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Magnetic resonance (MR) imaging plays an important role in medical diagnosis

and treatment; different modalities of MR images can provide rich and

complementary information to improve the accuracy of diagnosis. However,

due to the limitations of scanning time and medical conditions, certain

modalities of MR may be unavailable or of low quality in clinical practice. In

this study, we propose a new multimodal MR image synthesis network to

generate missing MR images. The proposed model comprises three stages:

feature extraction, feature fusion, and image generation. During feature

extraction, 2D and 3D self-supervised pretext tasks are introduced to pre-

train the backbone for better representations of eachmodality. Then, a channel

attention mechanism is used when fusing features so that the network can

adaptively weigh different fusion operations to learn common representations

of all modalities. Finally, a generative adversarial network is considered as the

basic framework to generate images, in which a feature-level edge information

loss is combined with the pixel-wise loss to ensure consistency between the

synthesized and real images in terms of anatomical characteristics. 2D and 3D

self-supervised pre-training can have better performance on feature extraction

to retain more details in the synthetic images. Moreover, the proposed

multimodal attention feature fusion block (MAFFB) in the well-designed

layer-wise fusion strategy can model both common and unique information

in all modalities, consistent with the clinical analysis. We also perform an

interpretability analysis to confirm the rationality and effectiveness of our

method. The experimental results demonstrate that our method can be

applied in both single-modal and multimodal synthesis with high robustness

and outperforms other state-of-the-art approaches objectively and

subjectively.
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1 Introduction

Magnetic resonance imaging (MRI) has multiple modalities,

such as T1 weighted (T1), T1 with contrast enhanced (T1-C),

T2 weighted (T2), and T2-fluid-attenuated inversion recovery

(T2-FLAIR) (Azad et al., 2022). Every modality shows specific

pathological and structural information of the same organs. For

example, T1 is usually used to explore the anatomical structure,

while T2 is sensitive to bleeding and focuses more on lesions. In

clinical diagnosis, doctors expect to comprehensively use the

complementary information of different modalities to make

more accurate and quicker decisions. However, because of the

limitations of scanning costs, medical conditions, scanning time,

and some other factors, it is difficult to obtain all multimodal MR

images. In such a situation, doctors can only make a rough

diagnosis of diseases, which may affect medical treatment. To

solve this problem, many researchers are focusing on cross-

modal medical image synthesis, which can synthesize images

of the missing modality based on existing modal images. With

this technology, patients do not need to conduct some expensive

or damaged scans while doctors can still get corresponding

medical images of patients, which may save much time and cost.

Presently, a large amount of work is based on the generative

adversarial network (GAN) for medical image synthesis. Since the

GAN (Goodfellow et al., 2014) was proposed in 2014, it has gained

significant attention in image synthesis, including medical image

synthesis. For example, the deep non-linear embedding

deformation network (NEDNet) was proposed by Lin et al.

(2022) for cross-modal brain MRI synthesis. Luo et al. (2022)

presented an adaptive rectification based the GAN (AR-GAN)

with a spectrum constraint to acquire high-quality standard-dose

PET (SPET) images using low-dose PET (LPET) images. However,

most of these studies focus on image synthesis from one modal to

another. Multimodal image synthesis usually performs better than

single modal image synthesis, since multimodal data contain more

complementary information. Now some researchers have studied

how to synthesize medical images from multi-source modalities.

For example, Zhou et al. (2020) proposed a hybrid-fusion network

(Hi-Net) for multimodal MR image synthesis. Alseelawi et al.

(2022) proposed an effective strategy for multimodal medical

image fusion based on a hybrid approach of a non-subsampled

contourlet transform (NSCT) and a dual-tree complex wavelet

transform (DTCWT).

However, several challenges remain for medical image

synthesis. Unlike natural image synthesis, medical images are

mostly 3D data, requiring massive computational resources in

training. To reduce GPU memory usage, it is feasible to slice 3D

data into 2D patches for training. For example, Osman and

Tamam, (2022) trained a U-net model with 2D-paired MR

images to perform image-to-image translation across MRI

contrasts for the brain. Although this reduces the amount of

computation and the demand for GPU memory, it also ignores

part of the 3D contextual information. Jiao et al. (2020) proved

that the combination of 3D information and 2D slices by self-

supervised learning can effectively improve the quality of

generated images, particularly image details. Another

challenge for multimodal synthesis is how to effectively fuse

the data from multiple sources. Both modality-specific

characteristics and the common information of all modalities

should be reserved through an effective fusion strategy. Although

many fusion strategies have been designed to alleviate ineffective

fusion to some extent, the common and unique information of

different modalities are not well explored and modeled explicitly.

To address the aforementioned challenges, we propose a

novel multimodal MR image synthesis network to generate

missing MR images based on existing ones. Specifically, we

pre-train the symmetric U-net (Ronneberger et al., 2015)

backbone with 3D and 2D self-supervised learning tasks to

take advantage of spatial contextual information. The

backbone is based on auto-encoders to learn the most typical

features of the sample in an encoding that uses the specified

information capacity (Gao et al., 2022a). Then, the channel

attention mechanism is involved in layer-wise fusion blocks to

adaptively learn the best weights of multiple fusion operations.

