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Simple Summary: Increasing evidence suggests that circulating cell-free DNA (cfDNA) testing might
allow for monitoring the response to anti-EGFR monoclonal antibodies in patients with metastatic
colorectal carcinoma (mCRC). However, few data are available in treatment-naïve patients. We
tested cfDNA samples obtained from mCRC patients enrolled in a phase III trial of the anti-EGFR
monoclonal antibody cetuximab plus chemotherapy as first-line treatment. Analysis of serial plasma
samples revealed a complex dynamic of RAS/BRAF mutations in response to treatment, with
transitory peaks of these mutations that were not associated with resistance to therapy. Overall, our
findings suggest that early appearance of RAS/BRAF mutations in the plasma of patients receiving
first-line anti-EGFR agents in combination with chemotherapy should not be considered as marker
of resistance.

Abstract: Analysis of plasma-derived cell-free DNA (cfDNA) might allow for the early identification
of resistance in metastatic colorectal carcinoma (mCRC) patients receiving anti-EGFR monoclonal
antibodies. We tested plasma samples from the Erbitux Metastatic Colorectal Cancer Strategy
(ERMES) phase III trial of FOLFIRI+Cetuximab in first-line treatment of RAS/BRAF wild-type mCRC.
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Samples were collected at baseline (n = 37), at 8 weeks of treatment (n = 32), progressive disease (PD;
n = 36) and 3 months after PD (n = 21). cfDNA testing was performed using the Idylla™ ctKRAS
and ctNRAS-BRAF tests and the Oncomine Pan-Cancer Cell-Free Assay. Analysis of basal samples
revealed RAS/BRAF mutations in 6/37 cases. A transient RAS positivity not associated with PD was
observed at 8 weeks in five cases that showed no mutations at baseline and PD. The frequency of
mutant cases increased at PD (33.3%) and decreased again at 3 months after PD (9.5%). The median
progression-free survival (mPFS) of patients RAS/BRAF mutant at PD was 7.13 months versus
7.71 months in wild-type patients (p = 0.3892). These data confirm that the occurrence of RAS/BRAF
mutations in mCRC patients receiving anti-EGFR agents is relatively frequent. However, the cfDNA
dynamics of RAS mutations in patients treated with anti-EGFR agents plus polychemotherapy are
complex and might not be directly associated with resistance to treatment.

Keywords: metastatic colorectal cancer; liquid biopsy; cell-free DNA; anti-EGFR therapy

1. Introduction

The epidermal growth factor receptor (EGFR) signaling plays a relevant role in the
pathogenesis and progression of colorectal carcinoma (CRC) [1,2]. In this respect, the
addition of anti-EGFR monoclonal antibodies to first-line polychemotherapy increases the
overall response rate (ORR) and prolongs the progression-free survival (PFS) and overall
survival (OS), as compared with chemotherapy alone, in metastatic CRC (mCRC) patients
who do not carry either KRAS or NRAS mutations [3–5]. In fact, the presence of RAS
mutations leads to constitutive activation of signaling pathways downstream the EGFR,
thus leading to primary resistance to EGFR blockade [6]. The role of BRAF mutations in
the resistance to anti-EGFR antibodies is less defined. Although the presence of BRAF
mutations does not contraindicate the use of anti-EGFR antibodies, patients with BRAF
mutant cancer have a poor prognosis due to the relative resistance of this tumor type to
chemotherapy and often receive more aggressive therapeutic regimens [7,8].

In addition to primary resistance mechanisms, the activity of anti-EGFR monoclonal
antibodies in CRC is limited by the development of molecular alterations producing
acquired resistance [9–15]. In particular, it has been demonstrated that a fraction of patients
with a KRAS/NRAS wild-type CRC before treatment with anti-EGFR antibodies will
eventually develop RAS mutations at the progression of the disease. This phenomenon has
been confirmed in a number of different reports, although the rate of patients who become
RAS mutant at progression significantly differs among the various studies [16–24].

Importantly, the mechanisms of acquired resistance to EGFR monoclonal antibodies in
mCRC patients were discovered though testing the cell-free DNA (cfDNA) isolated from
plasma. The analysis of cfDNA has several advantages over tissue testing, including the
possibility to repeat the test over the time, thus monitoring the molecular evolution of
the disease.

Studies have shown that the appearance of RAS mutations in cfDNA anticipates
clinical progression of the disease [20]. These data have led to the hypothesis that treatment
with anti-EGFR drugs should be interrupted when RAS mutations appear, and be restored
when the liquid biopsy becomes negative again. However, the majority of data regarding
the dynamics of RAS mutations in the cfDNA have been obtained in patients receiving
single agent anti-EGFR monoclonal antibodies in advanced lines of treatment. In order to
explore the possible role of cfDNA analysis in the first-line treatment of mCRC patients, we
tested cfDNA samples obtained from patients enrolled in the Erbitux Metastatic Colorectal
Cancer Strategy (ERMES) study. ERMES is a prospective randomized phase III trial of
FOLFIRI + Cetuximab until progression (arm A) compared to eight cycles of FOLFIRI +
Cetuximab followed by Cetuximab alone until progression (arm B) in first-line treatment
of KRAS/NRAS/BRAF wild-type mCRC patients. The study was designed as a non-
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inferiority trial to investigate whether the PFS in arm B is non-inferior to the PFS in
arm A [25].

The availability of plasma samples from patients enrolled in the ERMES trial offers a
unique opportunity to study the dynamics of RAS/BRAF mutations in the cfDNA under
the pressure of both polychemotherapy and anti-EGFR antibodies, and to evaluate the
prognostic and predictive role of cfDNA testing in RAS/BRAF wild-type patients receiving
first-line anti-EGFR-based therapy. In particular, we evaluated whether early cfDNA testing
might allow for identifying patients with RAS/BRAF mutations, leading to resistance to
anti-EGFR agents, who thus might benefit from a different therapeutic strategy.

2. Materials and Methods
2.1. Patients and Plasma Samples

The ERMES study is a phase III randomized trial of FOLFIRI+Cetuximab until pro-
gressive disease (PD, arm A) compared to 8 cycles of FOLFIRI+Cetuximab followed by
Cetuximab alone until PD (arm B) in first-line treatment of KRAS/NRAS/BRAF wild-type
mCRC patients. Plasma samples were collected from 37 mCRC patients enrolled in ERMES
at baseline (n = 37), 8 weeks of treatment (n = 32), PD (n = 36) and at 3 months after PD
(n = 21). Overall, 10 patients were randomized in arm A and 27 in arm B.

