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Bioinformatic approach 
for the discovery of cis‑eQTL 
signals during fruit ripening 
of a woody species as grape (Vitis 
vinifera L.)
Pedro José Martínez‑García1*, Jorge Mas‑Gómez1, Jill Wegrzyn2 & Juan A. Botía3,4

Expression quantitative trait loci (eQTLs) are associations between genetic variants, such as Single 
Nucleotide Polymorphisms (SNPs), and gene expression. eQTLs are an important tool to understand 
the genetic variance of gene expression of complex phenotypes. eQTLs analyses are common in 
biomedical models but are scarce in woody crop species such as fruit trees or grapes. In this study, 
a comprehensive bioinformatic analysis was conducted leveraging with expression data from two 
different growth stages, around ripening onset, of 10 genotypes of grape (Vitis vinifera L.). A total of 
2170 cis‑eQTL were identified in 212 gene modulated at ripening onset. The 48% of these DEGs have 
a known function. Among the annotated protein‑coding genes, terpene synthase, auxin‑regulatory 
factors, GRFS, ANK_REP_REGION domain‑containing protein, Kinesin motor domain‑containing 
protein and flavonol synthase were noted. This new inventory of cis-eQTLs influencing gene 
expression during fruit ripening will be an important resource to examine variation for this trait and 
will help to elucidate the complex genetic architecture underlying this process in grape.

Many, if not most, of important characters to animal, plant and human research, such as morphological, life 
history, behavioral traits, as well as many human diseases such as cancer and diabetes are genetically complex. 
Complex traits are controlled by many genes (polygenic) and/or environmental conditions, as well as encompass 
phenotypes that are only expressed when the effects of many genes and/or environmental conditions reach a 
minimum threshold. Understanding the mechanisms behind the differences in complex traits among individu-
als, populations, and species has been an essential challenge to evolutionary biology since Darwin and  Galton1. 
Understanding the phenotypic differences among individuals requires an understanding of the causes of genetic 
variation in complex traits.

The systematic dissection of the genetic basis of variation in complex traits has become achievable in the last 
10  years2. Since 2007, genome-wide association studies (GWAS) have detected associations between common 
genetic variation at thousands of loci for important human  diseases3. As of June 8, 2021, the catalog of published 
GWAS (http:// www. genome. gov/ gwast udies) includes 5106 publications and 161,014 SNPs. Surprisingly, the 
number of specific mutations identified and demonstrated to be causative has been very low in comparison 
with the high numbers of genomic loci underlying complex traits. There are two main reasons for the difficulty 
of understanding GWAS associations. First, that nearby genetic variants are likely inherited together due to 
co-segregation during meiotic recombination, a phenomenon named linkage disequilibrium (LD), hindering 
the identification of the causal variants propping the association. Secondly, it is unknown which cell types are 
causal to the disease as the pathophysiology of complex diseases often involves interactions of many cell  types4. 
More interestingly, nearly 90% of these trait/disease associated SNPs (TASs) were located in non-protein-coding 
regions, suggesting a possible role in gene regulation of these associated  variants5. Taken together in spite of 
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this amount of GWAS, the amount of reports that have explored the underlying mechanisms of the detected 
associations is orders of magnitude  fewer6,7.

