on the RA values (log2, >1h threshold) using
the R package “limma.” Differentially abundant OTUs between
groups were calculated using a moderated t-test, and the obtained
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p-values were adjusted using the Benjamini–Hochberg correction
method. Enriched OTUs with taxonomic information were
presented in heatmaps using the heatmap.2 function in the R
package “gplots.”

RESULTS

Impact of Forest Types on Soil
Physicochemical Properties and
Enzymatic Activity
In the three forest types (Figure 1), the walnut–tea
intercropping forest (W&T) had significantly higher levels of AN
(164.1 mg·kg−1), AP (212.3 mg·kg−1), AK (449.1 mg·kg−1), and
OM (43.6 g·kg−1) than the monoculture walnut and tea forest
(LSD, p < 0.05, Figure 2A). These nutrient contents were higher
than those of monoculture tea forest by 22.3% (AN), 2,131.9%
(AP), 333.1% (AK), and 77.2% (OM) and monoculture walnut
forest by 18.5% (AN), 587.9% (AP), 162.1% (AK), and 53.7%
(OM). Surprisingly, the intercropped forest had the highest level
of soil AK, followed by AP and AN. Among monoculture forests,
this nutrient enrichment pattern was different from intercropped
forests. Walnut forest had higher levels of AK and AN followed
by AP, while tea forest had higher levels of AN followed by
AK and AP. Although forest types did not affect soil pH, the
maximum pH value was found in walnut forest, followed by
walnut-tree intercropped (pH = 5.0), and monoculture tea forest
(pH = 4.8) (LSD, p > 0.05, Figure 2A).

We then examined the soil enzymatic activities and found
that the intercropped forest had a high sucrase activity (SC)
in comparison with the walnut and tea forests. Peroxidase
activity (POD) was significantly higher in tea forest than in
walnut forest and in the walnut–tea intercropping forest, while
ALP activity was not statistically different between forest types
(Figure 2B). The soil urease activity (UE) was the highest in the
tea forest and not significantly different between the intercropped
and walnut forests.

Intercropping Affects Bacterial Diversity
and Community Structure
A total of 454,258 high-quality reads targeting the 16S rRNA V3–
V4 region of bacteria were obtained by sequencing the amplicons
on an Illumina MiSeq sequencer. These reads were clustered into
4,048 OTUs. First, we assessed the within-sample diversity (α-
diversity) of bacterial communities from monoculture walnut
(W), monoculture tea (T), and walnut–tea intercropping forest
(W&T). Shannon’s diversity values for bacterial communities
decreased in the order W > W&T > T. Compared to
monoculture tea forests, intercropped and monoculture walnut
forests had significantly higher Shannon diversity values (LSD,
p < 0.05, Figure 3A). However, we did not find a significant
difference between W and W&T (LSD, p > 0.05). A principal
coordinate analysis (PCoA) based on the Bray–Curtis distance
was performed to analyze the differences among bacterial
communities in three forest types. A clear separation could
be observed between monoculture tea forest (T), monoculture

walnut forest (W), and intercropped forest (W&T). According
to PCoA results, the first two axes explain 60.24 and 25.98%
of the total variation in the bacterial community (Figure 3B).
A Venn diagram further confirmed that the variation between
bacteria communities of three forest types might be due to the
change in the composition of many shared as well as unique
OTUs (Figure 3C).

The phyla Proteobacteria, Actinobacteria, Acidobacteria,
Chloroflexi, and Bacteroidetes dominated the soil bacterial
communities in three forest types, accounting for more
than 65% of the bacterial reads. The RA of Proteobacteria,
Bacteroidetes, Firmicutes, and Chlamydiae was significantly
higher in the intercropped forest than in monoculture tea or
walnut forests (LSD, p < 0.05; Figure 4A). In contrast, the RA
of Acidobacteria, Chloroflexi, Planctomycetes, and Tenericutes
were more abundant in tea forests compared with walnut–tea
intercropping forests (LSD, p < 0.05). There were several phyla
unique to the walnut forest, such as Gemmatimonadetes and
Chlamydiae, which were only more abundant in W&T and
W. At the family level, patterns of taxonomic distribution
and abundance differences became more evident (Figure 4B).
Xanthomonadaceae was specifically dominant and significantly
abundant in the walnut–tea intercropping compared to
the monoculture forests. Monoculture tea and walnut
forests contained high RAs of Solibacteraceae and some
unclassified families.