RAS/BRAF testing in the ERMES trial was performed by using standard of care
techniques at peripheral laboratories of participating centers. All patients included in this
study were microsatellite stable (MSS) as assessed by local pathology laboratories.

The plasma samples were isolated from 10.0 mL of whole blood in EDTA Vacutainer
tubes. After the collection, the blood samples were immediately processed. Cells were
removed by centrifugation for 10 min at 1600× g using a refrigerated centrifuge and,
without disturbing the bottom red blood cell layer, the supernatant from the top layer of the
tube was transferred into the new collection tube. Another centrifugation was performed
for 10 min at 3000× g in order to remove the platelets. The supernatant was transferred
in criovials and stored at −80 ◦C. The plasma samples were shipped at the centralized
laboratory in dry ice.

2.2. Idylla Analysis

Plasma samples were analyzed using the fully automated Idylla™ ctKRAS and Idylla™
ctNRAS-BRAF mutation test (Biocartis, Mechelen, Belgium). For each sample, 1 mL of
plasma was loaded into the Idylla™ cartridge. The Idylla™ ctKRAS test covers 21 KRAS
mutations in exons 2, 3 and 4; the ctNRAS-BRAF test covers 18 mutations in exons 2, 3 and
4 of NRAS gene and 5 mutations in BRAF codon 600.

2.3. NGS of Plasma Samples

The circulating total nucleic acids (cTNA) were extracted from 4 mL of plasma samples
using MagMAX™ Cell-Free Total Nucleic Acid Isolation Kit (Thermo Fisher Scientific, San
Diego, CA, USA) and quantified using the Qubit dsDNA HS Assay Kit (Thermo Fisher
Scientific). An amount of 2–20 ng of cfTNA was used to prepare libraries. Targeted libraries
were performed using the Oncomine Pan-Cancer Cell-Free Assay (Thermo Fisher Scientific),
following the manufacturer’s recommendations. The Oncomine Pan-Cancer Cell-Free As-
say assesses genetic alterations in 52 driver genes and includes the following: hotspot genes
and short indels in AKT1, ALK, AR, ARAF, BRAF, CHEK2, CTNNB1, DDR2,EGFR, ERBB2,
ERBB3, ESR1, FGFR1, FGFR2, FGFR3, FGFR4, FLT3, GNA11, GNAQ, GNAS, HRAS, IDH1,
IDH2, KIT, KRAS, MAP2K1, MAP2K2, MET, MTOR, NRAS, NTRK1, NTRK3, PDGFRA,
PIK3CA, RAF1, RET, ROS1, SF3B1, SMAD4 and SMO; gene fusions in ALK, BRAF, ERG,
ETV1, FGFR1, FGFR2, FGFR3, MET, NTRK1, NTRK3, RET and ROS1; MET exon 14 skip-
ping; copy number variations of CCND1, CCND2, CCND3, CDK4, CDK6, EGFR, ERBB2,
FGFR1, FGFR2, FGFR3, MET and MYC; and coverage of tumor suppressor genes APC,
FBXW7, PTEN and TP53. The final concentration of each library was determined by Ion
Library TaqMan™ Quantitation Kit (Thermo Fisher Scientific). Barcoded libraries were



Cancers 2022, 14, 1052 4 of 12

diluted to 100 pM, pooled in equal volume aliquots and then loaded on to the Ion Chef™
Instrument (Thermo Fisher Scientific) for emulsion PCR, enrichment and loading onto the
Ion S5 540 chip. The sequencing runs were performed on the Ion S5 XL System (Thermo
Fisher Scientific). The data were analyzed by Ion Torrent Suite Software v.5.12 and using
Ion Reporter Software v5.14.

2.4. Targeted Sequencing Analysis of Tumor Tissue

Tissue samples were analyzed with the Oncomine Solid Tumor DNA kit (Thermo
Fisher Scientific). The panel analyzes hotspot and targeted regions of the following 22 genes
implicated in colon and lung cancers: ALK, EGFR, ERBB2, ERBB4, FGFR1, FGFR2, FGFR3,
MET, DDR2, KRAS, PIK3CA, BRAF, AKT1, PTEN, NRAS, MAP2K1, STK11, NOTCH1,
CTNNB1, SMAD4, FBXW7 and TP53. Libraries were prepared starting from 10 ng of
genomic DNA (measured using the Qubit fluorometer in combination with the Qubit
dsDNA HS Assay Kit) according to the manufacturer’s instructions. Then, 100 pM of each
equalized library was multiplexed and clonally amplified on Ion sphere particles (ISPs) by
emulsion PCR performed on the Ion One Touch 2 instrument with the Ion PGM template
OT2 200 kit (Thermo Fisher Scientific). The template ISPs were enriched, loaded on an Ion
316 chip and sequenced on a PGM sequencer with the Ion PGM™ sequencing 200 kit v2
according to the manufacturer’s instructions. The data were analyzed by Ion Torrent Suite
Software v.5.12 and using Ion Reporter Software v5.14.

3. Results

We analyzed plasma samples obtained from 37 KRAS/NRAS/BRAF wild-type mCRC
patients (10 in arm A and 27 in arm B) enrolled in the ERMES trial using the Idylla platform.
In particular, we studiedd available plasma samples at baseline (n = 37), at 8 weeks of
treatment (n = 32), at progressive disease (PD; n = 36) and at 3 months after PD (n = 21).
The analysis performed with the Idylla™ ctKRAS/NRAS/BRAF assay was successful for
all but one sample at 3 months after PD for whom the KRAS test was invalid (Table 1).

Table 1. Summary of cfDNA results by IdyllaTM ctKRAS/NRAS/BRAF assays.

ID ARM Baseline 8 Weeks PD PD
3 Months

01-0001 B – – – –

01-0002 B – KRAS: p.G12S;
BRAF: p.V600E/D – –

01-0005 A – – NRAS: p.Q61R/K –
01-0007 A – – – –
01-0008 B – – KRAS: p.G12C NA
01-0010 A KRAS: p.G12R – – NA
01-0011 B KRAS: p.G12A – KRAS: p.G12A KRAS: p.G12A
01-0012 B – – – NA
01-0013 B – – – NA
01-0014 B KRAS: p.A59T/E/G – KRAS: p.A59T/E/G Invalid
01-0015 A – NA – NA
01-0017 B – KRAS: p.G12A BRAF: p.V600E/D –
01-0019 A KRAS: p.G12D KRAS: p.G12D KRAS p.G12D NA
01-0024 B – – NRAS: p.Q61H –
01-0027 B – – KRAS: p.G12R –

01-0028 A – – – KRAS: p.G12V;
NRAS: p.Q61H

01-0030 B – – – –
01-0031 B – NA – –
01-0032 B – – – NA
01-0033 B – NRAS: p.A59T – –
01-0036 A – NA – –
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Table 1. Cont.