One of the biggest challenges in the post-GWAS era lies in connecting additional molecular data with these 
GWAS findings to functionally illustrate the relationships. The combination of current bioinformatic, statisti-
cal, and empirical bench-based methods allows for the downstream elucidation of GWAS-identified trait loci. 
In this sense, genomics is a very powerful tool to identify expression quantitative trait loci (eQTLs), meaning 
the genomic loci that control gene-expression differences. The aim of eQTLs is to improve our understanding 
of the genetic architecture of disease susceptibility and complex traits and to improve our knowledge of how 
gene networks are organised within an  organism8. Almost 50% of trait-associated SNPs have a cis-acting effect 
on gene  expression9,10. According to this, cis-eQTL associations have been performed to detect the novel, but 
weak, associations that do not reach the genome-wide significance level in GWAS without the requirement of 
increasing the size of the  sample11,12. Other significant benefits of the detection of eQTLs is that they can provide 
knowledge about the underlying pathways and the trait  mechanism13. To characterize functional genetic vari-
ation in humans, a large consortium has allowed the development of the Genotype-Tissue Expression (GTEx) 
project supported by the NIH Common  Fund14. This resource allows researchers to study the connection between 
gene expression and genetic variation in a variety of tissues. Studying large amount of tissues or cell types is 
expensive, laborious, limited to humans and unaffordable for plant species such as woody crops. However, eQTL 
studies are gaining popularity in plant genetics mainly due to the fact that they represent a efficient approach to 
short out the tedious procedure of positional cloning, especially for genes underlying quantitative  characters15. 
At the same time, eQTL studies of tree species is a real challenge because of sampling  methods16 since they do 
not grow easily under controlled environments due to large space requirements. Indeed, few eQTL studies have 
been conducted in woody  species17–23. Some of these studies have been carried out in grapes (Vitis vinifera L), 
the target organism of this study. Grapes are one of the first domesticated fruit crops and are one of the most 
profitable horticultural crops, with around 8 million hectares (ha) of vineyard in the world, the majority destined 
to produce wine. The development of the grape berry follows a double sigmoid pattern of growth, with véraison 
marking the beginning of the second growth phase, called  ripening24. This phase is characterized by some of 
the most noticeable changes in the grapes: pronounced berry growth, sugar accumulation, decrease of acidity/
raise of pH and accumulation/changes in phenolic compounds and  aromatics25,26. From a physiological point of 
view, ripening concerns biochemical changes in the pericarp of the fruit and starts when seeds have completed 
their development and enter dormancy. In the published results by Massonnet et al.27, the authors found that in 
general a high increase of differentially expressed genes (DEGs) was characterized in the majority of varieties 
between pre-véraison (PV) stage and end of véraison (EV) stage, with a notable decline in the number of DEGs 
from end of véraison (EV) to harvest (H).

Only a few eQTL studies in grapes have been carried out which study a group of genes of the same  pathway18,21 
and in general studies that surveyed genome-wide expression to study fruit ripening in grapes are scarce. Inter-
estingly, from the 21 eQTLs identified by Huang et al.18, 17 were novel loci that do not correspond with known 
cis-regulatory sequences or candidate transcription factors. These results point out the importance of develop-
ing studies that survey genome-wide expression to identify an extended inventory of cis-regulatory sequences 
associated with grape ripening.

In this sense, the aim of this study is to integrate the gene expression information with genome structural 
features during ripening Vitis vinifera L. fruit. For that public DNA and RNA data from 10 grape cultivars, 5 red 
and 5 white cultivars, were used. The integration of both layers of information, structural variants and differential 
expression, around ripening onset allowed a cis-eQTL analysis to identify genes and relevant mechanisms for this 
complex process. The final inventory of cis-eQTLs will be an important resource for future research to understand 
the mechanism for variation in gene regulation during ripening in this species, and could be considered general 
markers of ripening in grapes.

Results
The DNA and RNA data information and also trimming and alignment statistics for each replicate used in this 
study can be found in Supplemental File 1 Tables S1–S5. Regarding DNA data analysis, from the total number 
of reads 2,741,939,082, 93% of the reads (2,550,198,134) were mapped, after trimming and alignment, with a 
global average quality (ratio between sum of bases qualities and total length) of 37.05 and 81.3% of reads were 
properly paired out (Supplemental Table S6). After trimming and alignment of DNA sequences of each sample 
a total 17,282,868 genetic variants were obtained with a total of 560,417 small insertions, 519,025 deletions 
(InDels) and a total 16,203,426 SNPs were detected. SNPs were filtered to remove SNPs with two (or three) pos-
sible alternative alleles in the Variant Call Format (VCF) file, obtaining a total of 15,692,912 SNPs. In this set, 
70.80% were transitions (11,111,319 loci) and 29.2% transversions (4,581,593 loci), and the ratio of transition/
transversion was 2.43 (Supplemental Table S7). Additional filtering to remove sites with missing data and also 
homozygous sites were performed using a custom script in python. As a result, 12,198,767 SNPs were retained 
for red cultivars and 11,128,404 SNPs for white cultivars. For the general analysis (using all samples) a total of 
11,895,933 SNPs were retained. The results obtained by PopLDdecay showed that LD decays to 0.2 around 2 kb 
and to 0.1 around 300 kb (Fig. S1).

