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Genomic features, including tumor mutation burden (TMB), microsatellite instability (MSI),
and somatic copy number alteration (SCNA), had been demonstrated to be involved with
the tumor microenvironment (TME) and outcome of gastric cancer (GC). We obtained
profiles of TMB, MSI, and SCNA by processing 405 GC data from The Cancer Genome
Atlas (TCGA) and then conducted a comprehensive analysis though “iClusterPlus.” A total
of two subgroups were generated, with distinguished prognosis, somatic mutation
burden, copy number changes, and immune landscape. We revealed that Cluster1
was marked by a better prognosis, accompanied by higher TMB, MSIsensor score,
TMEscore, and lower SCNA burden. Based on these clusters, we screened 196
differentially expressed genes (DEGs), which were subsequently projected into
univariate Cox survival analysis. We constructed a 9-gene immune risk score (IRS)
model using LASSO-penalized logistic regression. Moreover, the prognostic prediction
of IRS was verified by receiver operating characteristic (ROC) curve analysis and
nomogram plot. Another independent Gene Expression Omnibus (GEO) contained
specimens from 109 GC patients was designed as an external validation. Our works
suggested that the 9-gene-signature prediction model, which was derived from TMB, MSI,
and SCNA, was a promising predictive tool for clinical outcomes in GC patients. This novel
methodology may help clinicians uncover the underlying mechanisms and guide future
treatment strategies.
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INTRODUCTION

Immune checkpoint blockade (ICB) therapy targeting
programmed cell death protein 1 (PD-1) and cytotoxic T
lymphocyte antigen 4 was tolerated with manageable toxicities
and promising antitumor effect in patients with GC (Aggelis et al.,
2018). However, for low response rates to single-agent anti-PD-1
therapy or anti-CTL4 treatment in unselected patients, single-
agent immunotherapy would not be an appropriate treatment of
patients with operable GC (Xie et al., 2020). Moreover, previous
ICB studies have shown that response rates to immunotherapy
vary widely in GC, ranging from 10 to 26% (Zeng et al., 2021).
Thus, finding optimal biomarkers to identify potential responders
to immunotherapy remains an urgent priority.

Cancer genomic characteristics had a high profile due to their
key role in ICB resistance and their potential in biomarker
prediction. Currently, several biomarkers had been used to
predict ICB responses despite some limitations. For example,
tumor mutation burden (TMB) high was well documented to
contribute to therapeutic response to ICB, especially in patients
with melanoma and non-small cell lung cancer (Rizvi et al., 2015;
Van Allen et al., 2015). TMB high patients had a higher chance of
mobilizing the immune system to augment responding to ICB.
Similarly, it was reported that microsatellite instability (MSI) high
GC led to somatic mutation accumulation as well as therapy-
induced immunosurveillance (van Velzen et al., 2020). In
addition, previous studies suggested that the copy number
instability score and the genome instability number, calculated
based on somatic copy number alteration (SCNA), can serve as an
early indicator of immune checkpoint inhibitor response versus
progression (Weiss et al., 2017; Jensen et al., 2019). However, due
to limitations such as measuring barriers and the absence of
tumor markers, these biomarkers were rarely detected in patients
with GC in practice. Early assessment of response to
immunotherapy remained a current unmet clinical and
scientific need to discern therapy response and tumor
progression. Therefore, an integrated approach incorporating
various molecular features would be warranted to understand
the unifying perspectives of the mechanisms underlying ICB
resistance and identify subgroups of GC patients with immune
microenvironments.

Recently, the integration of multiple omics profiles with high-
throughput molecular analysis had been a major focus for the
discovery of multiple cancer subgroups. Deep learning
approaches allowed for a systematic understanding of
genomic, proteomic, biochemical, metabolic, and epigenetic
processes. The most commonly used integration tools include
“mixOmics,” “tRanslatome,” “R.JIVE,” and “iClusterPlus”. First,
“mixOmics” was a powerful framework with four kinds of
datasets (metabolomics, phenomics, cell wall proteomics, and
transcriptomics) (Durufle et al., 2021). Then, a deep neural
network named “tRanslatome” was proposed which can
predict the protein structure from input amino acid sequences
but not for disordered proteins (Du et al., 2021). Later on,
“R.JIVE” was proposed by O’Connell, an algorithm for
exploratory dimension reduction, which could decompose the
transcriptomic and proteomic data (O’Connell and Lock, 2016).

Finally, “iClusterPlus” shows high compatibility and accuracy in
subgroup identification, containing discrete and continuous
parameters that are derived from genomic, transcriptomic, and
epigenomic features (Mo et al., 2013).