ID ARM Baseline 8 Weeks PD PD
3 Months

01-0038 B – NRAS: p.G12A/V – –
61-0001 B – NA BRAF: p.V600E/D NA
61-0003 A – – – –

06-0002 B – NA KRAS: p.A146P/T/V;
BRAF: p.V600E/D NA

29-0001 B BRAF: p.V600E/D BRAF: p.V600E/D * NA
26-0002 B – – BRAF: p.V600E/D –

33-0004 B – – NRAS: p.Q61R/K; BRAF:
p.V600E/D NA

63-0006 B – – – NA
73-0001 B NRAS: p.Q61H – – NA

57-0002 A – KRAS:
p.A146P/T/V – –

57-0003 A – – – –
57-0005 B – – – NA
57-0006 B – – KRAS: p.G12C –
19-0006 B – – – NA
65-0004 B – – – NA
70-0001 B – – – –

NA: sample not available; *: the sample at week 8 coincided with PD.

3.1. KRAS/NRAS/BRAF cfDNA Status at Baseline

The analysis of the cfDNA isolated form the baseline plasma samples revealed the
presence of KRAS mutations in four cases, and of NRAS and BRAF mutations in one case
for each gene, with an overall concordance with tissue testing of 83.8% (Table 1).

Targeted sequencing analysis of four available tumor tissue samples from discordant
cases showed the presence of the same RAS variant identified in plasma in 3/4 patients, at
allelic frequencies ranging between 2.1% and 13.4%.

Plasma samples at 8 weeks and at PD were available for all patients with baseline
KRAS/NRAS/BRAF mutations in the cfDNA (Table 1). Patient 29-0001 carried a BRAF
V600E variant on liquid biopsy and had a rapid PD (PFS 1.38 months) with the liquid
biopsy still positive for BRAF. In this patient, the sample at week 8 coincided with PD. Two
RAS-positive cases became negative at week 8 and remained negative at PD (01-0010 and
73-001), while an additional two were negative at week 8 but at PD showed the same RAS
mutation that was identified at baseline (01-0011 and 01-0014). Only one patient had a
persistent RAS mutation at 8 weeks and at PD (01-0019).

We tested the cfDNA samples of five out of six patients who were positive at baseline
with the Oncomine Pan Cancer Cell-Free Assay, which assesses genetic alterations in 52
driver genes, in order to confirm the variants identified by the Idylla™ test, to estimate the
allelic frequency and to evaluate the presence of additional variants. cfRNA was assessed
as well to identify gene fusions. All the KRAS/NRAS/BRAF variants identified with
Idylla™ were confirmed by the Oncomine assay, which did not identify additional variants
at baseline (Supplementary Table S1). The dynamics of KRAS/NRAS/BRAF mutations
in the subgroup of patients with a baseline positive cfDNA test is shown in Figure 1. The
analysis of cfRNA did not reveal the presence of alterations in any sample tested.
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Figure 1. Dynamics of KRAS/NRAS/BRAF mutations in the subgroup of patients with baseline
positive cfDNA. Mutant allelic frequency (AF) was assessed by targeted sequencing at the indicated
time points. Patient 29-0001 dropped out of the study at week 8 due to early disease progression.

3.2. KRAS/NRAS/BRAF cfDNA Status at Week 8

Among the 32 available plasma samples obtained at 8 weeks, the test revealed four
KRAS, two NRAS and two BRAF mutations in seven patients (22.6% of the available cases).
Cases 01-0019 and 29-001 were positive at baseline and at every available subsequent time
point (Table 1). Four cases that were positive at 8 weeks had no mutations detectable at
baseline and no mutation was detectable at PD. Finally, case 01-0017 had no mutations at
baseline, showed a KRAS G12A variant at 8 weeks and was found to carry a BRAF V600
mutations at PD. Targeted sequencing of cfTNA from the seven patients positive at week 8
showed the same genomic alterations identified by the Idylla test (Supplementary Table S1)
and did not reveal the presence of gene fusions.

The peculiar dynamics of these cases with a wave of transient KRAS mutations is
shown in Figure 2.

Figure 2. Dynamics of KRAS/NRAS/BRAF mutations in the subgroup of patients with positive
cfDNA at 8 weeks. Mutant allelic frequency (AF) was assessed by targeted sequencing at the
indicated time points. Patient 01-0017 showed two different variants at week 8 (KRAS G12A) and at
PD (BRAF V600).



Cancers 2022, 14, 1052 7 of 12

3.3. KRAS/NRAS/BRAF cfDNA Status at PD

The fraction of KRAS/NRAS/BRAF cfDNA-positive cases significantly increased at
PD, with 14 mutations detected in 12/36 patients (33.3%). In particular, the Idylla™ test
identified six KRAS, three NRAS and five BRAF variants, with two cases carrying either
a KRAS or NRAS mutation and a BRAF V600E variant (Table 1). An additional patient
(29-001) had a very early PD at 8 weeks as above described, and it should be considered
a refractory case. Three cases showed at progression the same KRAS mutation identified
at baseline, while only one case positive at week 8 showed the same KRAS mutation at
baseline and progression (Figures 1 and 2). The results of the Idylla test were confirmed in
20 cases with additional plasma samples available by targeted sequencing, which identified
the same KRAS, NRAS and BRAF variants found by Idylla (Supplementary Table S1). The
NGS test also revealed three TP53 mutations, two of which found also in the baseline
cfDNA sample from the same patients (Supplementary Table S1). In addition, a pathogenic
FBXW7 mutation was detected at PD in patient 01-0010, who also carried a KRAS mutation
at baseline but not at the other time points. Additionally, at this time point, the analysis of
cfRNA did not show the presence of gene fusions.

3.4. KRAS/NRAS/BRAF cfDNA Status 3 Months after PD

We had a significant dropout of cases at 3 months after PD. In fact, only 21 patients
had available plasma samples at PD. Such dropout is probably due to the fact that patients
with disease progression left the study to receive a second line of therapy in the context of
clinical practice. In particular, all patients received a second-line regimen not containing an
anti-EGFR agent.