Fungal Community Diversity and
Structure in Three Forest Types
We obtained a total of 636,610 reads targeting the fungal
ITS1 region, which were classified into 2,046 OTUs. Similar
to the results for the bacterial community, the α-diversity
results showed that Shannon’s diversity values for the fungal
community were also significantly higher in the intercropped and
monoculture walnut forests than in the tea forest (Figure 5A,
LSD, p < 0.05). In addition, there was no significant difference in
Shannon’s diversity values between W and W&T for the fungal
community (LSD, p > 0.05). A PCoA based on Bray–Curtis
distance revealed that the W&T, W, and T samples were clearly
separated from each other, with the first two axes explaining 49.67
and 24.32% of the total variation (Figure 5B). Venn diagrams
showed that the W&T, W, and T samples contained many
unique OTUs and also shared 405 OTUs (Figure 5C). Hence,
the variation in fungal community structure across W&T, W,
and T might be linked to changes in the composition of the core
and unique OTUs.

The soil fungal community in three forest types was
dominated by Ascomycota, Basidiomycota, Mortierellomycota,
and Glomeromycota (Figure 6A). Ascomycota and
Mortierellomycota had significantly higher RAs in monoculture
walnut forests than in monoculture tea forests (LSD, p < 0.05).
In contrast, the RA of Basidiomycota and Glomeromycota was
significantly higher in T than in W (LSD, p < 0.05). Surprisingly,
Rozellomycota and Zoopagomycota were significantly more
abundant in W&T than in T and W. The families Hypocreaceae,
Cladosporiaceae, and Hydnodontaceae were more abundant
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FIGURE 2 | Chemical properties (A) and enzyme activities (B) of the pure forest and intercropping forest. A different lowercase letter on each bar indicates a least
significant difference (LSD; p < 0.05) between monoculture tea forest (T), monoculture walnut forest (W), and walnut–tea intercropping forest (W&T). AN, available
nitrogen; AP, available phosphorus; AK, available potassium; OM, organic matter.

FIGURE 3 | Bacterial community α-diversity and β-diversity. (A) Shannon’s diversity for bacterial communities in monoculture tea forest (T), monoculture walnut
forest (W), and walnut–tea intercropping forest (W&T). A box indicates the interquartile range; a black line indicates the median value. A lowercase letter on each box
represents a least significant difference (LSD; p < 0.05) between the T, W, and T&W. Asterisks indicates significant differences (∗p < 0.05, ∗∗p < 0.01). (B) Principal
coordinate analysis (PCoA) plots based on the Bray–Curtis distance demonstrating the separation between soil bacterial communities of three forest types. (C) The
Venn diagram shows the numbers of bacterial operational taxonomic units (OTUs) that are shared or unshared by T, W, and W&T.

in W&T than W and T forests (Figure 6B), whereas the RA
of Mortierellaceae and Microascaceae was higher in walnut
forest soils than in W&T and T. Overall, the enriched bacterial
phyla and families were different in the three forest types,
indicating that intercropping had a differential impact on the soil
fungal communities.

Specific Soil Bacteria and Fungi Enriched
in Walnut–Tea Intercropping Forest
The OTU enrichment analysis was performed to decipher which
bacterial and fungal taxa in soil are responsive to specific forest
types (Figures 7A,B). In total, 85 bacterial OTUs were identified
to be significantly enriched in the monoculture tea forest, 108
bacterial OTUs in the monoculture walnut forest soils, and 127
bacterial OTUs in the walnut–tea intercropping forest type. These
OTUs belong to diverse genera and phyla, as shown in the

heatmaps in Supplementary Figures 1A–C. A number of OTUs
were highly abundant in the walnut–tea intercropping forest,
including Chujaibacter, Acidothermus, Acidipila, Micropepsaceae,
Bryobacter, Burkholderia, Pseudomonas, and Pseudolabrys. On
the other hand, there were only a few dominant OTUs
more enriched in tea forests than walnut–tea intercropping
forests, such as Bradyrhizobium, Acidothermus, and Candidatus
solibacter. The functional role of dominantly enriched bacterial
OTUs in W&T, W, and T is described in Supplementary Table 1.