In the present study, integrative clustering of three genomic
datasets including TMB, SCNA, and MSI were used to investigate
subgroups of GC through “iClusterPlus” software. We further
estimated the TME infiltration patterns of stomach
adenocarcinoma (STAD) from TCGA and GEO data and
systematically analyzed the clusters’ relationship with genomic
characteristics and clinical features in GC. We incorporated the
TME infiltration evaluation into an immune risk score (IRS) to
predict ICB therapeutic efficacy and survival outcomes from
tumor genomic data. Depicting the immune landscape features
of GC, more importantly, contributes to interpret the
immunotherapy response of GC and provide new strategies
for cancer treatment.

MATERIALS AND METHODS

Data Source
TCGA-STAD gene expression data (n = 440), mutation
annotation format (MAF) (n = 440), somatic copy number
data (n = 405), and clinical data of the corresponding patient
(n = 444) were obtained from cBioPortal (http://cbioportal.org/)
and UCSC Xena (http://xena.ucsc.edu/) websites. Finally, 405
patients with complete data were screened for subsequent

TABLE 1 | Clinicopathological information of the TCGA-STAD dataset.

Clinicopathological traits Type Patient number

Gender Male 261
Female 144

Age ≤60 130
>60 275

Grade G1 12
G2 143
G3 241
Gx 9

StageT T1 21
T2 86
T3 179
T4 111
Tx 8

StageN N1 121
N2 108
N3 77
N4 81
Nx 18

StageM M0 366
M1 23
Mx 16

Stage I 58
II 128
III 174
IV 39
X 6
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analysis. The clinical characteristics of involved patients are
displayed in Table 1. Furthermore, we conducted the
transcriptome sequencing data in both raw read counts and
fragments per kilobase per million mapped reads (FPKM)
values, and counts data were applied to DEG analyses,
whereas FPKM data were calculated for microsatellite
instability (MSI) evaluation. The GSE26901 data from the
National Center for Biotechnology Information (NCBI) was
derived as an independent validation cohort (n = 109). All
genomic coordinates for TCGA data and GEO data in
analyses of our study were based on the GRCh37 genome
reference sequence (Jensen et al., 2017).

SCNA Data Acquisition and Processing
The peak regions of recurrent DNA copy number alteration
including amplification and deletion were delineated by
GISTIC2 algorithm (Mermel et al., 2011). Subsequently, we
converted copy number alteration into binary form and
defined them as SCNA genomic features. We categorized
SCNA events, as reported, according to each patient’s
aberration status of GISTIC results: −2, homozygous loss; −1,
hemizygous deletion; 0, diploid; 1, low-level gain; and 2, high-
level amplification. High-level amplifications and homozygous
loss in the peak region were defined as copy number change, with
at least 50% of genes displaying an amplification or deletion (Xie
et al., 2020). To obtain the binary description matrix about the
SCNA feature, we assigned feature changes as 1 and no feature
changes as 0.

SCNA scores were calculated using masked copy number
segment profiles from the UCSC Xena platform, which is
defined as the ratio of copy number alteration (tumor/
normal) and normalized by fragment length after log2
transformation.

Modified TMB (mTMB) Data Acquisition and
Processing
We defined mTMB as the total number of unique genes with
mutations in each patient. Only seven types of mutations in this
gene were considered as mTMB event: Frame_Shift_Del,
Translation_Start_Site, Frame_Shift_Ins, Splice_Site, Non-
stop_Mutation, Non-sense_Mutation, and Missense_Mutation.
After removing no functional relevance mutations, wemerged the
MAF data of TCGA-STAD. Then, the low-frequency mutated
genes were filtered through a cutoff value (a certain gene
mutation occurred in 1% of the total number of samples). As
a result, we extracted 1932 high-frequency mutated genes in 405
patients, and the binary description matrix of mTMB feature was
used with subsequent calls.

TMB burden was computed by the total number of somatic
mutations per Mb in each sample. Since 38 Mb is usually taken in
terms of the length of human exons, the TMB burden was equal to
the total mutation frequency/38 (Schumacher et al., 2015).

MSI Data Acquisition and Processing
MSIsensor-pro algorithm of the Linux operating system was
used to investigate the MSI traits of TCGA-STAD data at the

microsatellite transcription level (Jia et al., 2020). We selected
and calculated the most frequently altered microsatellite sites
to construct the binary MSI feature based on the somatic
mutation status of each sample. Then, we computed the
MSIsensor score under the default parameters by a sample
matrix. We further distinguished MSI high (MSIsensor
score≥10) samples from MSI low or microsatellite stability
(MSS) (MSIsensor score <10) samples, according to the
previous research (Niu et al., 2014; Abida et al., 2019).
Finally, 1 represents MSI and 0 represents MSI low/MSS to
obtain a binary matrix of the MSI event.