Only 2 of the 21 cases with available samples at 3 months after PD (9.5%) showed either
a KRAS or a KRAS and NRAS variants (Table 1). Such reduction in the frequency of RAS-
positive cases is in agreement with previous studies demonstrating that the interruption of
the treatment with anti-EGFR monoclonal antibodies leads to a reduction in the levels of
RAS mutations in patients who developed such mutations on therapy [20]. NGS testing
confirmed the two KRAS mutations but not the NRAS variant (Supplementary Table S1). In
patient 01-0011, targeted sequencing also revealed a TP53 mutation in addition to the KRAS
variant, while a EGFR S492R mutation was detected in the cfDNA from patient 01-0014.
The analysis of cfRNA did not reveal the presence of alterations.

3.5. Correlation between KRAS/NRAS/BRAF cfDNA Status and Patients’ Outcomes

We next assessed the correlation between the presence of KRAS/NRAS/BRAF muta-
tions in the cfDNA and the outcome of patients who received first-line chemotherapy plus
cetuximab. The presence of KRAS/NRAS/BRAF mutations at baseline, at 8 weeks, at PD
or at any of these points did not correlate with response to therapy (data not shown). How-
ever, the dynamics of RAS mutations did correlate with patients’ outcomes on treatment.
We had paired 8-week samples available for six cases with RAS or BRAF mutations at
baseline. In 4/6 cases, we observed a partial response to therapy that was associated with
plasma samples becoming negative at week 8. The only baseline KRAS-positive patient
with persistent KRAS mutation at week 8 did not respond to therapy but had a stabilization
of the disease. The BRAF-positive case had a PD with a very short PFS of 1.38 months,
while showing an increase of the BRAF MAF in the cfDNA (Figure 1).

Interestingly, the four cases with transient RAS mutation increase at week 8 all had PR
as the best response, while case 01-0017 with a RAS-positive sample at week 8 and BRAF
positivity at PD had CR as the best response.

The median progression-free survival (mPFS) of patients with KRAS/NRAS/BRAF
mutations at PD was 7.13 months versus 7.71 months in patients with wild-type plasma
samples (p = 0.3892; HR 1.346, CI 95% 0.6844 to 2.647) (Figure 3). Similarly, no significant
difference in mPFS was observed between KRAS/NRAS/BRAF mutant cases versus wild-
type cases when considering patients’ mutant status at baseline, at week 8 or at any
time-point (Supplementary Table S2).
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Figure 3. Progression-free survival curves of patients with KRAS/NRAS/BRAF mutations at PD (PD
MUT) versus patients with wild-type cases for the three genes at PD (PD WT).

4. Discussion

Testing plasma-derived cfDNA has several advantages over tissue testing, namely
being able to better recapitulate the heterogeneity of advanced cancers and allowing for
the monitoring of the molecular evolution of the disease [26]. In particular, liquid biopsy
testing might provide important information on the response to therapy, thus consenting
to adapt the therapeutic strategy. Nevertheless, the clinical interpretation of the results of
liquid biopsy testing is often complex and must take into account a number of biological,
technical and clinical factors.

Several studies demonstrated a good concordance between tissue and cfDNA testing
of RAS mutations in patients with mCRC [24,27–33]. However, patients with a RAS-positive
liquid biopsy but a negative tissue RAS test have been described in different studies [32,34].
Analysis of tumor tissue with highly sensitive techniques confirmed the presence of RAS
mutations in the tumor tissue of most of these discordant cases [32,34]. In this respect, we
could identify in the tumor tissue the same RAS variant detected in the cfDNA in 3/4 cases
classified as RAS wild type based on previous local tissue testing. In addition, the variants
identified in plasma with the Idylla™ test were all confirmed by NGS, thus excluding
potential artifacts. Therefore, our findings confirm that a fraction of mCRC patients carries
sub-clonal RAS/BRAF variants that might not be identified by testing a biopsy of a single
tumor site and that can be identified by cfDNA testing [32,35–37].

Although RAS/BRAF mutations are well-defined mechanisms of resistance to anti-
EGFR agents [38–43], the presence of a RAS/BRAF mutation at baseline did not affect
the probability to respond to EGFR monoclonal antibodies-based polychemotherapy nor
was it associated with shorter PFS in this study. While these data must be cautiously
interpreted due to the low number of liquid biopsy baseline RAS/BRAF-positive cases;
they also highlight that the predictive role of RAS/BRAF mutations detected in liquid
biopsy in patients receiving anti-EGFR agents plus polychemotherapy might be different
as compared with anti-EGFR monoclonal antibodies used as single agent in later lines of
treatment. For example, the four patients with baseline RAS mutations in the liquid biopsy
who experienced PR had a significant decrease in the levels of RAS-positive ctDNA by
week 8, suggesting that the RAS mutant clones were sensitive to polychemotherapy. We
might still expect that patients with a RAS mutation in the baseline liquid biopsy will have
a shorter PFS as compared with RAS wild-type patients, because they will not benefit of the
addiction of anti-EGFR agents to chemotherapy. However, patients with RAS/BRAF wild-
type tissue and mutant liquid biopsy are likely to carry sub-clonal RAS/BRAF variants,
which might only in part affect the efficacy of anti-EGFR drugs [37]. The only patient of the
baseline-positive cases who had a PD carried a BRAF V600E variant and had no adequate
tissue specimen available for testing. In most cases, the baseline RAS/BRAF mutation was
also detected at PD, suggesting that these variants might contribute to tumor progression,
but also that additional genomic events are required to drive resistance to both anti-EGFR
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agents and chemotherapy. Prospective clinical trials are definitely required to define the
best therapeutic strategy in patients with baseline sub-clonal RAS/BRAF mutations.

We also observed a transient increase in the levels of RAS mutations at week 8 in five
patients who became RAS negative at PD. A transient increase of RAS-positive clones has
been previously described in mCRC patients receiving anti-EGFR monoclonal antibodies,
who still became RAS positive at PD [23]. It must be emphasized that, in this previous
study, the patients did not receive polychemotherapy. We might hypothesize that in our
series chemotherapy might have been effective in eradicating RAS-positive sub-clones
that were initially selected by anti-EGFR therapy. Importantly, 3/5 of these patients had
a PR at week 8, with 2/5 patients showing SD. The best response in this subgroup was
PR in three patients, CR in one patient and SD in one patient, while the PFS ranged
between 5.38 and 16.34 months. Interestingly, previous studies showed that early increase
in RAS mutations in cfDNA in patients treated with anti-EGFR agents is not associated
with resistance to treatment [34]. Taken together, these findings argue against the use of
liquid biopsy testing as early marker of resistance in mCRC patients receiving anti-EGFR
antibodies plus polychemotherapy. Additional studies in larger cohorts of patients are
definitely needed to define the true frequency of the phenomenon that we observed.