The analysis of the raw RNA data was performed for all 10 cultivars and all four stages (P, PV, EV and H) 
considered in this study. In the alignment step, a total of 1,692,026,464 sequences of red cultivars were aligned 
against the reference genome of the cultivar PN40024 (GCA_000003745.2)28 and a total of 1,702,609,789 were 
aligned in the case of white cultivars. After that, the RNA-Seq differential expression analysis was carried to 
compare only the two target stages, PV and EV, according to the previous results found by Massonnet et al.27. 
To assess data quality for outliers, in parallel with the differential expression analysis, the PCA function was 
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used (Supplemental Fig. S2). In the case of PV and EV comparison for red cultivars, a total of 25,087 (59.14% 
of 42,416 total annotated genes in grape) genes with at least one count were detected. After that, 19,379 genes 
with summed counts greater than 20 were retained for differential expression analysis. After, the differential 
expression analysis 11,899 DEGs with an adjusted p-value cutoff (FDR) < 0.05 were detected. In this final set, 
the total number of DEGs with a positive log2foldchange (LFC) (up) was 5903 (30%) and with a negative LFC 
(down) was 5996 (31%).

For the target comparison (PV vs EV) in white cultivars, 25,470 (60.05% of the total annotated genes in 
grape) genes had at least one count and only 19,160 genes, with summed counts greater than 20, were retained 
for differential expression analysis. After the differential expression analysis 10,834 DEGs showed an adjusted 
p-value cutoff (FDR) < 0.05, with 5554 (29%) up and 5280 (28%) down. In the general study, 26,691 had at least 
one count, 20,621 showed more than 20 counts and were used for the expression analysis. Finally, 13,447 DEGs 
showed an adjusted p-value cutoff (FDR) < 0.05, with 6641 (32%) up and 6806 (33%) down regulated (Supple-
mental Table S8).

The obtained genotypic data and the expression data of the DEGs (up and down) identified was used as input 
for Matrix eQTL, to compare the selected stages (EV and PV). The number of cis-eQTL associations identified by 
MatrixEQTL was 2244 (2170 unique) (Supplemental Table S9). In the general eQTL analysis (using all genotypes 
together), 106 cis-eQTLs were identified by Matrix eQTL, associated with 22 down regulated genes (Fig. S3). In 
addition, 334 cis-eQTLs identified in the general analysis were associated with 36 up regulated genes (Fig. S3). 
For white cultivars, 867 cis-eQTLs were significant associated with 76 DEGs (Fig. S3). In the case of red cultivars, 
the total number of cis-eQTLs associations identified was 937 related with 105 DEGs (Table 1, Fig. S3). The inter-
section of genes between categories showed that white and red cultivars shared a high number of up regulated 
genes (11) and only one down regulated gene. Only two genes were shared between RU, WU and GU (Fig. S4).

The intersection of the results showed that 89 cis-eQTLs were unique for GD and 281 for GU. A total 
of 912 cis-eQTLs were unique for red cultivars and 843 cis-eQTLs unique for white cultivars (Fig. 1). Only 
two cis-eQTLs were shared uniquely between read and white cultivars (NC_012020.3_22792433_4612345, 

Table 1.  Number of significant cis-eQTLs associations and number of related DEGs identified by the eQTL 
analysis.

Num. of cis-eQTLs DEGs

General down (GD) 100 22

General up (GU) 313 36

White cultivars 867 76 (12 down and 64 up)

Red cultivars 937 105 (29 down and 76 up)

Figure 1.  Intersections of the results from the eQTL analysis, showing unique and common cis-eQTLs in down 
regulated genes in white cultivars (WD), up regulated genes in white cultivars (WU), down regulated genes in 
red cultivars (RD), up regulated genes in red cultivars (RU), down regulated genes after the general analysis 
(GD) and up regulated genes after the general analysis (UD).
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NC_012021.3_2416735_4947832) associated with two genes Vitvi14g02910 and Vitvi15g00121 both up regu-
lated in PV stage.