Genomics Variation Data Integration
We constructed a comprehensive data of 2,024 genome variant
characteristics, including 54 copy number gains, 37 copy
number losses, 1 MSI, and 1,932 genes. Subsequently, we
characterized the SCNA, mTMB, and MSI traits in a binary
form to delineate whether corresponding genomic alteration
occurred in each patient. In detail, 1 indicated the presence of
genomic changes while 0 indicated the absence of genomic
changes in this data, which formed the sample matrix with
three binary signatures.

Clustering and Survival Analysis
In our genomic variation profiles description matrix, the columns
represent various samples, while rows represent the
corresponding genomic signatures. In total, 405 valid samples
were classified by “iClusterPlus,” a comprehensive clustering
method in the R package (Mo et al., 2018a). With default
parameters, different numbers of categories are cycled (k =
1–5). Finally, the optimal classification result was calculated
with the highest percent of explained variation and best
Bayesian information criteria, that is, k = 1 and Cluster = 2
(Supplementary Figure. S1A). We selected the top quartile
features based on LASSO coefficient estimates (prob = 0.75).
Thus, only values greater than the upper quartile were considered
to contribute significantly to the classification.

Mutation and Copy-Number Aberration
Analysis
Mutation analysis was performed both in Cluster1 and Cluster2
based on the “maftools” package in R. The default arguments
were set to analyze the MAF of the TCGA-STAD dataset in each
cluster. The mutation results were directly visualized by
“oncoplot” function of the “maftools” R package. The analysis
of CNAs was performed with GISTIC2 on the Linux system. The
specific “-conf” parameter was set to 0.95, and top 10 significant
copy number alteration areas were displayed in both clusters with
“gisticOncoPlot” function. The G-score across all chromosomes
was visualized based on the frequency of the CNAs and the
average amplitude in the log ratio.

Immune Cell Infiltration Analysis
The cancer immune infiltration profiles in the two clusters
were compared based on the gene expression data of TCGA-
STAD. The proportion of various immune cells and proportion
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of each sample were computed through “CIBERSORT”
software under the default parameters. Differences of the
immune cell landscape between Cluster1 and Cluster2 were
investigated by “boxplot”. Additionally, the well-established
“TMEscore” was used to analyze the difference in immune
efficacy between the two clusters (Zeng et al., 2019).

Differentially Expressed Gene Analysis
Based on the TCGA-STAD gene expression data (counts), we
used the “DESeq2” package in R to screen out the DEGs between
the two clusters. The significance threshold for DEGs was set to
abs (log2FC) > 1 and p < 0.05.

Immune Risk Score Model Construction
The normalized expression data of the DEGs were subsequently
converted into binary fashion by comparing the median value of
each gene in all samples. After combining with clinical data,

DEGs were further selected in univariate cox analysis using
“coxph” function of the “survival” package in R. With default
parameters and significance (p < 0.05), we carried out the hub
genes as independent prognostic factors. The “glmnet” package
was used to perform LASSO-penalized regression on the samples
and corresponding DEGs. The arguments used in LASSO-
penalized regression are alpha = 1, nlambda = 100, and p <
0.05 was considered as the significant threshold. By “coef”
function, we got the Y-intercept and hazard rate (HR) score of
each gene. Then, HR score, Y-intercept, and corresponding hub
gene expression profiles were used to measure the IRS value of all
samples.

Statistical Analysis
The unpaired Student’s t-test was developed to estimate the
comparison between two normally distributed variables. In
contrast, non-normally distributed variables were measured by

FIGURE 1 | Comprehensive workflow of our study for constructing the risk model in GC, including downloading and processing and analysis.
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the Wilcoxon rank-sum test. In order to compare more than
two groups, Kruskal–Wallis tests and ANOVAwere used as the
non-parametric method and the parametric method,
respectively. Two-sided Fisher’s exact tests were used to
analyze contingency data. The Kaplan–Meier method was
used to offer a visual representation of predicted survival
curves for each cluster data with “ggplot2” and “survminer”
packages. Area under the curve (AUC), sensitivity, and
specificity were depicted by the “pROC” package. All
statistical analyses in this study were performed on R
version 4.0.4 (https://www.r-project.org/), and p-value < 0.
01 indicated a statistically significant threshold.

RESULTS

Comprehensive Genomic Variation Traits to
Identify TwoGC Classifications
The integrated design workflow in our study is shown in
Figure 1. According to SCNA patterns, MAF data, and MSI
signature of the TCGA-STAD, we meticulously characterized
the three genomic statuses. After integrating the three genomic
statuses (a total of 2,024), all the 405 STAD samples were
divided into Cluster1 and Cluster2 based on “iClusterPlus”
(Figure 2A and Supplementary Figure S1A). It was worth
noting that Cluster1 had a higher proportion of older patients