The rate of RAS/BRAF-positive cases at PD following treatment with an anti-EGFR
monoclonal antibody ranged between 32% and 96% in previous studies, a significant
difference that was most likely due to the limited number of patients and the different
technologies used for testing [16–24]. A previous study that employed the Idylla™ test
reported RAS/BRAF mutations at PD in 14% of mCRC patients receiving first-line EGFR
antibodies-based therapy [18]. In this respect, the 35.1% RAS-positive rate at PD observed
in our study is significantly higher. Such difference could be due to a number of issues,
including the fact that the blood draws in our trial was performed at PD, whereas in
the study by Maurel and co-workers, blood was drawn within 1 month before PD or
after PD, thus possibly limiting the sensitivity of the assay. Importantly, in both studies
the emergence of RAS/BRAF mutations did not correlate with PFS, suggesting that the
presence of these variants does not correlate with a more aggressive phenotype. However,
we must acknowledge that the true positive fraction of cases could be underestimated
because of the limited sensitivity of the tests that we used. In this respect, the estimation of
tumor fraction in plasma samples might in the future allow for a better definition of this
phenomenon [44–46]. Studies on larger patients’ cohorts will allow us to better define the
prognostic value of acquired, likely sub-clonal RAS and BRAF variants, which could be
different as compared with de novo clonal mutations of these genes.

5. Conclusions

This study has several limitations due to the low number of patients included in our
analysis. However, our preliminary findings suggest a complex dynamic of RAS/BRAF
mutations in mCRC patients treated with first-line anti-EGFR monoclonal antibodies in
combination with polychemotherapy. Additional studies are needed to clear whether
cfDNA monitoring might guide therapeutic decisions in mCRC patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
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wild-type cases when considering patients’ mutant status at baseline, at week 8, at progression or at
any time point.

Author Contributions: Conceptualization, N.N. and A.M.R.; formal analysis, A.M.R., L.F. and
R.P.; data curation, A.M.R., R.P. and C.R.; writing—original draft preparation, N.N. and A.M.R.;
visualization, C.A.B., E.M., L.A., A.C., G.T. (Giuseppe Tonini), R.B., G.R., A.Z., S.L., D.F., G.L.F., S.T.,
S.P., F.D.F., A.O., T.L., A.D., G.T. (Giampaolo Tortora) and C.P.; supervision, N.N. All authors have
read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/cancers14041052/s1
https://www.mdpi.com/article/10.3390/cancers14041052/s1


Cancers 2022, 14, 1052 10 of 12

Funding: This research was in part funded by project “Combattere la resistenza tumorale: piattaforma
integratamultidisciplinare per un approccio tecnologico alle oncoterapie”, CUP B61G18000470007
and SURF 17061BP0000-00010. The Idylla™ ctKRAS and Idylla™ ctNRAS-BRAF mutation test were
kindly donated by Biocartis, Mechelen, Belgium.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki. Please refer to this study by its ClinicalTrials.gov identifier (NCT number):
NCT02484833.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://data.mendeley.com/datasets/cng6gnp8k8/draft?a=8d191a3b-d52b-4f39-89
67-a03d0480d47a (accessed on 11 November 2021).

Conflicts of Interest: N.N. declares honoraria and research grants from Biocartis, Merck, Thermofisher.

References
1. Ciardiello, F.; Tortora, G. A novel approach in the treatment of cancer: Targeting the epidermal growth factor receptor. Clin.

Cancer Res. 2001, 7, 2958–2970. [PubMed]
2. Spano, J.P.; Fagard, R.; Soria, J.-C.; Rixe, O.; Khayat, D.; Milano, G. Epidermal growth factor receptor signaling in colorectal cancer:

Preclinical data and therapeutic perspectives. Ann. Oncol. 2005, 16, 189–194. [CrossRef] [PubMed]
3. Martinelli, E.; Ciardiello, D.; Martini, G.; Troiani, T.; Cardone, C.; Vitiello, P.P.; Normanno, N.; Rachiglio, A.M.; Maiello, E.; Latiano,

T.; et al. Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: Challenges and
future perspectives. Ann. Oncol. 2020, 31, 30–40. [CrossRef]

4. Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Kaiser, F.; Al-Batran, S.-E.; Heintges, T.; Lerchenmüller, C.; Kahl,
C.; Seipelt, G.; et al. FOLFIRI plus cetuximab or bevacizumab for advanced colorectal cancer: Final survival and per-protocol
analysis of FIRE-3, a randomised clinical trial. Br. J. Cancer 2021, 124, 587–594. [CrossRef]

5. Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.E.; Stintzing, S. FOLFIRI plus
cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A
randomised, open-label, phase 3 trial. Lancet Oncol. 2014, 15, 1065–1075. [CrossRef]

6. Rachiglio, A.M.; Sacco, A.; Forgione, L.; Esposito, C.; Chicchinelli, N.; Normanno, N. Colorectal cancer genomic biomarkers in the
clinical management of patients with metastatic colorectal carcinoma. Explor. Target. Antitumor Ther. 2020, 1, 53–70. [CrossRef]

7. Morris, V.K.; Bekaii-Saab, T. Improvements in Clinical Outcomes for BRAFV600E-Mutant Metastatic Colorectal Cancer. Clin.
Cancer Res. 2020, 26, 4435–4441. [CrossRef]

8. Seligmann, J.F.; Fisher, D.; Smith, C.G.; Richman, S.D.; Elliott, F.; Brown, S.; Adams, R.; Maughan, T.; Quirke, P.; Cheadle, J.; et al.
Investigating the poor outcomes of BRAF-mutant advanced colorectal cancer: Analysis from 2530 patients in randomised clinical
trials. Ann. Oncol. 2017, 28, 562–568. [CrossRef] [PubMed]

9. Arena, S.; Bellosillo, B.; Siravegna, G.; Martínez, A.; Cañadas, I.; Lazzari, L.; Ferruz, N.; Russo, M.; Misale, S.; González, I.; et al.
Emergence of Multiple EGFR Extracellular Mutations during Cetuximab Treatment in Colorectal Cancer. Clin. Cancer Res. 2015,
21, 2157–2166. [CrossRef] [PubMed]

10. Bertotti, A.; Sassi, F. Molecular Pathways: Sensitivity and Resistance to Anti-EGFR Antibodies. Clin. Cancer Res. 2015, 21,
3377–3383. [CrossRef] [PubMed]