In the fungal community, a total of 31 OTUs were
enriched in T, 38 OTUs in W, and 48 OTUs in the W&T
forest (Figure 7B). In walnut–tea intercropping, Trichoderma,
Trechispora, Talaromyces, and Penicillium were predominant
and enriched compared to other forest types (Supplementary
Figure 2A). In contrast, the walnut forest had enriched
OTUs belonging to Neocosmospora, Lycoperdon, Solicoccozyma,
Fusicolla, Lophotrichus, Pseudaleuria, Mortierella, and Phoma
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FIGURE 4 | Average relative abundance (RA) of the most dominant bacterial phyla and families in the monoculture tea forest (T), monoculture walnut forest (W), and
walnut–tea intercropping forest (W&T). (A) RA of bacterial communities at the phylum level. (B) RA of bacterial communities at the family level. Only operational
taxonomic units (OTUs) with RA > 1% in at least one sample were included in the analysis. Different lowercase letters on each bar indicate the least significant
differences (LSDs; p < 0.05) among T, W, and W&T treatments.

(Supplementary Figure 2B). Tea forest soil was enriched
with many OTUs including, Saitozyma, Trichoderma, and
Paraglomus (Supplementary Figure 2C). The functions of the
fungal OTUs enriched in W&T, W, and T are described in
Supplementary Table 1.

Co-occurring Network Analysis of Soil
Characteristics and Microbial
Communities
We constructed two-way co-occurring networks for soil
characteristics (soil chemical properties and enzymatic activities)
and microbial communities (top 30 genera) (Figures 8A,B). On
average, the shortest path length between two nodes consisted
of 2.41 edges, with a diameter of 6 edges. We observed 148

degrees of connectivity between soil characteristics and bacterial
community across all samples (Figure 8A). In terms of degree
centrality scores, the degree of connectivity of soil characteristics
was in the order Urease (13) > AP = Peroxidase (12) > AN = OM
(11) > AK (10) > Sucrase (5), which indicates the importance
of these soil characteristics in the co-occurrence network.
In network analysis, a number of bacterial genera showed
positive correlations with AP, AN, OM, and AK. Urease and
peroxidase activities, however, correlated negatively with many
bacterial genera.

In a two-way co-occurrence network analysis of fungal
community and soil characteristics, the shortest path between
two nodes had an average length of 2.85 edges and a diameter
of 6 edges (Figure 8B). Overall, 118 degrees of connectivity were
observed between soil characteristics and fungal communities
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FIGURE 5 | Fungal community α-diversity and β-diversity. (A) Shannon’s diversity for fungal communities in monoculture tea forest (T), monoculture walnut forest
(W), and intercropping forest (W&T). A box indicates the interquartile range; a black line indicates the median value. A lowercase letter on each box represents a least
significant difference (LSD, p < 0.05) between the T, W, and W&T. Asterisks indicates significant differences (∗p < 0.05). (B) Principal coordinate analysis (PCoA)
plots based on the Bray–Curtis distance demonstrating the separation between soil fungal communities of three forest types. (C) The Venn diagram shows the
numbers of fungal operational taxonomic units (OTUs) that are shared or unshared by T, W, and W&T.

FIGURE 6 | Average relative abundance (RA) of the most dominant fungal phyla and families in the monoculture tea forest (T), monoculture walnut forest (W), and
walnut–tea intercropping forest (W&T). (A) RA of fungal communities at the phylum level. (B) RA of fungal communities at the family level. Only operational taxonomic
units (OTUs) with RA > 1% in at least one sample were included in the analysis. Different lowercase letters on each bar indicate the least significant differences
(LSDs; p < 0.05) among T, W, and W&T treatments.