FIGURE 2 | Differences in clinicopathological traits and genomic features between two clusters. (A) Heatmap showed clusters of 500 genomic mutation profiles.
Sample annotations show the clinicopathological characteristics. (B)Kaplan–Meier plots showed the OS in patients in Cluster1 and Cluster2 (p < 0.05). (C)Kaplan–Meier
plots showed the DFS in patients in Cluster1 and Cluster2 (p < 0.05). (D) 3D plot showed the difference in samples between two clusters. (E) Sample percentage of the
two clusters.
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(>60 years) than Cluster2. In contrast, Cluster2 was the main
cluster of deaths cases and more likely to gather higher level
stageM, stage, and grade on STAD, indicating that the traits of
genomic change were distinctly associated with the cancer
malignancy. In terms of gene mutations, the samples with
more gene mutations were obviously clustered in Cluster1.
Additionally, the heatmap of MSI (top panel), SCNA (middle
panel), and mutation (bottom panel) for the three-cluster
solution is shown in Supplementary Figure S1B. To further
compare the clinical value of our clusters, we performed
Kaplan–Meier (KM) plots to explore the outcomes of the
two subgroups. Interestingly and noteworthy, we found that
patients in Cluster1 showed significantly longer overall
survival (OS) and disease-free survival (DFS) than Cluster2
(Figures 2B,C). Subsequently, we used the “scatterplot3d”
package to visualize the MSIsensor score, SCNA burden,
and TMB burden across the samples, and the results
demonstrated that Cluster1 and Cluster2 can be well
distinguished (Figure 2D). The take-home message of the
number of samples is that the percentages of Cluster1 and
Cluster2 cases are 21 and 79%, respectively (Figure 2E).

Different Signatures of MSI, SCNA, and
mTMB in Two Clusters
Next, the relevant quantitative indicators of three genomic
characteristics including MSI, SCNA, and TMB burden were
analyzed between the two clusters. In terms of the SCNA
burden, Cluster1 was relatively lower than Cluster2
(Figure 3A). The significant differences in TMB burden and
MSI burden were also shown between Cluster1 and Cluster2.
Specifically, Cluster1 harbored markedly higher TMB burden
and MSI burden than Cluster2 in TCGA-STAD (Figures
3B,C). Our results suggested that Cluster1 tends to be
associated with better prognosis in GC patients, with the
underlying assumption that SCNA low, TMB high, and MSI
were more likely to benefit from ICB, which was consistent
with previous reports (Liu et al., 2019; Lu et al., 2020). To
assess the relative level of immune infiltration in the subgroups,
as a commonly accepted quantifiable indicator (Zeng et al., 2019;
Huang et al., 2020; Zhang et al., 2021a; Jiang et al., 2021),
TMEscore was conducted to compare the difference between
the two groups. Intriguingly, Cluster1 was observed with
significantly higher TMEscore than Cluster2, which represented
more abundant cancer-infiltrating immune cells (Figure 3D).

FIGURE 3 | Differences in genomic variations and immune measurement between the two subgroups. (A) Box plots showed the SCNA burden between two
clusters **p < 0.01. (B) Box plots showed the TMB between two clusters ****p < 0.0001. (C) Box plots showed the MSI burden between two clusters ****p < 0.0001. (D)
Box plots showed the TMEscore between two clusters ****p < 0.0001.
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Differences in Somatic Mutations and CNAs
Between Two Clusters
To elucidate the differences between two subgroups, the somatic
mutation landscapes in a waterfall plot were displayed (Figures
4A,B). Our work clarified the total mutation load in each sample
and sorted the top 20 genes by mutation frequency in each

subgroup. Notably, as the Y-axis represented, the mutation load
of Cluster1 was distinctly higher than that of Cluster2, in
accordance with the results in Figure 3B. Moreover, only
seven genes in the top 20 mutant genes were shared between
the two subgroups: TTN,MUC16, LRP1B, SYNE1, FAT4, PCLO,
and ARID1A. However, these shared genes in Cluster1 were

FIGURE 4 | Differences in somatic mutation and copy number alteration between the two subgroups. (A,B) Oncoplot indicated the top 20 mutated genes in both
Cluster1 and Cluster2, respectively. Different colors represent different mutation types. (C,D) Cumulative CNA regions for Cluster1 and Cluster2, respectively.
Amplification was represented in red color, and deletion was represented in blue color.
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FIGURE 5 |Differences in immune cell infiltrations between the two clusters. (A)Distribution of 22 infiltrating immune cell subtypes between the two clusters in each
patient. Different colors represent different immune cell types. Each bar on the X-axis represents a STAD sample. Y-axis represents the percentage of different cell types
in each sample. (B) Box plots showed the infiltration of immune cell proportion between Cluster1 and Cluster2. X-axis represents the different immune cell subtypes.
Y-axis represents the cell proportion in each cluster. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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more likely to have “multi-hits mutation” instead of “missen
mutation” compared to Cluster2. Meanwhile, the CNA
landscapes of the two clusters were shown in chromosomal
alterations via the G-score (Figures 4C,D). Interestingly,
Cluster2 had a higher copy number variation frequency on
chromosomes 6, 7, and 8 than Cluster1. On the whole, the copy
number region between the two clusters demonstrated that
Cluster2 had a higher genome-wide amplification and
deletion than Cluster1, consistent with the results in
Figure 3A. In addition, heat maps were used to identify the
top 10 CNAs in each cluster, in which the main changes of
Cluster1 were deletion (green) while in Cluster2 were
amplification (red) (Supplementary Figure S2A). Also, the
proportion of CNAs detected in Cluster1 (23–42%) is
significantly lower than that in Cluster2 (57–77%). Overall,
these results indicated that mutations and CNAs on both
clusters were significantly different.