11. Burrell, R.A.; Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 2014, 8, 1095–1111.
[CrossRef] [PubMed]

12. Diaz, L.A., Jr.; Williams, R.T.; Wu, J.; Kinde, I.; Hecht, J.R.; Berlin, J.; Allen, B.; Bozic, I.; Reiter, J.G.; Nowak, M.A.; et al. The
molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012, 486, 537–540. [CrossRef]
[PubMed]

13. Misale, S.; Di Nicolantonio, F.; Sartore-Bianchi, A.; Siena, S.; Bardelli, A. Resistance to Anti-EGFR Therapy in Colorectal Cancer:
From Heterogeneity to Convergent Evolution. Cancer Discov. 2014, 4, 1269–1280. [CrossRef] [PubMed]

14. Misale, S.; Yaeger, R.; Hobor, S.; Scala, E.; Janakiraman, M.; Liska, D.; Valtorta, E.; Schiavo, R.; Buscarino, M.; Siravegna, G.; et al.
Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012, 486, 532–536.
[CrossRef] [PubMed]

15. Pietrantonio, F.; Vernieri, C.; Siravegna, G.; Mennitto, A.; Berenato, R.; Perrone, F.; Gloghini, A.; Tamborini, E.; Lonardi, S.; Morano,
F.; et al. Heterogeneity of Acquired Resistance to Anti-EGFR Monoclonal Antibodies in Patients with Metastatic Colorectal Cancer.
Clin. Cancer Res. 2016, 23, 2414–2422. [CrossRef]

16. Cremolini, C.; Antoniotti, C.; Lonardi, S.; Aprile, G.; Bergamo, F.; Masi, G.; Falcone, A. Activity and Safety of Cetuximab Plus
Modified FOLFOXIRI Followed by Maintenance with Cetuximab or Bevacizumab for RAS and BRAF Wild-type Metastatic
Colorectal Cancer: A Randomized Phase 2 Clinical Trial. JAMA Oncol. 2018, 4, 529–536. [CrossRef]

ClinicalTrials.gov
https://data.mendeley.com/datasets/cng6gnp8k8/draft?a=8d191a3b-d52b-4f39-8967-a03d0480d47a
https://data.mendeley.com/datasets/cng6gnp8k8/draft?a=8d191a3b-d52b-4f39-8967-a03d0480d47a
http://www.ncbi.nlm.nih.gov/pubmed/11595683
http://doi.org/10.1093/annonc/mdi057
http://www.ncbi.nlm.nih.gov/pubmed/15668269
http://doi.org/10.1016/j.annonc.2019.10.007
http://doi.org/10.1038/s41416-020-01140-9
http://doi.org/10.1016/S1470-2045(14)70330-4
http://doi.org/10.37349/etat.2020.00004
http://doi.org/10.1158/1078-0432.CCR-19-3809
http://doi.org/10.1093/annonc/mdw645
http://www.ncbi.nlm.nih.gov/pubmed/27993800
http://doi.org/10.1158/1078-0432.CCR-14-2821
http://www.ncbi.nlm.nih.gov/pubmed/25623215
http://doi.org/10.1158/1078-0432.CCR-14-0848
http://www.ncbi.nlm.nih.gov/pubmed/26071484
http://doi.org/10.1016/j.molonc.2014.06.005
http://www.ncbi.nlm.nih.gov/pubmed/25087573
http://doi.org/10.1038/nature11219
http://www.ncbi.nlm.nih.gov/pubmed/22722843
http://doi.org/10.1158/2159-8290.CD-14-0462
http://www.ncbi.nlm.nih.gov/pubmed/25293556
http://doi.org/10.1038/nature11156
http://www.ncbi.nlm.nih.gov/pubmed/22722830
http://doi.org/10.1158/1078-0432.CCR-16-1863
http://doi.org/10.1001/jamaoncol.2017.5314


Cancers 2022, 14, 1052 11 of 12

17. Kim, T.W.; Peeters, M.; Thomas, A.L.; Gibbs, P.; Hool, K.; Zhang, J.; Ang, A.L.; Bach, B.A.; Price, T. Impact of Emergent Circulating
Tumor DNA RAS Mutation in Panitumumab-Treated Chemoresistant Metastatic Colorectal Cancer. Clin. Cancer Res. 2018, 24,
5602–5609. [CrossRef]

18. Maurel, J.; Alonso, V.; Escudero, P.; Fernández-Martos, C.; Salud, A.; Méndez, M.; Gallego, J.; Rodriguez, J.R.; Martín-Richard, M.;
Fernández-Plana, J.; et al. Clinical Impact of Circulating Tumor RAS and BRAF Mutation Dynamics in Patients with Metastatic
Colorectal Cancer Treated with First-Line Chemotherapy Plus Anti–Epidermal Growth Factor Receptor Therapy. JCO Precis.
Oncol. 2019, 3, 1–16. [CrossRef]

19. Siena, S.; Sartore-Bianchi, A.; Garcia-Carbonero, R.; Karthaus, M.; Smith, D.; Tabernero, J.; Van Cutsem, E.; Guan, X.; Boedigheimer,
M.; Ang, A.; et al. Dynamic molecular analysis and clinical correlates of tumor evolution within a phase II trial of panitumumab-
based therapy in metastatic colorectal cancer. Ann. Oncol. 2018, 29, 119–126. [CrossRef] [PubMed]

20. Siravegna, G.; Mussolin, B.; Buscarino, M.; Corti, G.; Cassingena, A.; Crisafulli, G.; Ponzetti, A.; Cremolini, C.; Amatu, A.;
Lauricella, C.; et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 2015,
21, 795–801. [CrossRef]

21. Thomsen, C.B.; Andersen, R.F.; Lindebjerg, J.; Hansen, T.F.; Jensen, L.H.; Jakobsen, A. Plasma Dynamics of RAS/RAF Mutations
in Patients With Metastatic Colorectal Cancer Receiving Chemotherapy and Anti-EGFR Treatment. Clin. Color. Cancer 2019, 18,
28–33.e3. [CrossRef] [PubMed]

22. Toledo, R.A.; Cubillo, A.; Vega, E.; Garralda, E.; Alvarez, R.; De La Varga, L.U.; Pascual, J.R.; Sanchez, G.; Sarno, F.; Prieto, S.H.;
et al. Clinical validation of prospective liquid biopsy monitoring in patients with wild-type RAS metastatic colorectal cancer
treated with FOLFIRI-cetuximab. Oncotarget 2016, 8, 35289–35300. [CrossRef] [PubMed]