For each DEG, the number of cis-eQTL associations was variable ranged from one cis-eQTL (48 DEGs) to 
142 cis-eQTLs (Vitvi17g00576). Other DEGs with large number of cis-eQTL associations were Vitvi11g00498 
(55), Vitvi03g01373 (65), Vitvi16g00122 (94). The complete information about gene ID and cis-eQTL can be 
found in (Supplemental Table S9).

All the detected cis-eQTL associations, in the case of red cultivars and white cultivars, separately, showed 
only two genotype classes [homozygous (AA) and heterozygous (AB) or homozygous (BB) and heterozygous 
(AB)], and the homozygous state for the second allele was not observed. Only in the general comparison of 
down and regulated genes, with all the cultivars together, 72 cis-eQTLs showed three genotype classes (AA, 
AB, BB) in down regulated genes and only five cis-eQTLs showed three classes in up regulated genes (Sup-
plemental Table S10). These 77 cis-eQTLs were associated with four DEGs (Vitvi12g02656, Vitvi03g01373, 
Vitvi09g01367, Vitvi09g02012) (Supplemental Table S9). In the case of Vitvi09g02012, its cis-eQTL associated 
(NC_012015.3_22440993_17257909) represents a change from GG (mean value of expression for GG genotypes 
is 1.81) to CC (expression of CC genotype 33.70), which represents more than 173% of increment of the gene 
expression. The GC genotypes have an intermediate expression value of 18.01 (Fig. 2).

The effects of the cis-eQTLs identified on their related DEGs (212 down and up regulated genes) were 3065 
according to SnpEff (Supplemental Table S11). The 1.83% (56) of these effects were classified as high (with 
disruptive impact on the protein), 4.08% (125 effects) were low effect (with synonymous substitution), 7.83% 
(240) were moderate (genetic variation could have a non-synonymous substitution) and 86.26% (2644) were 
modifier effects (with impact on noncoding regions). The most frequent mutations with high impact effects were 
stop gain variants and frameshift variants (39.29% and 23.21%, respectively). The majority of the total effects 
(3065) were located in introns (806 effects, 26.29%), downstream (627 effects, 20.45%) and upstream regions 
(625 effects, 20.39%).

The 56 high impact cis-eQTLs identified in this study were related with 32 DEGs (Supplemental Table S11). 
In the majority of these genes at least one high impact cis-eQTL association was observed, five DEGs showed 
two high impact cis associations (Vitvi12g01443, Vitvi16g01175, Vitvi18g00307, Vitvi06g00354, Vitvi07g02574 
and Vitvi07g00061), two DEGs showed three cis associations (Vitvi04g02151 and Vitvi12g02623), three DEGs 
showed four high impact associations (Vitvi16g00122, Vitvi12g01425, Vitvi06g00918) and one DEGs showed 
six high impact cis associations(Vitvi07g00414).

The functional characterization of each DEG, showed 80.66% (171), received a  UniProtKB29 identifier, and 14 
(6.60%) received a  DAVID30 term according to the annotation analysis (Supplemental Table S12). Finally, Gene 
Ontology (GO) showed that DEGs were associated with terms as defence response (GO:0006952), response to 
light stimulus (GO:0009416), response to auxin (GO:0009733), response to gibberellin (GO:0009739), response 
to abscisic acid (GO:0009737) and cellular response to salicylic acid stimulus (GO:0071446) (Supplemental 
Table S13). Genes associated with these GO terms coding for protein such as growth-regulating factor, MADS-
box domain-containing protein, RING-type domain-containing protein, PHD finger protein ING, Phytocyanin 

Figure 2.  Differential expression of the different genotype classes detected for the cis-eQTL 
NC_012015.3_22440993_17257909 associated with Vitvi09g02012.
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domain-containing protein, Kinesin motor domain-containing protein, Xyloglucan endotransglucosylase/hydro-
lase (EC 2.4.1.207), DLH domain-containing protein, ANK_REP_REGION domain-containing protein (Sup-
plemental Table S12).