TME Landscape of TwoGC Subgroups
To investigate the TME between the two subgroups, CIBERSORT
analysis was carried out to display the abundance of 22 immune cell
types (Figure 5A). In addition, activation status and enumeration of
the 12 immune cells were significantly discrepant, as shown in
Figure 5B. The ratio of eosinophils (p = 0.0024), macrophages M1
(p < 0.0001), neutrophils (p = 0.0002), NK cells active (p = 0.0078),
NK cells resting (p = 0.0008), t cells CD4 memory active (p <
0.0001), and T cells CD8 (p < 0.0001) was markedly higher in
Cluster1 than that in Cluster2. On the other side, compared with
Cluster1, the infiltration of B cells naïve (p = 0.0002), mast cells
resting (p = 0.0084), t cells CD4 memory resting (p < 0.0001), t cells
CD4 naïve (p = 0.0141), and t cells gamma delta (p = 0.0165) were
much extensive in Cluster2. Moreover, we selected seven immune
cell types which showed high infiltration in more than half of the
samples (Supplementary Figure S2B). It is noteworthy that similar

results were observed in Cluster2, with increased B cells naive and
mast cells resting. The rejection and immune dysfunction levels were
further validated by TMEscore (Figure 3D). The aforementioned
results suggested that Cluster1 was more likely to trigger antitumor
immunity rather than Cluster2.

Construction of the IRS Model
To further identify the differences in the transcription level between
the two clusters of STAD, a total of 196 DEGs were detected by the
“DESeq2” package (Table 2;Figure 6A). Under the cutoff of p< 0.05
and |log2FC|>1, we screened 127 upregulated genes and 69
downregulated genes in Cluster2. Then, univariate cox analysis
was conducted to investigate the 196 DEGs.

Finally, nine hub genes were found to be closely correlated
with OS (Table 3; p < 0.05), in which SNORA12 were revealed to
be the protective factors, while TF, SLC13A5, ASF1B, RSPO4,
GRIN3B, ANXA8, PPBP, and ALOX15 were the risk factors
(Figure 6B). Subsequently, we performed LASSO-penalized
multivariate cox modeling across 100 simulation replications
and constructed an optimal model with nine coefficients,
i.e., IRS model (Figures 6B,C,E). The IRS formula used for
each sample is shown in Table 4. The predicted value of the
model was compared with the actual event in a boxplot
(Supplementary Figure S3). Then, the gene expression for the
nine genes across all the samples was divided into high expression
and low expression by the median value, and corresponding
survival differences were shown on KM plots (Figure 7). These
nine genes were significantly correlated with OS in STAD,
indicating the reliability of our IRS model.

Evaluating the Discriminatory Power of the
IRS Model and External Validation
Samples were classified into high-IRS and low-IRS groups
based on the median value of IRS. A comprehensive

TABLE 2 | DEGs between two genomic variation clusters (top20, Cluster1 vs. Cluster2).