23. Van Emburgh, B.O.; Arena, S.; Siravegna, G.; Lazzari, L.; Crisafulli, G.; Corti, G.; Bardelli, A. Acquired RAS or EGFR mutations
and duration of response to EGFR blockade in colorectal cancer. Nat. Commun. 2016, 7, 13665. [CrossRef] [PubMed]

24. Vidal, J.; Muinelo, L.; Dalmases, A.; Jones, F.; Edelstein, D.; Iglesias, M.; Orrillo, M.; Abalo, A.; Rodríguez, C.; Brozos, E.; et al.
Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients. Ann.
Oncol. 2017, 28, 1325–1332. [CrossRef]

25. Pinto, C.; Normanno, N.; Orlandi, A.; Maiello, E.; Bilancia, D.; Corsi, D.C.; Tamburini, E.; Pisconti, S.; Ferraú, F.; Di Costanzo, F.;
et al. Cetuximab metastatic colorectal cancer strategy (ERMES) study: A phase III randomized two arm study with FOLFIRI +
cetuximab until disease progression compared to FOLFIRI + cetuximab for 8 cycles followed by cetuximab alone until disease
progression in first-line treatment of patients with RAS and BRAF wild type metastatic colorectal cancer. J. Clin. Oncol. 2017, 35,
TPS810. [CrossRef]

26. Riener, M.-O.; Bawohl, M.; Clavien, P.-A.; Jochum, W. RarePIK3CA hotspot mutations in carcinomas of the biliary tract. Genes
Chromosomes Cancer 2008, 47, 363–367. [CrossRef]

27. Bachet, J.; Bouché, O.; Taieb, J.; Dubreuil, O.; Garcia, M.; Meurisse, A.; Normand, C.; Gornet, J.; Artru, P.; Louafi, S.; et al. RAS
mutation analysis in circulating tumor DNA from patients with metastatic colorectal cancer: The AGEO RASANC prospective
multicenter study. Ann. Oncol. 2018, 29, 1211–1219. [CrossRef]

28. Bando, H.; Kagawa, Y.; Kato, T.; Akagi, K.; Denda, T.; Nishina, T.; Komatsu, Y.; Oki, E.; Kudo, T.; Kumamoto, H.; et al. A
multicentre, prospective study of plasma circulating tumour DNA test for detecting RAS mutation in patients with metastatic
colorectal cancer. Br. J. Cancer 2019, 120, 982–986. [CrossRef]

29. García-Foncillas, J.; Tabernero, J.; Élez, E.; Aranda, E.; Benavides, M.; Camps, C.; Vivancos, A. Prospective multicenter real-world
RAS mutation comparison between OncoBEAM-based liquid biopsy and tissue analysis in metastatic colorectal cancer. Br. J.
Cancer 2018, 119, 1464–1470. [CrossRef]

30. Germetaki, T.; Nicholls, C.; Adams, R.A.; Braun, M.; Rogan, J.; Moghadam, S.; Lenfert, E.; Lukas, A.; Edelstein, D.L.; Jones, F.S.;
et al. Blood-based RAS mutation testing: Concordance with tissue-based RAS testing and mutational changes on progression.
Future Oncol. 2020, 16, 2177–2189. [CrossRef]

31. Grasselli, J.; Elez, E.; Caratù, G.; Matito, J.; Santos, C.; Macarulla, T.; Vidal, J.; Garcia, M.; Viéitez, J.; Paéz, D.; et al. Concordance of
blood- and tumor-based detection of RAS mutations to guide anti-EGFR therapy in metastatic colorectal cancer. Ann. Oncol. 2017,
28, 1294–1301. [CrossRef] [PubMed]

32. Normanno, N.; Abate, R.E.; Lambiase, M.; Forgione, L.; Cardone, C.; Iannaccone, A.; Sacco, A.; Rachiglio, A.M.; Martinelli, E.;
Rizzi, D.; et al. RAS testing of liquid biopsy correlates with the outcome of metastatic colorectal cancer patients treated with
first-line FOLFIRI plus cetuximab in the CAPRI-GOIM trial. Ann. Oncol. 2018, 29, 112–118. [CrossRef] [PubMed]

33. Schmiegel, W.; Scott, R.J.; Dooley, S.; Lewis, W.; Meldrum, C.J.; Pockney, P.; Fox, S.B. Blood-based detection of RAS mutations to
guide anti-EGFR therapy in colorectal cancer patients: Concordance of results from circulating tumor DNA and tissue-based RAS
testing. Mol. Oncol. 2017, 11, 208–219. [CrossRef]

34. Khan, K.H.; Cunningham, D.; Werner, B.; Vlachogiannis, G.; Spiteri, I.; Heide, T.; Fernández-Mateos, J.; Vatsiou, A.; Lampis, A.;
Damavandi, M.D.; et al. Longitudinal Liquid Biopsy and Mathematical Modeling of Clonal Evolution Forecast Time to Treatment
Failure in the PROSPECT-C Phase II Colorectal Cancer Clinical Trial. Cancer Discov. 2018, 8, 1270–1285. [CrossRef] [PubMed]

35. McGranahan, N.; Favero, F.; de Bruin, E.C.; Birkbak, N.J.; Szallasi, Z.; Swanton, C. Clonal status of actionable driver events and
the timing of mutational processes in cancer evolution. Sci. Transl. Med. 2015, 7, 283ra54. [CrossRef] [PubMed]

36. Nakamura, Y.; Yoshino, T. Clinical Utility of Analyzing Circulating Tumor DNA in Patients with Metastatic Colorectal Cancer.
Oncologist 2018, 23, 1310–1318. [CrossRef] [PubMed]

http://doi.org/10.1158/1078-0432.CCR-17-3377
http://doi.org/10.1200/PO.18.00289
http://doi.org/10.1093/annonc/mdx504
http://www.ncbi.nlm.nih.gov/pubmed/28945848
http://doi.org/10.1038/nm.3870
http://doi.org/10.1016/j.clcc.2018.10.004
http://www.ncbi.nlm.nih.gov/pubmed/30459076
http://doi.org/10.18632/oncotarget.13311
http://www.ncbi.nlm.nih.gov/pubmed/27852040
http://doi.org/10.1038/ncomms13665
http://www.ncbi.nlm.nih.gov/pubmed/27929064
http://doi.org/10.1093/annonc/mdx125
http://doi.org/10.1200/jco.2017.35.4_suppl.tps810
http://doi.org/10.1002/gcc.20540
http://doi.org/10.1093/annonc/mdy061
http://doi.org/10.1038/s41416-019-0457-y
http://doi.org/10.1038/s41416-018-0293-5
http://doi.org/10.2217/fon-2020-0523
http://doi.org/10.1093/annonc/mdx112
http://www.ncbi.nlm.nih.gov/pubmed/28368441
http://doi.org/10.1093/annonc/mdx417
http://www.ncbi.nlm.nih.gov/pubmed/28950295
http://doi.org/10.1002/1878-0261.12023
http://doi.org/10.1158/2159-8290.CD-17-0891
http://www.ncbi.nlm.nih.gov/pubmed/30166348
http://doi.org/10.1126/scitranslmed.aaa1408
http://www.ncbi.nlm.nih.gov/pubmed/25877892
http://doi.org/10.1634/theoncologist.2017-0621
http://www.ncbi.nlm.nih.gov/pubmed/29700206