Discussion
A detailed bioinformatic pipeline has been established to study an important phenomenon such as fruit ripening 
in an important woody crop species such as Vitis vinifera L. The information about genetics of gene expression 
obtained in this study provides researchers with new scenarios to understand this genetically programmed pro-
cess that is physiologically and biochemically irreversible. The two main criticisms of this study can be the low 
number of genotypes used and that a high percentage (48.11%) of the 212 DEGs code for an uncharacterized 
protein. Both issues could be explained by the difficulty of working with woody crops and because Vitis vinifera 
is not a real model species in plants like Arabidopsis thaliana. As commented by Mudge and  Harrow31, in higher 
eukaryotes gene annotation projects are highly complex reflecting the complexity that survives in eukaryotic 
cells, and more important at the present time all of our genebuilds (representations of the transcriptome that 
exists in nature) are incomplete.

Our results support rapid decay of LD for this species. According to literature, thousands of years of wide-
spread vegetative propagation has resulted in a weak domestication bottleneck in  grapes32,33. The fast decay LD 
observed here could suggest that the genes detected could be regulated by different SNPs independently. In fact, 
different values of LD were observed across four genomic regions between wine eastern cultivars, wine western 
varieties, eastern table grapes and wild grapevine individuals by Nicolas et al.34. A fine mapping approach, using 
software as  FINEMAP35, or  TreeMap36, could be necessary to detect the lead eQTL signals on specific regions 
(and genes). Fine mapping has been carried out in plants such as maize to understand one of the key steps in 
its  domestication37.

The molecular and biochemical phases leading to the initiation of ripening harbor a level of complexity not 
fully  understood38. The results reported by Fortes et al.38, identified several functional categories such as "develop-
ment", "metabolism", "diverse/miscellanenous functions’’, "cellular process", "regulation overview" or "response 
to stimulus, stress" together with several not previously identified genes in the context of grape ripening. The 
same authors observed that abiotic (e.g. osmotic, temperature) stress responses and biotic (e.g. pathogens) 
increase during grape  ripening38. In the present study, these functional categories detected by Fortes et al.38 such 
as "response to stimulus, stress" or “developmental process” were also identified. In this sense, our results have 
provided a new list of candidate genes that can help to understand grape ripening better, something that is still 
far from being completed.

With the GO analysis obtained here, clear differences can be observed between the two stages of growth 
studied, a large set of high expressed genes in PV stage (and down regulated in EV) were annotated as with 
terms as defense response, response to light stimulus, response to auxin, response to gibberellin and response 
to stress. Up regulated genes in EV stage (and down regulated in PV) were annotated to response to oxidative 
stress or response to abscisic acid. In this sense, exogenous stimuli (temperature, light, abscisic acid, jasmonic 
acid and oxidative stress) have a lower impact in véraison-stage berries, which seem to have a greater resilience 
to metabolic alteration driven by these factors, than pre-véraison stage  berries39. According to the literature, 
the accumulation of polyphenols in early stages seems to offer a strategy for the defense of the ripening  berry40; 
otherwise, the stress input is overcome by the developmentally regulated metabolic program. More interestingly, 
a large amount of gene IDs identified by Matrix eQTL have not previously been identified in the context of grape 
ripening. The obtained characterization of regulatory variants can now provide a valuable resource to help the 
biological understanding of grape ripening.

According to the literature, after the véraison stage, the content of several hormones, as auxins and cytokinins, 
decrease while abscisic acid concentration  increases41. Auxins are phytohormones associated with an extensive 
variety of phases of the development. In addition, to the classical link with growth of these phytohormones at 
early stages of fruit development, others functions, such as the ability to affect ripening, have been  inferred42. 
In the present study, the gene Vitvi11g00497 gene is upregulated (2.52 log2FC) in PV stage in comparison with 
EV, coding for auxin-responsive protein, it could suggest a possible role of this gene as a repressor of early auxin 
response genes at low auxin concentrations.