Gene baseMean log2FoldChange lfcSE Stat Pvalue Padj Change

CALB1 55.7570737 3.20704641 0.3745911 8.56145924 1.11E-17 1.41E-13 Up
FABP4 112.55467 −2.2424426 0.26338141 −8.5140503 1.68E-17 1.41E-13 Down
SLC6A10P 163.583951 2.65889326 0.32140159 8.27280672 1.31E-16 7.30E-13 Up
LEP 7.57683434 −1.9914675 0.25052301 −7.9492398 1.88E-15 7.86E-12 Down
CD300LG 5.88931295 −2.4530037 0.30967674 −7.9211752 2.35E-15 7.88E-12 Down
PLIN1 31.0236722 −2.0838749 0.26551582 −7.8484018 4.21E-15 1.18E-11 Down
WISP2 30.2571827 −1.7930524 0.25611821 −7.0008783 2.54E-12 6.09E-09 Down
AVPR2 12.0243545 −1.3938919 0.20080671 −6.9414605 3.88E-12 8.12E-09 Down
ANXA8 92.398049 2.04381023 0.32305158 6.32657553 2.51E-10 4.66E-07 Up
CHGB 154.368293 2.14618156 0.3413288 6.28772477 3.22E-10 5.40E-07 Up
TUSC5 11.0175881 −2.6739849 0.42933709 −6.2281713 4.72E-10 7.19E-07 Down
CAPN14 12.2466455 −1.9103772 0.30843019 −6.1938723 5.87E-10 8.19E-07 Down
COL11A2 66.8601521 1.69388149 0.27408034 6.18023708 6.40E-10 8.25E-07 Up
TGM1 44.3421124 1.57217566 0.25667972 6.1250483 9.07E-10 1.02E-06 Up
PPP2R2C 132.681633 1.86737944 0.30492448 6.12407195 9.12E-10 1.02E-06 Up
RHOXF2B 6.86820936 2.31485118 0.3786162 6.11397818 9.72E-10 1.02E-06 Up
KIF1A 104.350953 2.3710194 0.39752231 5.96449389 2.45E-09 2.42E-06 Up
THRSP 4.23481843 −1.8631954 0.31305487 −5.9516577 2.65E-09 2.47E-06 Down
NOTUM 427.531768 2.19037069 0.37084952 5.90635974 3.50E-09 3.08E-06 Up
GTSF1 42.543178 −2.08174551 0.3542695 −5.876164 4.20E-09 3.36E-06 Up
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heatmap was developed to display the distribution of clinical
characteristics in TCGA-STAD data (Figure 8A).
Interestingly, the occurrence of cancer-related death was
comparatively enriched in the high-IRS group. In addition,
Cluster2 and advanced stage were gathered in the high-IRS
group. Furthermore, the expression levels of ASF1B,
SNORA12, RSPO4, and TF were visibly different between
high- and low-IRS groups. To further evaluate the
predictive ability of IRS, the significant differences in OS
between high- and low-IRS groups are shown in Figure 8B
(p < 0.0001). AUC was computed to test the discriminatory
powers over 1-year, 3-year, and 5-year outcome (Figure 8C),
suggesting a promising prognostic predictive value in our

training dataset. In order to measure the value of the IRS
model in immunotherapy, the IRS grouping result was
compared with TMEscore, and the low-IRS group showed a
relatively high TMEscore (Figure 8D). Notably, in the
validation cohort (GSE26901), our IRS model suggested a
distinct difference between the high- and low-IRS groups in
clinical outcomes as well (Figure 8E). Also, the AUC values in
1-year, 3-year, and 5-year were close to 70% (Figure 8F).

Assessing Predictive Values and Stability on
the IRS Model
The indicative clinicopathological features of the samples,
including age, gender, grade, stageM, stageN, and stageT,
were conducted to test the stability and efficiency of the ISR
model. Our results indicated that the ISR showed significant
differences between high-IRS and low-IRS samples in all
clinical characteristics except in high stageM
(Supplementary Figure S4). In addition, we revealed the

FIGURE 6 |Construction of the immune risk scoremodel. (A) Volcano plot indicated the association between log2 fold change and p-value in DEGs, abs (log2FC) >
1 and p < 0.05. (B) Univariate analysis of nine significant genes with OS (p < 0.05). (C) Correlation between log(λ) and the mean-squared error in the LASSO Cox
regression model. (D)Correlation between log(λ) and the coefficients of relevant in the LASSOCox regression model. (E)Coefficients of each independent variable in the
LASSO Cox regression model.

TABLE 3 | Univariate Cox results of significant DEGs.

Characteristic HR Lower Upper Combine p.value

TF 2.2 1.4 3.5 2.2 [1.4–3.5] 0.0011
SLC13A5 1.9 1.2 3.1 1.9 [1.2–3.1] 0.0057
ASF1B 2 1.2 3.1 2 [1.2–3.1] 0.0049
RSPO4 1.7 1.1 2.7 1.7 [1.1–2.7] 0.021
GRIN3B 1.6 1 2.6 1.6 [1–2.6] 0.033
ANXA8 1.9 1.2 3 1.9 [1.2–3] 0.0076
PPBP 1.6 1 2.6 1.6 [1–2.6] 0.04
SNORA12 0.56 0.35 0.9 0.56 [0.35–0.9] 0.017
ALOX15 1.7 1.1 2.7 1.7 [1.1–2.7] 0.023

TABLE 4 | IRS formula for each sample is calculated as follows:

Immune Risk Score = 0.049 + 0.071*TF (Exp)+ 0.034* SLC13A5 (Exp) +
0.074*ASF1B(Exp) +0.013*RSPO4 (Exp) +0.019* GRIN3B (Exp)
+0.066*ANXA8 (Exp) +0.059*PPBP(Exp) +0.0288*NPY(Exp)
−0.109*SNORA12(Exp) +0.056*ALOX15 (Exp).
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profile of 22 immune cell infiltrations between high-IRS and
low-IRS samples. The proportion of dendritic cells resting and
macrophages M1 was significantly higher in low-IRS patients
(Supplementary Figure S5), which was consistent with the
previous work. We subsequently generated a nomogram
calibration plot to combine the clinical factors as well as
risk (IRS) to measure the clinical benefits (Figure 9A).
Moreover, the decision curve of this prognostic nomogram
and the IRS prediction model are displayed in Figure 9B. The
nomogram-based 1-year, 3-year, and 5-year OS predictions for
GC patients with IRS exhibited superior accuracy
(Figures 9C–E).