Cancers 2022, 14, 1052 12 of 12

37. Normanno, N.; Rachiglio, A.M.; Lambiase, M.; Martinelli, E.; Fenizia, F.; Esposito, C.; Roma, C.; Troiani, T.; Rizzi, D.; Tatangelo,
F.; et al. Heterogeneity of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer and potential effects on
therapy in the CAPRI GOIM trial. Ann. Oncol. 2015, 26, 1710–1714. [CrossRef] [PubMed]

38. Ciardiello, F.; Normanno, N.; Maiello, E.; Martinelli, E.; Troiani, T.; Pisconti, S.; Giuliani, F.; Barone, C.; Cartenì, G.; Rachiglio, A.M.;
et al. Clinical activity of FOLFIRI plus cetuximab according to extended gene mutation status by next-generation sequencing:
Findings from the CAPRI-GOIM trial. Ann. Oncol. 2014, 25, 1756–1761. [CrossRef] [PubMed]

39. Di Nicolantonio, F.; Martini, M.; Molinari, F.; Sartore Bianchi, A.; Arena, S.; Saletti, P.; Bardelli, A. Wild-type BRAF is required for
response to panitumumab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 5705–5712. [CrossRef]

40. Douillard, J.-Y.; Oliner, K.S.; Siena, S.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem,
J.; et al. Panitumumab–FOLFOX4 Treatment and RAS Mutations in Colorectal Cancer. N. Engl. J. Med. 2013, 369, 1023–1034.
[CrossRef]

41. Karapetis, C.S.; Jonker, D.; Daneshmand, M.; Hanson, J.E.; O’Callaghan, C.J.; Marginean, C.; Zalcberg, J.R.; Simes, J.; Moore, M.J.;
Tebbutt, N.C.; et al. PIK3CA, BRAF, and PTEN Status and Benefit from Cetuximab in the Treatment of Advanced Colorectal
Cancer—Results from NCIC CTG/AGITG CO.17. Clin. Cancer Res. 2014, 20, 744–753. [CrossRef] [PubMed]

42. Laurent-Puig, P.; Cayre, A.; Manceau, G.; Buc, E.; Bachet, J.-B.; LeComte, T.; Rougier, P.; Lievre, A.; Landi, B.; Boige, V.; et al.
Analysis of PTEN, BRAF, and EGFR Status in Determining Benefit from Cetuximab Therapy in Wild-Type KRAS Metastatic
Colon Cancer. J. Clin. Oncol. 2009, 27, 5924–5930. [CrossRef] [PubMed]

43. Rowland, A.; Dias, M.M.; Wiese, M.; Kichenadasse, G.; McKinnon, R.; Karapetis, C.; Sorich, M. Meta-analysis of BRAF mutation
as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer.
Br. J. Cancer 2015, 112, 1888–1894. [CrossRef] [PubMed]

44. Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Swanton, C.; Seiden, M.V. Sensitive and specific multi-cancer detection and localization
using methylation signatures in cell-free DNA. Ann. Oncol. 2020, 31, 745–759. [CrossRef] [PubMed]

45. Tsui, D.W.; Cheng, M.L.; Shady, M.; Yang, J.L.; Stephens, D.; Won, H.; Solit, D.B. Tumor fraction-guided cell-free DNA profiling in
metastatic solid tumor patients. Genome Med. 2021, 13, 96. [CrossRef] [PubMed]

46. Zhu, G.; Guo, Y.A.; Ho, D.; Poon, P.; Poh, Z.W.; Wong, P.M.; Gan, A.; Chang, M.M.; Kleftogiannis, D.; Lau, Y.T.; et al. Tissue-specific
cell-free DNA degradation quantifies circulating tumor DNA burden. Nat. Commun. 2021, 12, 1–11. [CrossRef] [PubMed]

http://doi.org/10.1093/annonc/mdv176
http://www.ncbi.nlm.nih.gov/pubmed/25851630
http://doi.org/10.1093/annonc/mdu230
http://www.ncbi.nlm.nih.gov/pubmed/24942275
http://doi.org/10.1200/JCO.2008.18.0786
http://doi.org/10.1056/NEJMoa1305275
http://doi.org/10.1158/1078-0432.CCR-13-0606
http://www.ncbi.nlm.nih.gov/pubmed/24218517
http://doi.org/10.1200/JCO.2008.21.6796
http://www.ncbi.nlm.nih.gov/pubmed/19884556
http://doi.org/10.1038/bjc.2015.173
http://www.ncbi.nlm.nih.gov/pubmed/25989278
http://doi.org/10.1016/j.annonc.2020.02.011
http://www.ncbi.nlm.nih.gov/pubmed/33506766
http://doi.org/10.1186/s13073-021-00898-8
http://www.ncbi.nlm.nih.gov/pubmed/34059130
http://doi.org/10.1038/s41467-021-22463-y
http://www.ncbi.nlm.nih.gov/pubmed/33850132

	Introduction 
	Materials and Methods 
	Patients and Plasma Samples 
	Idylla Analysis 
	NGS of Plasma Samples 
	Targeted Sequencing Analysis of Tumor Tissue 

	Results 
	KRAS/NRAS/BRAF cfDNA Status at Baseline 
	KRAS/NRAS/BRAF cfDNA Status at Week 8 
	KRAS/NRAS/BRAF cfDNA Status at PD 
	KRAS/NRAS/BRAF cfDNA Status 3 Months after PD 
	Correlation between KRAS/NRAS/BRAF cfDNA Status and Patients’ Outcomes 

	Discussion 
	Conclusions 
	References