Frontiers in Microbiology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 852342

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-852342 March 14, 2022 Time: 14:45 # 8

Bai et al. Intercropping, Soil Nutrients, Microbial Communities

FIGURE 7 | Ternary plot showing bacterial operational taxonomic units (OTUs) (A) and fungal OTUs (B) significantly enriched in monoculture tea forest (T, brown
circles), monoculture walnut forest (W, green circles), and walnut–tea intercropping forest (W&T, blue circles). Each circle represents one OTU. The size of each circle
represents its RA. The position of each circle is determined by the contribution of the indicated group to total RA. Only taxa with RA > 1h in at least one sample
were included in the analysis.

across all samples. Degree centrality scores indicate that
soil characteristics are highly interconnected in the order
AP = OM (10) > AK (9) > Urease = Peroxidase = Sucrase
(8) > AN (6), which indicates the critical role that these soil
characteristics play in the co-occurrence network. Moreover, the
network analysis showed that some fungal taxa, including
Saitozyma, Fusarium, g_unclassified_o_Paraglomerales,
Mariannaea, g_unclassified_p_Rozellomycota, Solicoccozyma,
g_unclassified_f_Chaetomiaceae, and Tausonia, had an
increased level of connectivity, which suggests that
these dominant fungal taxa respond strongly to soil
characteristics.

DISCUSSION

Intercropping has become increasingly popular over the past
decade as a way to maintain soil biodiversity, improve nutrient
content, and minimize pest and disease problems (Dai et al.,
2019). One of the greatest advantages of intercropping is the
increase in land-use efficiency and positive interactions between
crops, which contribute to their survival, growth, and fitness
(Hauggaard-Nielsen and Jensen, 2005). Previous studies have
demonstrated that trees within agroforestry systems are capable
of improving soil physicochemical properties (Wang et al.,
2022). Our results confirmed that soil nutrient contents (AN,
AP, AK, and OM) were significantly higher in walnut–tea
intercropped forests than in monoculture walnut and tea forests,
indicating that growing two crops simultaneously could improve
soil nutrient content. Surprisingly, the amount of AN was
significantly lower than that of AK and AP in the intercropped
forest, indicating the existence of nitrogen competition. The
reduced amount of nitrogen contents may be linked to the walnut
fruit development, which requires a large amount of nitrogen
for the protein synthesis of nuts. On the other hand, a notable

increase in AK and AP concentrations was observed in walnut–
tea intercropped forests. This might be due to the increased
abundance of associated microbial taxa involved in soil nutrient
cycling, including rhizobia and phosphate- and potassium-
solubilizing bacteria. Another reason for this might be the release
of nutrients by agroforestry trees to meet crop demands (Palm,
1995). Potassium can promote nitrogen and phosphorus uptake,
leading to lavish vegetative growth, phosphorus translocation,
and stimulating photosynthesis that is beneficial to crop growth
and biomass production, thereby leading to an increase in yield
(Ahmed et al., 2020).

Soil enzyme activity is an important indicator of how the
soils cycle nutrients and decompose OM (Nannipieri et al., 2012;
Hussain et al., 2021). Soil physicochemical properties and soil
microorganisms are known to affect soil enzyme activity (Gu
et al., 2009). In this study, we found that intercropped forests
had the highest sucrase enzyme activity than monoculture tea
and walnut forests. In contrast, peroxidase enzymes activity
in the intercropped forest was significantly lower than in
monoculture tea and walnut forests. Soil urease activity was
significantly lower in intercropped and walnut forests than
in monoculture tea forests. Sucrase hydrolyzes sucrose and
can reflect soil organic carbon conversion ability, while urease
hydrolyzes urea can affect soil nitrogen metabolism (Cantarella
et al., 2018). Peroxidase activity decreases with increasing
inorganic N availability (Cantarella et al., 2018), which is in
alignment with our results. Saccharose catabolism provides a
carbon source for microbes, thereby promoting their growth
(Ruan, 2014). It appears that intercropped forests can provide
sufficient energy for soil microorganisms since they play a key
role in the accumulation, decomposition, and transformation of
soil organic carbon.

Another focus of our investigation was the comparison
of soil microbial communities in walnut–tea intercropping
versus monoculture systems. Microorganisms from distinct
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phylogenetic lineages differ in their response to environmental
changes (Hussain et al., 2016; Tian et al., 2018; Zhang
W. W. et al., 2019; Zhang et al., 2021); thus, intercropping
practices may influence soil microbiota compositions (Bainard
et al., 2012a). We observed a profound shift in soil microbial
communities when walnut was intercropped with tea. Walnut–
tea intercropping caused changes in soil physicochemical
properties and enzyme activities, forcing a specific subset of
functional bacteria and fungi to enrich in soil, as evidenced by the
increase in bacterial and fungal diversity in the intercropping soil
relative to tea plantation. Plant species diversity, soil chemistry,
and litter quality affect microbial communities (Guo et al., 2018).
Studies have demonstrated that microbial diversity increases with
vegetation aboveground and with afforestation (Xiao et al., 2016;
Liu D. et al., 2018; Liu J. L. et al., 2018; Gao et al., 2019).
We speculate that with the extension of natural forest, shading
intensifies, resulting in the decrease of canopy temperature
and root exudates (Abbasi et al., 2020). Therefore, reasonable
perennial non-wood production forests intercrop with crops
(walnut/tea) will not only increase soil nutrient contents and
enzyme activity but also increase microbial diversity, which will
be more favorable for plant growth.