DISCUSSION

ICB antibodies had revolutionized the therapeutic landscape in
patients with various cancers (Borghaei et al., 2015; Hamanishi
et al., 2015; Motzer et al., 2015; Ferris et al., 2016; Rosenberg et al.,
2016; Nishino et al., 2017), including advanced GC (Kang et al.,
2017). Notably, the PD-L1-combined positive score was widely
approved as a predictive biomarker which indicated efficacy of
ICB in GC (Kim et al., 2018; Mariathasan et al., 2018). However,

these therapeutic responses occurred only in a minority of GC
patients, while most GC patients were primarily resistant to ICB
(Roh et al., 2017; Fuchs et al., 2018). Previous studies supported
the idea that the clinical benefit with ICB in GC was independent
of PD-L1-combined positive score positivity (Kang et al., 2017).
Thus, the combination of immunotherapy with chemotherapy
and angiogenesis inhibitor had been encountering the dilemmas
of lacking precise biomarkers. Extensive research studies had
proved the predictive ability of SCNA, mTMB, and MSI to
therapeutic response or resistance (Rizvi et al., 2015; Van
Allen et al., 2015; Le et al., 2017). However, as predictive
biomarkers individually, each one of these genomic traits is
not stable enough to accurately reflect GC heterogeneity. Here,
we comprehensively integrated these ICB-related genomic
signatures, i.e., mTMB, MSI, and SCNA to explore pertinent
underlying mechanisms.

In our study, with a fully Bayesian latent variable model, we
stratified TCGA-STAD into two distinct tumor subtypes
according to SCNA, mTMB, and MSI. Intriguingly, each
subtype was correlated with a special immune profile
highlighting its multidimensional relationship between
intrinsic genetic characteristics and TME (Ivey et al., 2016;
Krishnan et al., 2018). Currently, TMEscore had been used by

FIGURE 7 | (A–I) showed KM plots in patients with high and low expression of nine significant genes, respectively, based on the median value. p < 0.05.

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 79340311

Chen et al. Prognostic Model in Gastric Cancer

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


many researchers to predict treatment efficacy to ICB as well as to
investigate the immune suppressive mechanisms mediated by
TME (Qiu et al., 2021; Wei et al., 2020). Based on the 2 GC
cohorts, we revealed that our clustering is robust in predicting OS,
DFS, and TMEscore (Figure 3). A simple combination of SCNA,
mTMB, and MSI or through known benchmarking driver genes
was not able to reinforce our understanding of the interplay
between the cancer genomic landscape and the host-specific
antitumor immune response (Zhao et al., 2020). The
advantage of “iClusterPlus” was its sufficient dimension
reduction, with unsupervised clustering across all data types,
provided the most accurate classification in clinical tumor
subtypes, and revealed driver omics features (Abu-Jamous
et al., 2017; Mo et al., 2018b). In addition, the distribution of

latent variables is more stable, since it was automatically
generated by its conditional distribution of visible variables
(Menyhárt and Győrffy, 2021). Despite the lack of user-
friendliness, this approach greatly met the needs in precision
medicine and helped clinicians to diagnose and customize
treatments.

To further investigate the differences of the immune
microenvironments in the two distinct genomic clusters,
CIBERSORT was performed to assess the infiltration of 22
immune cells. It is well established that the polarization of the
macrophages to the M1 phenotype could kill the cancer cells and
suppress their growth (Menga et al., 2020; Rao et al., 2020). On the
other hand, eosinophils had been implicated as antitumor effector
cells, whose tumoricidal function was mediated by TNF-α,