The fusion blocks learn the common representations of all

modalities in shared latent space, while the features from the

symmetric U-net (Ronneberger et al., 2015) present the

modality-specific properties. In addition, we propose a GAN

loss at both the feature-level and pixel-level to guarantee

consistency between target images and generated images.

The main points of this study are summarized as follows:

• We use self-supervised learning tasks to take advantage of

3D and 2D auxiliary information during the feature

extraction stage, in which the unique features of input

modalities are better learned.

• We introduce a well-designed layer-wise fusion strategy to

explore the correlations and obtain common features

among various modalities effectively.

• We propose a novel GAN loss including the pixel-level loss

to ensure that the generated images are realistic and clear

subjectively, and the feature-level loss to ensure

consistency between the generated images and real

images in the anatomical characteristics.

• Comprehensive experimental evaluation shows that our

model can generate high-quality MR images and perform

better against other multimodal and single modal synthesis

methods. The interpretability analysis verifies the

correctness of our fusion model.

The rest of this study is organized as follows. We review some

related works in Sec. 2. Sec. 3 describes the details of our

approach for multimodal MR image synthesis. Then, we

present several experiments to evaluate the superiority and

interpretability of the proposed method in Sec. 4. Finally, we

conclude the study in Sec. 5.
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2 Related work

2.1 Medical image synthesis

Medical image synthesis is a popular topic in medical research,

which aims to generate one imagingmodality from othermodalities.

Classical methods are based on atlases or intensity transformation.

Atlas-basedmethods perform deformation on the target modal atlas

to synthesize target images, in which the deformation field is

acquired by registering a source modal atlas to the source modal

images (Lauritzen et al., 2019; Martinez-Girones et al., 2021).

Martinez-Girones et al. (2021) proposed an approach to

synthesize extended head and neck pseudo-CTs using an atlas

comprising diverse anatomical overlapping MR-CT scans and

deep learning methods. Intensity-based methods use intensity

transformation to obtain the target images. A typical example of

intensity-based methods is using image synthesis as an approach to

solve sparse dictionary reconstruction, which is called dictionary

learning. Huang et al. (2019) introduced the cross-modality

dictionary learning scheme and a patch-based globally redundant

model based on sparse representations to simultaneous super-

resolution and cross-modality synthesis in brain MRI. However,

the atlas-based method is sensitive to alignment accuracy and

segmentation precision, thus requiring time-consuming manual

labeling to obtain more accurate results. In the intensity-based

methods, image patches at different scales are processed

independently to reconstruct the dictionary. In addition, the

predictions of patches are averaged during synthesis. Both factors

may lead to the loss of high spatial frequency information and sub-

optimal synthesis performance.

More recently, deep learning methods have achieved

significant progress in medical image synthesis, particularly

GAN-based approaches. The original GAN has inherent

defects such as model collapse and gradient explosion, which

have been addressed in the conditional GAN (CGAN) (Mirza

andOsindero, 2014) and the deep convolutional GAN (DCGAN)

(Radford et al., 2016). Pix2Pix (Isola et al., 2017) performs image-

to-image translation pixel-to-pixel with paired data. CycleGAN

(Zhu et al., 2017) extends Pix2Pix (Isola et al., 2017) to unpaired

data with a cycle consistency loss. Fetty et al. (2020) took the

StyleGAN (Karras et al., 2019) model as the generator for high-

resolution medical image synthesis. However, these methods can

only transform images from one domain to another but cannot

use complementary information of multiple modalities for more

accurate synthesis. Even though some methods (Liu et al., 2020;

Bian et al., 2022) start to focus on multimodal image synthesis,

they are not able to leverage 3D contextual information.

2.2 Self-supervised learning

Unlike supervised (Zhou et al., 2020) or weakly supervised

learning (Xiao et al., 2021), self-supervised learning (Cao et al.,

2020) usually learns the representations of the unlabeled data

through a pretext task. It usually follows these steps: first, a

pretext task is defined and the network is trained to solve this task

to learn the representations. After that, the pre-trained model is

fine-tuned for downstream tasks. Finally, the performance of

these downstream tasks can be used to evaluate the quality of the

features obtained through self-supervised learning.

According to different pretext tasks, self-supervised learning

can be classified into three categories: context-based methods,

contrastive learning-based methods, and generative model-based

methods. Context-based methods aim to exploit the contextual

information of the data, such as the order of words in natural

language processing, the spatial structure information in image

processing, the temporal information in video processing, etc.

For example, Li et al. (2021) proposed JigsawGAN to learn

semantic information and edge information of images, which

is a GAN-based self-supervised method for solving jigsaw puzzles

with unpaired images. Contrast learning (Tian et al., 2020; Wang

et al., 2021; Dave et al., 2022) can be regarded as a discriminative

method which aims to group positive samples and separate

negative samples. Dave et al. (2022) developed a new

temporal contrastive learning framework comprising

local–local and local–global temporal contrastive loss to

encourage the features to be distinct across the temporal

dimension. Generative model-based approaches usually use

some generative tasks as pretext tasks to learn features, such

as image reconstruction (Fan et al., 2022), image inpainting

(Quan et al., 2022), image coloring (Bi et al., 2021), etc. In

this work, we use image inpainting and slice index prediction as

pretext tasks to learn better representations of input modalities as

detailed in Sec. 3.1.2.