Although intercropped and monoculture walnut forests did
not differ in α-diversity, the PCoA of soil bacterial and fungal
communities revealed a clear separation between the two
forest types, indicating that the microbiota composition differed
between monoculture walnut forest and intercropped forest.
In this study, Proteobacteria, Actinobacteria, Acidobacteria,
Chloroflexi, Bacteroidetes, Firmicutes, and Planctomycetes were
the dominant bacterial phyla in the different forest types,
which roughly correspond to the results of previous studies
investigating agricultural soils (Bai et al., 2020). The walnut–
tea intercropped forest had a significantly higher abundance of
phyla Proteobacteria, Bacteroidetes, and Firmicutes than the tea
and walnut forest soil samples. In contrast, Acidobacteria and
Chloroflexi were much less abundant in the intercropping forest
than in the tea and walnut forest soil samples. Previous reports
indicate that many members of the phyla of Proteobacteria
and Bacteroidetes were closely associated with the C and N
cycle (Leff et al., 2015; Pardon et al., 2017). As a result, the
intercropping forest might increase soil C and N accumulation
and nutrient utilization efficiency by promoting bacterial growth
that is closely associated with N fixation or other C–N processes.
In addition, we observed a high abundance of Firmicutes in
the walnut–tea intercropping soil possibly due to their ability
to produce endospore as a result of soil microclimate changes
(Gomez-Montano et al., 2013). Firmicutes express transcripts for
glycosylase hydrolases involved in cellulose and chitin breakdown
(Wegner and Liesack, 2016). A striking pattern was that the
abundance of Nitrospirae in the monoculture walnut forest was
more than in the monoculture tea forest, which are known to be
involved in ammonia-oxidizing and nitrite-oxidizing processes
(Beeckman et al., 2018). According to previous studies, the
decline in the RA of Nitrospirae is due to tea trees that
prefer NH4

+, which reduces the ammonia-oxidizing and nitrite-
oxidizing processes (Ruan et al., 2016). Gemmatimonadetes
are facultative bacteria (Takaichi et al., 2010) and have been

significantly correlated with soil OM and N content (Chen
et al., 2016). Chloroflexi were found to be abundant because
they produce energy by solar radiation and 3-hydroxypropionate
bi-cycle (Berg, 2011; Klatt et al., 2013). Therefore, Chloroflexi
are more abundant in individual forests due to open canopy
that receives more sunlight than intercropping forest (Tripathi
et al., 2016). Chloroflexi and Acidobacteria have previously
been shown to be slow-growing bacteria (Davis et al., 2011)
that prefer oligotrophic environments (Fierer et al., 2012).
Because of the oligotrophic environment in the monocropping
forest, the RA of Chloroflexi and Acidobacteria was higher
than in intercropped forests (Zhu et al., 2019; Xu et al., 2020).
Importantly, the significantly higher abundance of Proteobacteria
in the intercropping forest compared to monocropping forests is
indicative of eutrophic soils (Smit et al., 2001), pointing out that
soil nutrient status was improved after intercropping.