FIGURE 8 | Predictive ability of the ISR model in TCGA and GEO databases. (A) Expression of 9-gene and clinicopathological features in each patient (TCGA-STAD).
Heatmap showed9-gene expressionprofiles in high-IRS and low-IRS groups, basedon themedian value. Sample annotations show the clinicopathological characteristics and
clusters. (B)KMplots showed theOS in the training groupwith high IRS and low IRS (p < 0.0001). (C)Prognostic values of IRS in the training group in 1-, 3-, and 5-year OSwith
AUC = 0.702, 0.748, and 0.679, respectively. (D) Box plots showed the difference of TMEscore between high IRS and low IRS. (E) KM plots showed the OS in the
validation group with high IRS and low IRS (p < 0.001). (F) Prognostic values of IRS in the validation group in 1-, 3-, and 5-year OS with AUC = 0.689, 0.684, and 0.71,
respectively.
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granzymes, and IL-18 (Reichman et al., 2016; Varricchi et al., 2018).
Moreover, neutrophils, NK cells, and T cells had been reported as
central communicators in antitumor immunity (Fabian et al., 2020;
Chen et al., 2021; Munir et al., 2021). Consistent with our clustering,
Cluster1 tended to aggregate these immune cells, activate the

immune microenvironment, and had a high potential for
response to ICB. In order to explore the gene expression patterns
of Cluster1, we screened the DEGs between Cluster1 and Cluster2
and selected the prognostic core markers to construct the prediction
model. Inspiringly, our IRS model showed that patients with high

FIGURE 9 | Nomogram of IRS and its stability evaluation. (A) Nomogram for predicting survival probability of GC patients in the training group. The total score of
clinicopathological features as well as risk score for each sample is located on the “total points” axis, which corresponds to the survival probabilities on the 1-, 3-, and 5-year
axes. (B) Decision curve for nomogram and clinical factors. (C–E) Calibration curves for nomogram in 1-, 3-, and 5-year, respectively.
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IRS had a poorer prognosis and a lower proportion of macrophage
M1 infiltration (Supplementary Figures S4 and S5). More
importantly, we further used KM plot, AUC, nomogram, and
decision curve analysis to validate the predictive value of IRS in
calculating the OS probability of GC patients. Merits of our IRS
model were primarily attributed to the precise identification of TME
activation based on 9 genes, particularly in predominant infiltration
of M1 macrophages tumors.

Among these nine key genes, several genes had been reported
to be involved in carcinogenesis and tumor progression. For
example, SLC13A5 was a sodium-coupled transporter which was
proved to facilitate hepatic energy homeostasis, influence
proliferation of hepatocarcinoma, and resist chemotherapeutic
agents in hepatocarcinoma cells (Li et al., 2017; Hu et al., 2020).
RSPO4 was a member of the R-spondin family. As WNT
signaling activation had been found to overexpress in breast
cancer, particularly in triple-negative breast cancer, the role of
RSPO4 involved in GC progression remained unelucidated
(Coussy et al., 2017; Park et al., 2018). On a similar note,
ANXA8 had been revealed to be upregulated in various
cancers (Gou et al., 2019; Ma et al., 2020; Yuan et al., 2021).
The feedback loop between RA-RARA and ANXA8 fostered
cancer initiation and progression (Rossetti and Sacchi, 2020).
More importantly, the expression levels of ASF1B were reported
to be associated with TME in STAD (Rossetti and Sacchi, 2020).
From a mechanistic point of view, ASF1B indirectly regulated
CKS1B to mediate growth, apoptosis, and cell cycle progression in
cancers (Zhang et al., 2021b).

However, due to TME complexity and tumor heterogeneity,
not all patients with high IRS would benefit from
immunotherapy. This research was limited by the validity of
exon-level transcriptomic data from immunotherapy patients.
Hence, further work was needed to validate our findings in the
prospective cohort of GC patients receiving ICB. In the foreseen
future, with the increasing availability of large-scale detection
applied to GC patients treated with ICB, a systematic exploration
of TME would unveil the mechanisms underlying resistance to
immunotherapy.

CONCLUSION

In summary, we comprehensively analyzed three genetic features
associated with the immune microenvironment and subsequently
identified two distinct clusters in GC. We delineated the
characteristics of both subgroups from prognosis, mutation
burden, copy number changes, and immune profile.
Identifying their DEGs followed by screening survival-related
genes, nine hub DEGs were finally selected for downstream
analysis. We proposed a 9-gene IRS that serves as a biomarker
in clinical application, whose predictive value was further
validated in an independent GC cohort (GSE26901).
Therefore, we developed a nomogram predicting the
probability of a patient who will survive GC for 1, 3, and
5 years. Our work provided a new approach to accelerate
accurate immunotherapy, which may optimize combination
therapy strategies.
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Supplementary Figure S2 | Differences in SCNA and main infiltrating immune cell
typesbetween two clusters. (A) Heatmap plots indicated the top 10 copy number
changes in Cluster1 and Cluster2. (B) Abundance of seven high infiltrating immune
cell types in the two clusters.

Supplementary Figure S3 |Box plots showed the predicted value of the IRSmodel
and the actual event.

Supplementary Figure S4 | KM plots showed OS in patients with high IRS and low
IRS in age, gender, grade, stageM, stageN, and stageT subgroups.

Supplementary Figure S5 | Box plots showed differences in the infiltration of 22
immune cells between high-IRS and low-IRS groups.
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