2.3 Multimodal fusion

In the process of multimodal MR image synthesis, the

information from different modalities needs to be fused. The

commonly used fusion strategies can be divided into input-level

fusion, feature-level fusion, and decision-level fusion (Zhou et al.,

2019a). Input-level fusion is the channel-by-channel fusion

treating multimodal images as multi-channel inputs. Ibtehaz

and Rahman, (2020) proposed MultiResUNet for multimodal

biomedical image segmentation, in which four MRI modalities

are used as four different channels to obtain segmentation of

brain tumors. Zhou et al. (2019b) embedded dilated convolution

into 3D U-net for brain tumor segmentation in multi-parametric

MRI, in which the multimodal images are stacked as different

channels. Feature-level fusion (Zhan et al., 2021; Zuo et al., 2021;

Gao et al., 2022b; Roy et al., 2022) extracts modality-specific

features of each modality and then fuses them to use the

complementary information. Zuo et al. (2021) proposed a

deep auto-encoder multi-cascade fusion (DMC-Fusion)

framework with classifier-based feature synthesis for
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automatically fusing medical multi-modalities. Zhan et al. (2021)

developed multiple down-sampling branches corresponding to

input modalities to specifically extract their unique features, and

then fused them through a gate mergence mechanism to

synthesize target images of MRI. Decision-level fusion fuses

the results of each modality-specific network. For instance, Fu

et al. (2021) introduced a multimodal spatial attention module to

fuse the attention map from PET and the segmentation of CT to

segment tumors.

Input-level fusion is the most commonly used and simplest

fusion strategy for multimodal medical image synthesis, but it is

difficult to take full advantage of the correlations and

complementarity among multimodal images. Decision-level

fusion is mostly used for tasks related to classification such as

image segmentation and image recognition, which can be

achieved by averaging the classification results or the majority

voting strategy. Feature-level fusion is usually based on the

assumption that different modal features share the same

feature space. It is a big challenge to construct a shared latent

space and build a fusion model based on feature correlations and

modality complementarity (Zhang et al., 2021). Compared with

input-level fusion and decision-level fusion, feature-level fusion

can more effectively explore the relationship between different

modal features.

In this work, all modalities are related to the same organ

(i.e., the brain), and in the latent space, they may share some

common features referring to the feature correlations.

Furthermore, multimodal MR images show modality-specific

properties due to different imaging contrasts, which are

complementary to each other. Based on feature correlations

and modality complementarity, an effective layer-wise fusion

strategy is proposed to fuse features as described in Sec. 3.2.

3 Methods

In this section, we elaborate on three main components of the

proposed approach in detail, that is, a feature extraction network

for each modality, feature fusion network, and GAN-based

generation network. The feature extraction network is used to

extract the unique features of each modality; the feature fusion

network takes the unique features of each modality as input and

fuses them in the latent space to obtain the common features; and

the generation network uses the unique and common features to

synthesize a predicted image of target modality.

3.1 Feature extraction network

In multimodal medical image synthesis, there are both

common and unique information among different modalities.

As shown in Figure 1, to explore the correlations, we design a

feature extraction network to learn the representations of input

modalities. For each modality, the feature extraction network

shares the same architecture with different parameter weights. As

a result, the features of each modal should be in the same latent

space, making them easier to fuse than raw data in different

spaces. Specifically, the network is a symmetric auto-encoder

with skip connections to reconstruct the source images. The deep

features from the decoder and shallow features from the encoder

are concatenated via skip connections to retain more detailed

information.

3.1.1 Architecture of feature extraction network
The feature extraction network aims to learn unique

representations for each input modality. We develop a shared

architecture and take the reconstruction task as the side-output

supervision. The shared network architecture guarantees that the

unique features of each modality have the same size and

dimension in the shared latent space, which benefits the

fusion stage. For the i-th modality, the input image is denoted

as xi, and the extracted features from the encoder are defined as

fi = ECi(xi), where ECi is the encoder. After that, the decoder

reconstructs the original images from these features. To constrain

the output, we adopt a pixel-wise l1-loss as the reconstruction

loss function:

LRec � ∑
i

‖xi − x̂i‖1, (1)

where i denotes the i-th modality, x̂i � DCi(fi) denotes the

corresponding reconstructed image of xi, and DCi is the decoder.

A detailed schematic of the auto-encoder network is shown

in Figure 2. The network is a symmetric U-Net with two skip

connections between the pooling and upsampling layers. After

each convolutional layer, a batch normalization layer is

conducted in which the data are normalized using the mean

and standard deviation computed from each batch. The

activation functions of the encoder layers and the decoder

layers are LeaklyRelu and Relu, respectively.

3.1.2 Self-supervised pre-training
As mentioned previously, we take two self-supervised

learning tasks to pre-train the network so that more 2D and

3D information can be used.