Germin-like proteins (GLPs) are expressed in several developmental phases and organs in plants, as a con-
sequence of a number of abiotic and biotic  stresses43. In a fruit species such as plum (Prunus salicina), two novel 
GLP genes were isolated, exhibiting similar expression patterns throughout several phases of fruit development, 
except pit hardening and fruit ripening. According to the results, the accumulation of both Ps-GLPs is related to 
the evolution of auxin, since fruit develop until the ripening stage, suggesting that auxin is affecting the regula-
tion of both transcripts throughout the development and ripening of the  fruits44. The Vitvi14g02553 gene, down 
regulated (− 6.34 log2FC) in PV, was associated with four cis-eQTLs by Matrix eQTL in red cultivars. The low 
regulation in an early stage of fruit development (pre-véraison) could suggest that this gene is putatively accu-
mulated in the fruit during ripening in an auxin dependent manner.

Another interesting gene was Vitvi11g01682 up regulated in PV stage, this gene is coding for a Xyloglucan 
endotransglucosylase/hydrolase (EC 2.4.1.207) protein. The gene was associated with six cis-eQTLs, one of 
them (NC_012017.3_19311933_1553582) was annotated by snpEff as frameshift_variant, having a high impact, 
because the number of nucleotides inserted or deleted is not a multiple of three. The Xyloglucan endotransglu-
cosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, seems to play an 
important role in fruit ripening. Different XTHs seem to be subjected to a different expression pattern regula-
tion during fruit growth and  ripening45, in our study Vitvi11g01682 was up regulated in PV stage. XTH genes 
have been related to fruit growth and ripening in different climacteric fruits such as tomato, apple, kiwi fruit, 
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pear, persimmon or cherimoya  fruits45. Two XTH genes (SIXTH and SIXTH9) showed a dramatic reduction in 
mRNA levels immediately prior to the onset of ripening, around the mature green (MG) stage in  tomato46. Our 
results have confirmed an early pattern of expression for this gene, which could support the role of this gene in 
wall modification in grape.

Another identified genes, all of them up regulated in PV with and with cis-eQTL associations detected in red 
cultivars, were Vitvi12g02292, Vitvi18g00307 and Vitvi08g01770. These genes were annotated such as ROMT 
(Resveratrol O-methyltransferase), flavonol synthase (FLS) and terpene synthase, respectively, by the Integrape 
Catalogue 2.347. FLS is a key enzyme in flavonol biosynthesis that control the last step, from dihydroflavonol to 
 flavonol48. According to the literature, five FLS genes are present in the grapevine  genome53. According to Fujita 
et al.49, the mRNA of FLS2, accumulated in small berry skins and then decreased toward véraison, in our study 
FLS2 [Vitvi18g00307 (VIT_18s0001g03510)] was up regulated in PV (pre-véraison). This gene showed 18 cis-
eQTLs associations in red cultivars, two of them had a high impact effect (a stop_lost and frameshit_variant and 
stop_gained). Previous results have established that VvMYBF1 (accession FJ948477), located in chromosome 7 of 
cultivar PN40024 and with an expression extremely sensitive to light  induction50, is a specific activator of flavonol 
synthase1 [VvFLS1 (Vitvi18g02542)]. In our study two upregulated DEGs (Vitvi11g00498, Vitvi09g01008) in 
PV and one down regulated DEG in PV (Vitvi08g00654) were annotated as HTH myb-type domain-containing 
protein and as partial protein by NCBI (accessions: CBI28231.3, CBI38956.3, CBI22798.3, respectively). These 
results could suggest a possible role of some of these genes in the activation of FL2, which should be further 
investigated in grape. A summary of the information obtained in this study for each candidate gene mentioned 
above can be found in Supplemental Table S14.

This study has provided new insights in grape ripening and manifests the advance of integrating different 
omics data for the study of complex processes and traits. The accessibility to data underlying scientific publica-
tions allowed the author to efficiently apply this exhaustive methodology. Clearly, this study has exploited the 
value of mandated public data archiving (PDA) policies in the sciences, which is mandatory for top journals 
in several areas, including evolution and ecology. Overall, this work will improve the understanding of gene 
regulation during fruit ripening from pre-véraison to post-véraison in Vitis vinifera L. Also, this work detected 
cis-eQTLs effects of big size, as in the case of NC_012015.3_22440993_17257909 associated with Vitvi09g02012, 
which disagree with the results of large-scale experimental reports of putative regulatory  variants6 where most 
eQTL effects are of relatively small size (< 2-fold change in expression)14,51. In the future, in addition of the 
detection of the lead eQTLs, the detected genes could be used for functional and mechanistic studies of grape 
ripening. Finally, and more importantly, the approach developed here could be applied to other woody crops 
species, such as fruit trees or nut trees, where these types of studies are scarce and when the availability of such 
comprehensive data sets becomes a reality.