In walnut–tea intercropping forest, we detected several
enriched bacterial OTUs associated with phosphorus and
potassium solubilization. They belonged to the bacterial
genera Pseudomonas, Rhizobium, Arthrobacter, Sphingomonas,
Bacillus, and Burkholderia, which are known for their functions
such as plant growth promotion, phosphorus-solubilizing,
nitrogen-fixing, degradation and biotransformation of organic
compounds, and growth stimulation (Rodrı ìguez and Fraga,
1999; Chen et al., 2006; Sharma et al., 2013; Panhwar et al.,
2014; Hu et al., 2020; Morya et al., 2020; Paulitsch et al.,
2020; Sadauskas et al., 2020; Tapia-García et al., 2020; Yang
et al., 2020). Similarly, Bacillus and Burkholderia have
demonstrated the ability to solubilize potassium (Basak and
Biswas, 2009; Zhang and Kong, 2014). Moreover, we found
a significant enrichment of Chujaibacter, Acidothermus,
Acidipila, Micropepsaceae, Bryobacter, and Pseudolabrys
in the intercropped forest. Chujaibacter is known to be
involved in nitrogen cycling reaction–nitrification (Semenov
et al., 2020), and its abundances were positively correlated
with soil OM, nitrogen, and phosphorus content in the
present study (Figure 8). Acidothermus is found to be
arbuscular mycorrhizal fungi suppressive taxa (Svenningsen
et al., 2018), and Bryobacter is plant growth-promoting
rhizobacteria (Liu et al., 2019). Pseudolabrys is highlighted
to be able to improve salinity stress (Lee et al., 2021). The
intercropping forest also showed significant enrichment
of Rhodanobacter. Members of Rhodanobacter are known
as denitrifying bacteria that are used for bioremediation
(Prakash et al., 2012).

In the fungal community, Ascomycota and Mortierellomycota
were significantly more abundant in monoculture walnut forests
than in monoculture tea forests. However, Glomeromycota
were more abundant in tea soils than walnut soils and
walnut–tea intercropping forests. The roots of tea trees
form a symbiotic relationship with arbuscular mycorrhizal
fungi in soils containing low levels of inorganic phosphorus
(Öpik et al., 2010; Wu et al., 2019). As confirmed in
this study, monoculture tea forest soils had a significantly
lower amount of AP than in monoculture walnut and
intercropping forest. Further research is needed to understand
the reasons for the decrease in arbuscular mycorrhizal fungi
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FIGURE 8 | Two-way co-occurring network analysis of soil characteristics, enzyme activity, and bacterial (A) and fungal (B) community within three forest types. The
size of each node is proportional to the relative abundance. The colors of the lines indicate positive (red) and negative (green) correlations.
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in walnut forest land or intercropping forest land. Moreover,
we found that soils in the intercropping forest contained a
significantly higher abundance of Trechispora, Oidiodendron,
Penicillium, Talaromyces, Trichoderma, and Pochonia than those
in monoculture tea and walnut forests. The higher abundance
of Trechispora in the soil has been positively correlated with
the increased uptake of nitrogen and carbon sources by hosts
(Vanegas-León et al., 2019) and litter decomposition (Midgley
et al., 2015). Members of the genus Trichoderma are known
for their ability to reduce the severity of plant diseases by
inhibiting pathogenic organisms in the soil through their highly
potent antagonistic and mycoparasitic activity (Schuster and
Schmoll, 2010; Hermosa et al., 2012; Ghazanfar et al., 2018;
Chen et al., 2021). In prior studies, Oidiodendron has been
demonstrated to improve phosphorus and nitrogen uptake
(Vohnfk and Albrechtová, 2005). Penicillium, Talaromyces, and
Pochonia species are also shown to inhibit plant pathogens
(Elsharkawy et al., 2012; Hamid et al., 2017; Mwaheb et al., 2017;
Topalovic et al., 2020; Abdul et al., 2021).

Based on the above discussion, it becomes clear that
intercropping walnut and tea positively affects soil nutrient
contents, enzyme activity, and the composition of bacterial and
fungal microbiota in the soil microbiome and that changes in
microbial diversity and RA play an important role in nutrient
cycling, which benefits both walnut and tea trees.

CONCLUSION

The results of our study suggest that intercropping practices
in orchards had a significant impact on improving the soil’s
nutritional conditions by increasing soil nitrogen, phosphorus,
potassium, and OM. The intercropping practice also induced
great changes in soil bacterial and fungal communities. An
analysis of microbial and fungal communities confirmed that
walnut–tea intercropped had a significant impact on the
bacterial and fungal community diversity and composition
as compared to the monoculture walnut and tea forests.
In general, the intercropping practice significantly optimized
bacterial and fungal community structure and harbor relatively
enriched beneficial bacterial and fungal taxa that were mainly
related to nutrient cycling and disease protection. Nevertheless,
the functional potential of soil microbial communities using

shotgun metagenomics and metatranscriptomics is needed
to further study.
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