Specifically, we take image inpainting as a pretext task to

make full use of 2D contextual information. Some areas of the

input image are covered by a mask in image inpainting. Then the

network is trained to learn the contextual information and

restore the image. A schematic diagram of the image

inpainting task is shown in Figure 3. The only difference

between reconstruction and inpainting is that some regions of

the input are masked for image inpainting. Thus, the network

structure and loss function for the image inpainting task are the

same as the image reconstruction task.

Similar to adjacent frames in video information, adjacent

cross-sections of 3D medical data show correlations and
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FIGURE 1
Pipeline of our proposed method. Our model comprises three main parts: the feature extraction network (a symmetric U-net pre-trained with
self-supervised learning), the feature fusion network, and the GAN-based generation network. The feature extraction network learns the unique
information of different modalities, while the fusion network aims to learn the common properties of multimodal images. The GAN-based
generation network includes a generator and two discriminators. One discriminator distinguishes from the pixel-wise aspect, and the other
discriminator considers the feature-level.

FIGURE 2
Detailed architecture of the feature extraction network, which can be considered as an encoder–decoder with skip connections.
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continuity. Some methods use 2D slices to train the network to

reduce the computation and the demand for GPU memory, but

this cannot leverage the 3D information in the slicing direction.

Therefore, we take the slice index prediction task as another self-

supervised learning pre-training task, as shown in Figure 4. We

assume that if the model can infer the position from adjacent

slices, it means that the model has learned part of the whole

anatomical structure and alleviated synthesis ambiguity. In such

a situation, the input is not a single slice but three adjacent slices,

in which three is a trade-off between the contextual information

and the complexity of the network. Therefore, an additional

convolutional layer is conducted before the feature extraction

network. The additional convolutional layer compresses the

input three slices into a single channel feature map without

changing the size of the image. To predict the slice index, an

index prediction branch is added to the decoder. The index

prediction branch contains four convolution layers with batch

normalization and ReLU activation, an average pooling layer,

and a fully connected layer. The index prediction task can be

regarded as a regression task. Finally, an index prediction loss is

introduced in the reconstruction loss:

LRec � ∑
i

‖xi − x̂i‖1 + ‖yi − ŷi‖22( ), (2)

where yi represents the real slice index of the i-th modal, and ŷi

represents the predicted slice index of the i-th modal.

3.2 Feature fusion network

After obtaining the representations of each modality in the

same latent space, we can fuse the representations to explore the

correlations among different modalities. To achieve this, in the

feature fusion network, we introduced a layer-wise fusion block

to learn the common features of all modalities. The input-level

fusion strategy concatenates images of different modalities by

FIGURE 3
Schematic diagram of the image inpainting task. The left side
is the result of masking part of the original image, and the right side
is the original image. The image inpainting task aims to reconstruct
the original image on the right through the input on the left.

FIGURE 4
Schematic diagram of the index prediction task. Compared with the original network, an extra branch is used to predict the index of the present
slice, and the input images contain three neighboring slices rather than one.
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channel and then feeds the fused result into a single network to

get the final output. Unlike the input-level fusion strategy, the

layer-wise fusion strategy is more complex to implement but can

achieve better results. Specifically, both shallow and deep features

from multiple layers can be fused explicitly in the layer-wise

fusion strategy whereas only raw data can be fused implicitly in

the input-level fusion strategy. Another advantage of the layer-

wise fusion strategy is that features from our extraction networks

share the same latent space with no gap. In contrast, raw data of

each modality are in individual spaces with great diversities and

gaps. Therefore a common representation can be learned easier

using the layer-wise fusion strategy. Inspired by the powerful

ability of attention mechanisms (Hu et al., 2018; Woo et al., 2018;

Gao et al., 2021), we propose a multimodal attention feature

fusion block (MAFFB) module to use the complementarity of

different modalities. As can be seen in Figure 1, there are three

MAFFB modules in the fusion network. Except for the first

MAFFBmodule, eachMAFFBmodule has three inputs including

two unique representations from the encoder network and the

output of the former MAFFB module. The MAFFB module can

explore the correlations between both low-level and high-level

features to learn common representations of all modalities.

A detailed illustration of the MAFFB module is shown in

Figure 5, in which channel attention guidance is applied to

adaptively weigh three popular fusion operations

(i.e., element-wise summation, element-wise product, and

element-wise maximization). There is no evidence to show

which of the three is better, therefore, we use all of them.

S(i)n−1 ∈ RC×H×W denotes the features from the (n-1)-th layer of

the i-th modality (i = 1, 2), where C is the number of feature

channels, and W and H are the width and height of the feature

maps, respectively. The results of the three operations are

F+ � S 1( )
n−1 + S 2( )

n−1, (3)
F× � S 1( )

n−1 × S 2( )
n−1, (4)

Fmax � Max S 1( )
n−1, S

2( )
n−1( ), (5)

where “+ ,” “×,” and “Max” denote element-wise summation,

element-wise product, and element-wise maximization

operations, respectively. Following that, the results are stacked

as different channels:

Fconcat � F+, F×, Fmax[ ] ∈ R3C×H×W. (6)

Then, Fconcat is fed into a channel attention module (detailed

in Figure 6) to obtain the channel attention map. The channel

attention module can be divided into two steps: first, average

pooling and max pooling are conducted as Eq. 7– Eq. 8; then, the

results are fed into a shared multilayer perceptron to compute the

attention map as Eq. 9.