Materials and methods
Plant material. DNA and RNA data from five red-skinned grape cultivars (“Barbera nera”, “Sangiovese”, 
“Refosco”, “Negro amaro” and “Primitivo”) and five white-skinned grape cultivars (“Garganega”, “Vermentino”, 
“Moscato bianco”, “Glera”, and “Passerina”) grown at the CREA-VE grapevine germplasm collection (Susegana, 
Veneto region, Italy) were used in the current study. Four different growth stages were considered for each vari-
ety: pea-sized berries (Bbch 75) at almost 20 days after flowering (P), berries beginning to touch (Bbch77) just 
prior véraison (PV), the softening of the berries (Bbch 85) at the end of véraison (EV) and berries ripe for harvest 
(Bbch 89) (H). A more detailed description about berries collection can be found  in27.

DNA‑seq and RNA‑seq data. Both set of data were collected from National Center for Biotechnology 
Information (NCBI) Short Read Archive (SRA, https:// www. ncbi. nlm. nih. gov/ sra) obtained from previous 
 studies21,52. All sets of sequences were downloaded with the SRA Toolkit v2.11.1. The main difference regarding 
DNA data processing with the previously published study of these cultivars is the use of a different pipeline for 
SNP calling. Annotated genes in grape were obtained from Vitis_vinifera_gene_an notation_on_V2_20.gff3. 
The complete workflow generated here can be observed in Fig. 3.

DNA‑seq data analysis. The raw data were obtained from three BioProject  PRJNA38511652, PRJNA392287 
and  PRJNA37396721. Briefly, in order to evaluate the general quality of reads in each file the FastQC v0.11.9 was 
used. The command used can take multiple files as input and outputs a quality report in html format. After that, 
low quality bases and/or adapter contamination were removed from reads using the techniques in Joshi and 
 Fass54. This step would discard any read trimmed shorter than 45 bp. FastQC was run again on the trimmed 
data to confirm and ensure the final quality of reads. After this second quality control (QC) step, and before the 
alignment step, the reference genome was indexed using the command index of BWA v0.7.1755. Then, the V. 
vinifera 12Xv2 reference  genome28 of the strain PN40024 (GCA_000003745.2) was used to align the reads using 
BWA v0.7.1755. BWA is one of the most widely used short-read aligners. BWA implements several alignment 
methods, but mem was selected. Reads were aligned with the default parameters. The output from an aligner 
such as BWA are in Sequence Alignment/Map (SAM) format. After this process the SAM files were compressed 
to Binary Alignment Map (BAM) format using samtools v1.1356. Reads were sorted by their positions in the 
reference genome using picard  tools57. A BAM index was created and the variant calling was carried out using 
the methods implemented in bcftools v1.1356. Finally, to remove low quality variants (e.g., variants with a low 
read depth or variants only supported by poorly aligned reads) from our data set, a quality filtering was applied 
to the VCF file using the command bcftools view (bcftools view -i ’QUAL > 19 && DP > 2$ && (AC/AN) > 0.05 
&& MQ > 20’). In our study, the VCF file was used for linkage disequilibrium (LD) decay analysis, using the 
software PopLDdecay v3.4058.

https://www.ncbi.nlm.nih.gov/sra
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RNA‑seq data analysis. The complete information of the yielded 120 SRA files (10 varieties at four stages, 
in total 40 triplicate samples), downloaded from two BioProjects  PRJNA26504021 and  PRJNA26503921,27, can be 
found in Tables S2 and S3. Briefly, after the quality control (QC) step, Trimmomatic v0.3959 was used to trim low 
quality and adapter contaminated sequences. In this case, the alignment of reads to the reference genome was 
performed by HISAT2 v2.2.160. HISAT2 is a fast and sensitive aligner for mapping next generation sequencing 
reads against a reference genome. Before the alignment, the hisat2 build module was used to make a HISAT 
index file for the genome. By default, HISAT2 outputs the alignments in SAM format. Samtools was used to sort 
the sequences, convert them to binary format and compress them. Finally, the function htseq-count from the 
HTSeq v0.13.5  package61 was used to count how many reads map to each annotated exon (gene) in the genome. 
The final count for each gene was obtained from sum values for all their exons. These final counts per gene are 
the inputs of the R package DESeq2 v3.1362, used for the differential expression analysis.