AVGPool xk( ) � 1
H × W

∑
H

i�1
∑
W

j�1
xk i, j( ), (7)

MAXPool xk( ) � Max xk i, j( )( ), i � 1, 2, . . . , H; j

� 1, 2, . . . ,W, (8)
Mc F( ) � σ f1×1 δ f1×1 AVGPool xk( )( )( )( ) + f1×1 δ f1×1 MAXPool xk( )( )( )( )( ),

(9)

where xk (i, j) represents the value of the kth channel in Fconcat at

position (i,j). AVGPool (xk) and MAXPool (xk) represent the

global average pooling and global maximum pooling on the k-th

channel of Fconcat, respectively. f 1 × 1 represents a 1 × 1

convolution operation, δ is the ReLu activation function, and

σ is the Sigmoid activation function. Then, the attention map is

multiplied by Fconcat and the results are fed into the first

convolutional layer. After that, the output of the first

convolutional layer is concatenated with output Fn−1 of the

previous MAFBB module and then fed into the second

convolutional layer. Finally, the output Fn of the present

MAFBB module is obtained, which is the common

representation of the present layer. In each MAFFB, we

FIGURE 5
Structure of the MAFFB. Three common fusion operations (i.e., element-wise summation, element-wise product, and element-wise
maximization) are included. Fn−1 is the common features from the previous layer n −1. S(1)n−1 and S(2)n−1 are the unique features of two input modalities
from layer n−1. C means concatenation. Fn is the obtained common features of the present layer n.
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introduce a batch normalization layer after each convolution

layer with the Relu activation function.

3.3 GAN-based generation network

Once the modality-specific features and common representations

of all modalities are obtained, we can use them to synthesize the image

of the target modality. We design a GAN-based generation network

comprising two parts: one generator and two discriminators. The

generator G can be roughly regarded as a decoder model and tries to

generate an image to confuse the discriminator D while the

discriminator D identifies the generated image from the real image.

For generator G, the modality-specific features fused by the

feature fusion network are compressed into channels by two

layers of convolution to reduce the computation. Then three

MAFFBs are used to further fuse the features. To retain more

detailed information in the generated image, the input of the

MAFFB contains the common representations fused by the

feature fusion network and the unique features extracted by

the feature extraction network. The output of the last MAFFB is

passed through an upsampling and a convolutional layer to

obtain the synthetic image. Each convolution layer is followed

by a batch normalization layer and a Relu activation function.

The proposed synthetic network contains two discriminator

networks: one considers pixel-level loss and the other one is

trained with feature-level loss. For the discriminator with pixel-

level loss, the network architecture is shown in Table 1. We take a

2D image of size 128 × 128 as input. The network contains five

convolutional layers, each of which is followed by a batch

normalization layer and a LeaklyReLu activation function with

a slope of 0.2. For the discriminator with feature-level, the

network also contains five convolutional layers as shown in

Table 2. Compared with the pixel-level discriminator, its input

is the edge information extracted from CannyNet1. CannyNet is

used to extract anatomical features, which implements the Canny

(Canny, 1986) edge detection algorithm. The pixel-level

discriminator ensures that generated images are more realistic

in appearance, while the feature-level discriminator constrains

that generated images and real images are anatomically

consistent.

FIGURE 6
Illustration of the channel attentionmodule, which is used to adaptively weigh the results of three fusion operations. The sharedMLP comprises
1×1 Conv, Relu, and 1×1 Conv.

TABLE 1 Architecture of the pixel-level discriminator.

Layer Input Parameters Activation

dis_1 images Conv (3 × 3,32), BN, stride = 2 LeakyRelu, 0.2

dis_2 dis_1 Conv (3 × 3,64), BN, stride = 2 LeakyRelu, 0.2

dis_3 dis_2 Conv (3 × 3,128), BN, stride = 2 LeakyRelu, 0.2

dis_4 dis_3 Conv (3 × 3,256), BN, stride = 2 LeakyRelu, 0.2

output dis_4 Conv (3 × 3,1), BN, stride = 1 LeakyRelu, 0.2

TABLE 2 Architecture of the feature-level discriminator.

Layer Input Parameters Activation

dis_1 features Conv (3 × 3,32), BN, stride = 2 Relu, 0.2

dis_2 dis_1 Conv (3 × 3,64), BN, stride = 2 Relu, 0.2

dis_3 dis_2 Conv (3 × 3,128), BN, stride = 2 Relu, 0.2

dis_4 dis_3 Conv (3 × 3,256), BN, stride = 2 Relu, 0.2

output dis_4 Conv (3 × 3,1), BN, stride = 1 Relu, 0.2

TABLE 3 Comparison results of the objective evaluation on
multimodal synthesis (T1+T2→Flair).

Methods MSE ↓ PSNR ↑ SSIM ↑

MM-Syns Chartsias et al. (2017) 0.0379 24.12 0.8723

Hi-Net Zhou et al. (2020) 0.0244 25.67 0.9034

Ours 0.0224 27.41 0.9272

1 https://github.com/DCurro/CannyEdgePytorch
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In generation networks, the loss function contains three

components: pixel-level reconstruction loss between the real

image and the generated image as Eq. 10, pixel-level

generative adversarial loss as Eq. 11, and feature-level

generative adversarial loss as Eq. 12.

LGRec � ‖y − G x1, x2( )‖1, (10)
Ladv
pixel � min

G
max

D
Ey~pdata log(1 −Dpixel y( )[ ]

+ Ex1 ,x2~pdata log(1 −Dpixel(G x1, x2( )[ ], (11)
Ladv
feature � min

G
max

D
Ey~pdata log(1 −Dfeature C y( )( )[ ]

+ Ex1 ,x2~pdata log(1 −Dfeature(C G x1, x2( )( )[ ], (12)

where G (x1, x2) is the generated image, y is the ground truth,

Dpixel is the pixel-level discriminator, Dfeature is the feature-level

discriminator, and C is the CannyNet.

Finally, the total loss function of the whole network is

L � Ladv
pixel + Ladv

feature + λ1L
GRec + λ2L

Rec, (13)

where λ1 and λ2 are non-negative trade-off parameters.

4 Experiments

In this section, we first describe our dataset and evaluation

metrics. Then, we present our results and compare them with

other methods. Especially, we perform an interpretability

analysis of the proposed model.

4.1 Datasets

We use the Brain Tumor Segmentation Challenge 2018

(BraTS 2018) dataset (Menze et al., 2014) for the training and

evaluation of our method. The dataset contains MR brain image

data of 285 cases, and comprises four MRI modalities: T1, T1c,

FIGURE 7
Synthesis results of single modal and multimodal. (A) is the sing modal results using T2 to synthesize Flair; (B) is the multimodal results using T1
and T2 to synthesize Flair.

TABLE 4 Comparison results of the objective evaluation on single
modal synthesis (T2 → Flair).

Methods MSE ↓ PSNR ↑ SSIM ↑

Pix2Pix Isola et al. (2017) 0.0429 22.96 0.8631

CycleGAN Zhu et al. (2017) 0.0507 22.54 0.8322

StyleGAN Karras et al. (2019) 0.0473 22.77 0.8451

Ours 0.0394 23.41 0.8772
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T2, and T2-Flair. The size of each MR image is 240×240×155,

and all corresponding multimodal data have been registered. We

divide 80% of the 285 samples as the training set and the

remaining 20% as the test set. We use 2D axial-plane slices

for training. Because the boundary part of the 2D slice contains a

lot of invalid information (i.e., the intensity of the boundary part

is 0), only the central area of 160×180 is used. At the same time, to

expand the dataset, each 160×180 area is cropped into four

overlapping 128 × 128 image blocks. The overlapping part

adopts the strategy of averaging in the final synthesis. In

addition, the intensity of all training data is scaled to [-1, 1].

When performing self-supervised pre-training on the feature

extraction network, we use four masks of size 32 × 32.

4.2 Evaluations

To evaluate the effectiveness of our method, we compare

different variants of the proposed method with the Hi-Net (Zhou

et al., 2020) model and MM-Syns (Chartsias et al., 2017), both of

which are proposed for multimodal MR brain image synthesis.

There are four variants of our proposed method: variant one

contains only self-supervised learning pre-training, variant two

contains only the attention mechanism, variant three contains

only feature-level constraints, and the final variant four contains

all the aforementioned three highlights at the same time. Moreover,

our method is also compared with Pix2Pix (Isola et al., 2017),

CycleGAN (Zhu et al., 2017), and StyleGAN (Karras et al., 2019) for

single modal synthesis. For the quality evaluation, we use the peak

signal-to-noise ratio (PSNR), the mean square error (MSE), and the

structure similarity (SSIM) as the metrics. Both the PSNR and MSE

are image quality evaluation indicators based on image pixel

statistics. Supposing the ground truth is y(x) and the synthesized

image is G(x), the quantity metrics are defined as follows:

MSE � 1
N
‖y x( ) − G x( )‖22, (14)

PSNR � 10log10
max2 y x( ), G x( )( )

MSE
, (15)

where max2 (y(x), G(x)) represents the square of the maximum

intensity in y(x) and G(x).

As for SSIM, it measures the degree of similarity between the

ground truth and the synthesized image. SSIM is calculated as

follows:

SSIM � 2μy x( )μG x( ) + c1( ) 2σy x( )G x( ) + c2( )
μ2y x( ) + μ2G x( ) + c1( ) σ2y x( ) + σ2G x( ) + c2( )

, (16)

where μy(x), μG(x), σ
2
y(x), σ

2
G(x) are the means and variances of

y(x) and G(x), σy(x)G(x) is the covariance of images y(x) and G(x),

and c1 and c2 are two positive constants to avoid dividing by 0. It

is worth noting that lower MSE, higher PSNR, and higher SSIM

are what we expected.