A complete tutorial, to reproduce the reported results has been generated. All scripts and datasets used and 
generated during the current study are available in the GitHub repository https:// github. com/ pjmar tinez/ TFM_ 
UM- eqtls.

Matrix eQTL. Matrix eQTL v2.363 was used for the eQTL analysis. This software can accommodate large 
expression and genotype datasets. Matrix eQTL checks for association between each SNP and each transcript by 
modeling the effect of genotype as either categorical (ANOVA model) or additive linear (least squares model). 
The simple linear regression (used in this study) is one of the most commonly used models for eQTL analysis. 
In addition, Matrix eQTL can test for the significance of genotype-covariate interaction (not considered in this 
study). Matrix eQTL also supports correlated errors to account for relatedness of the samples and heterosce-
dastic. Matrix eQTL implements a separate test for each gene-SNP pair and corrects for multiple comparisons 
by calculating false discovery rate (FDR)64. Five different input files (snps = snps data; gene = mean by sample of 

Figure 3.  General workflow of the study. The workflow was drawn using the LaTeX package  TikZ53.

https://github.com/pjmartinez/TFM_UM-eqtls
https://github.com/pjmartinez/TFM_UM-eqtls
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the normalized read counts of each DEG; cvrt = covariates; genepos = gene location; snpspos = SNP location) are 
required to run Matrix eQTL. All these files need to have a specific format. The columns of all three files must 
have matching order, corresponding in each column to a sample and with one gene/SNP/covariate in each row. 
In the case of the genotype file, if a linear model is used, as in this study, the values must be numerical in this data 
set. For that reason, extract.gt function from the R package vcfR v1.1265 was used to read and extract genotypes 
from our VCF filtered file in numeric format. The p-value threshold for cis-eQTLs (pvOutputThreshold.cis) in 
this study was 1e−8 and the maximum distance at which gene-SNP pair is considered local (cisDist) was 1000. 
In our study, covariates were not considered. The location of each gene was obtained from the gff3 file: Vitis_vin-
ifera_gene_annotation_on_V2_20.gff3 available at https:// urgi. versa illes. inra. fr/ Speci es/ Vitis/ Annot ations. The 
location of each SNP was obtained from the VCF file obtained.

To find cis-eQTL associations with down and up regulated genes [in red and white cultivars and in general 
(without consider colour of cultivars)], Matrix eQTL was run six times:

1. To detect cis eQTLs in down regulated genes in white cultivars (high expression in EV).
2. To detect cis eQTLs in up regulated genes in white cultivars (high expression in PV).
3. To detect cis eQTLs in down regulated genes in red cultivars (high expression in EV).
4. To detect cis eQTLs in up regulated genes in red cultivars (high expression in PV).
5. A general analysis to detect cis eQTLs in down regulated genes (high expression in EV).
6. A general analysis to detect cis eQTLs in up regulated genes (high expression in PV).

As a result of each run, each significant gene-SNP association was recorded in a separate line in the output file. 
Every record contains a SNP name, a transcript name, estimate of the effect size, t or F-statistic, p-value, and FDR.

After Matrix eQTL, the intersection(s) of common cis-eQTLs identified by Matrix eQTL and common genes 
between categories were detected using the R package  UpSetR66. It is a quick approach to indicate which elements 
are in each intersection or are unique to certain conditions.

Prediction of genetics variants effects was performed using SnpEff v4.3e67 based on the grape gene annota-
tion (Vitis_vinifera_gene_annotation_on_V2_20.gff3; https:// urgi. versa illes. inra. fr/ Speci es/ Vitis/ Annot ations). 
The SNP predicted effects were categorized by impact, as moderate (non-synonymous substitution); modifier 
(with impact on noncoding regions); low (synonymous substitution); or high (disruptive impact on the protein).
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