4.3 Results

We divide the experiments into two groups, one for

multimodal synthesis, and the other for single modal

synthesis.

In the first group, we take T1 and T2 as input to synthesize

the T2-Flair modality and compare our method with Hi-Net

(Zhou et al., 2020) and MM-Syns (Chartsias et al., 2017). Table 3

shows the quantitative evaluation results. As we can see, our

method outperforms any other multimodal MR image synthesis

approach. This suggests that our method can effectively explore

the correlations and meanwhile preserve the modality-specific

properties, which are essential to the synthesis performance.

Figure 7B shows the subjective results of our method

compared with others. As can be seen, more details and fewer

blurred areas can be found in our method. Hi-net (Zhou et al.,

2020) is better than MM-Syns (Chartsias et al., 2017) for its

hybrid fusion strategies. Compared with Hi-Net (Zhou et al.,

2020) and MM-Syns (Chartsias et al., 2017), our method can

leverage more 2D and 3D contextual information and use a more

effective fusion strategy to improve performance.

In the second group, T2 is used to synthesize T2-Flair to

evaluate the performance of single modal synthesis. In this

situation, the inputs of two feature extraction networks in

our method are both T2 images. The compared models

include Pix2Pix (Isola et al., 2017), CycleGAN (Zhu et al.,

2017), and StyleGAN (Karras et al., 2019). Table 4 and

Figure 7A show the objective and subjective comparison

results for different methods. It can be seen that

StyleGAN (Karras et al., 2019) and CycleGAN (Zhu et al.,

2017) only synthesize some fuzzy areas, most of which have

low contrast and extremely low retention of detailed

information. Pix2Pix (Isola et al., 2017) is much better

than CycleGAN (Zhu et al., 2017) and StyleGAN (Karras

et al., 2019) for its strong supervision. In this group,

multimodal data are not available; thus, we are not

allowed to explore the complementarity of multiple

modalities. Since 2D and 3D contextual information are

better used in our method, we can still achieve the best

results both quantitatively and qualitatively. Overall, using

self-supervised learning tasks to make use of 2D and 3D

auxiliary information can significantly improve

performance.

Compared with other state-of-the-art methods, the

experimental results in multimodal synthesis demonstrate

the superiority of our method. This is mainly because of our

powerful feature extraction and effective feature fusion

strategy. MM-Syns (Chartsias et al., 2017) uses an encoder

to learn modality-specific features and max operation to fuse

the features. The simple max operation may lose some

detailed information, and thus is unable to effectively

explore and use the correlations and complementarity

between multimodal features. Hi-Net (Zhou et al., 2020)
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uses a more complex fusion strategy with three different

common fusion operations, which can better explore

complementary information from multiple modalities and

exploit their correlations to improve synthesis performance.

However, Hi-Net (Zhou et al., 2020) only applies 2D slices to

synthesize the target modality, ignoring the 3D information

in the medical image during the feature extraction process.

Our method not only uses self-supervised learning tasks to

pre-train the model to use 3D and 2D contextual information

but also uses more complex fusion strategies to fuse features

of different modalities. Self-supervised pre-training enables

our model to learn more effective features from different

modalities. The efficient fusion method can better exploit the

correlations among features to fuse them in the latent feature

space. As a result, the unique features and common features

of multiple modalities are well preserved in the synthesis

results. Moreover, the proposed method is a robust model, as

it can be applied in both single modal and multimodal

synthesis.

4.4 Ablation study

To verify the effectiveness of our three highlights, four

variants of our method are provided for ablation studies. The

experimental results are shown in Table 5. From the

experimental results, it can be seen that the pre-training

model with self-supervised learning tasks achieves better

performance than the attention mechanism and feature-level

loss, showing the importance of using 3D and 2D contextual

information.

We analyze the reasons for this result as follows:

1) Jiao et al. (2020) confirmed that 3D contextual information

can effectively improve the performance of single modal

medical image synthesis. In this study, we verify the

importance of 3D contextual information in

multimodal medical image synthesis through

experimental results. Our model can take advantage of

TABLE 5 Comparison results of the objective evaluation on different
variants of our method (T1+T2 → Flair).

Methods MSE ↓ PSNR ↑ SSIM ↑

Variant 1 (self-supervised learning) 0.0231 26.97 0.9228

Variant 2 (channel attention) 0.0237 26.34 0.9177

Variant 3 (feature-level discriminator) 0.0249 25.92 0.9089

Variant 4 (all above) 0.0224 27.41 0.9272

FIGURE 8
Visualizations of the unique and common features in 3D and 2D latent spaces. Red and green points represent the unique features of two input
modalities, and blue points represent the common features. The first row represents the 2D latent space and the second row represents the 3D latent
space. From left to right, each column represents MAFFB1, MAFFB2, and MAFFB3, respectively.
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3D and 2D contextual information through pre-training

to significantly improve the quality of the synthesized

image.

2) The attentionmechanism improves the fusion strategy.When

adopting a variety of fusion operations, we use the attention

mechanism to adaptively adjust the fusion weights. As a

result, the model can more efficiently use the correlations

and complementarity to fuse features. Both the unique

attributes of a single modality from the feature extraction

network and common information of multiple modalities

from the fusion network can be well retained during the

synthesis to improve performance.

3) The feature-level loss constrains the extracted anatomical

structure features, which requires CannyNet (Canny, 1986)

to extract edge features, and an additional discriminator is

used to distinguish the extracted features to ensure the

consistency of anatomical structures.

4.5 Interpretability analysis

Experimental results have demonstrated the superiority and

robustness of our method compared with other state-of-the-art

methods for MR image synthesis. To verify the reasonability of

our proposed fusion strategy, we visualize the unique features of

each input modality (features from auto-encoders) and common

features of all modalities (output of MAFFB).

We have six MAFFB modules (denoted as MAFFB1, ...,

MAFFB6) in our model. The first three modules (MAFFB1,

MAFFB2, and MAFFB3) are in the fusion network, and the

others (MAFFB4, MAFFB5, and MAFFB6) are in the

generation network. As mentioned before, unique features are

learned through the feature extraction network, and the fusion

network takes the unique features as input to obtain the common

FIGURE 9
Visualizations of the unique and common features in 2D and 3D latent spaces. Red and green points represent the unique features of two input
modalities, and blue points represent the common features. In (A) and (B), the left column represents MAFFBi in the fusion network, and the right
column represents MAFFB6−i in the GAN-based network, i = 1, 2, 3.

TABLE 6 Training cost comparison between our method and Hi-Net
Zhou et al. (2020) on four RTX 3090GPUs, and the batch size of 3D
volume is set to 1.

Methods Memory (MB) Time

2D and 3D self-supervised joint pre-training 25,890 15 h

Ours 67,400 41.3 h

Hi-Net Zhou et al. (2020) 65,852 40 h
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features. We project the unique features (i.e., S(1)n−1 and S(2)n−1 in

Figure 5) and common features (i.e., Fn in Figure 5) of all MAFFB

modules into the 3D and 2D latent space by the principal

component analysis in Figure 8 and Figure 9.

Figure 8 shows the distributions of the unique and common

features of the three MAFFB modules in the feature fusion

network. In Figure 8, it can be seen that the common features

are located in the middle area of the unique features of the two

input modalities. As the depth of the network increases, the

common features get closer to the intersection of the unique

features.

As shown in Figure 1, MAFFBi in the fusion network and

MAFFB6−i (i = 1, 2, 3) in the generation network share the same

unique features as input. Therefore, the common features of

MAFFBi andMAFFB6−i are compared and the visualizations can

be found in Figure 9. Obviously, the common features in the

generative network are more concentrated among the unique

features than those in the fusion network. These visualization

results demonstrate that the MAFFB module can fuse unique

features in an effective way to obtain common features, and as the

depth of the network increases, the fusion improves. Because of

the high performance of our proposed layer-wise fusion network,

the correlations and complementarity of modalities can be well

used in our model.

4.6 Discussion

Our method is effective and robust and can be applied in

many ways. One potential application is to help doctors make

more accurate clinical diagnoses. T1ce needs to inject contrast

media into the patient during imaging. Using our proposed

method, patients may not need to conduct such a damaged

scan, yet doctors can still obtain the images of T1ce to make a

more comprehensive diagnosis. In addition, our method can

be applied for data augmentation. As is known to us, in deep

learning, most approaches are data-driven. But in practice, it

is a big challenge to obtain a large amount of training data,

particularly when the technique to obtain data is damaged and

newly invented. In this case, our method can be used to

synthesize missing or imbalanced modal images.

However, there exist some shortcomings in our proposed

method. First, our method requires self-supervised pre-training,

which will increase the training time as shown in Table 6. Second,

since the input data of our method are registered by experts, we

do not explore our method on unpaired or not strictly aligned

data. We hope future researchers can propose an end-to-end way

to use 3D contextual information while reducing the

computational cost of 3D medical data. In addition, weakly

supervised learning may be a good choice since paired and

registered data are difficult to obtain in practice.

5 Conclusion

In this study, we have proposed a new approach with the

layer-wise fusion strategy to synthesize target modal MR images

using multimodal MR images. The proposed method combines

self-supervised learning with generative adversarial networks.

Specifically, modality-specific features are first extracted from

an auto-encoder, which is pre-trained with self-supervised

learning tasks to better use 2D and 3D contextual

information. Then a fusion network is used to explore the

correlations across multiple modalities and fuse the features

from different layers. Moreover, a channel attention

mechanism is used in the layer-wise MAFFB to adaptively

weigh three widely used fusion operations. Finally, a GAN-

based network with two discriminators is introduced to

synthesize the target image with both common and unique

information of all modalities. Experimental results

demonstrate the superiority of our method both qualitatively

and quantitatively, in comparison to other state-of-the-art

synthesis methods. In the future, we will explore whether this

method can be applied in cross-modal synthesis with unpaired or

not strictly aligned data.
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