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Empirical Bayes estimation of the
selected treatment mean for two-stage
drop-the-loser trials: a
meta-analytic approach
Jack Bowden,a*† Werner Brannathb and Ekkehard Glimmc

Point estimation for the selected treatment in a two-stage drop-the-loser trial is not straightforward because
a substantial bias can be induced in the standard maximum likelihood estimate (MLE) through the first stage
selection process. Research has generally focused on alternative estimation strategies that apply a bias correction
to the MLE; however, such estimators can have a large mean squared error. Carreras and Brannath (Stat. Med.
32:1677-90) have recently proposed using a special form of shrinkage estimation in this context. Given certain
assumptions, their estimator is shown to dominate the MLE in terms of mean squared error loss, which provides
a very powerful argument for its use in practice. In this paper, we suggest the use of a more general form of
shrinkage estimation in drop-the-loser trials that has parallels with model fitting in the area of meta-analysis.
Several estimators are identified and are shown to perform favourably to Carreras and Brannath’s original
estimator and the MLE. However, they necessitate either explicit estimation of an additional parameter
measuring the heterogeneity between treatment effects or a quite unnatural prior distribution for the treatment
effects that can only be specified after the first stage data has been observed. Shrinkage methods are a powerful
tool for accurately quantifying treatment effects in multi-arm clinical trials, and further research is needed to
understand how to maximise their utility. © 2013 The Authors. Statistics in Medicine published by John Wiley
& Sons, Ltd.
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1. Introduction

Two-stage drop-the-loser designs provide a framework for picking the most effective treatment out of
a larger group of candidates and then testing it against a standard therapy in a confirmatory analysis.
Although this design is an efficient way to discover effective treatments, the selection mechanism acts
to inflate the type I error of the final test statistic [1, 2] and can also induce a substantial bias into the
standard maximum likelihood estimate (MLE). With regard to the former, current regulatory authority
guidance (e.g. [3]) is unequivocal that the final analysis must control the type I error rate. With regard to
the latter, whilst acknowledging that estimation bias is a serious issue affecting the validity of adaptive
trials and that bias should be ‘minimised’, there is a distinct lack of guidance and consensus on how
this should be achieved. Research has generally focused on estimators that apply a bias correction to
the MLE. One such class of estimators, referred to as uniform minimum variance conditionally unbi-
ased estimators (UMVCUEs), totally removes the MLE’s bias [4–7]. Others have proposed iterative or
likelihood-based methods that can substantially reduce the bias of the MLE, without being unbiased
[7–9]. Unfortunately, methods that explicitly target bias correction generally lead to an estimator with a
mean squared error (MSE) larger than that of the MLE.
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Carreras and Brannath [10] have recently proposed the use of shrinkage estimation [11] within the
context of a two-stage drop-the-loser trial. In their method, the stage 1 data on all treatments are used to
define a shrinkage estimate for the selected treatment at stage 1. This is then combined with the stage 2
estimate for the selected treatment via a weighted average. Under the assumption that the true treatment
effects are independent and follow a common normal distribution (with any mean and variance), their
estimator is shown to dominate the MLE in terms of MSE, thus providing a very powerful argument for
its use in practice. In this paper, we propose an alternative shrinkage estimation strategy for drop-the-
loser designs. Our approach is, in some ways, a simpler estimation procedure to that of [10] because
it uses all of the available data within a single, standard, shrinkage equation. However, this apparent
simplicity does impose some additional complications, which are discussed at length herein.

In Section 2, we introduce our notation for the two-stage drop-the-loser design. In Section 3, we
describe the general principle of shrinkage estimation, Carreras and Brannath’s original application of
shrinkage estimation to the drop-the-loser trial context, and also present our alternative approach. In
Section 4, we introduce several shrinkage estimators that naturally flow from our alternative formula-
tion, and in Section 5, we evaluate the performance of the existing and alternative shrinkage estimators
for various two-stage drop-the-loser design scenarios. We conclude in Section 6 with a discussion of the
issues raised and point to further avenues of research.

2. The two-stage drop-the-loser design

Let Xi � N
�
�i ; �

2
1

�
, i D 1; : : : ; k, be the effect estimates (MLEs) of k experimental treatments

T1; :::; Tk at the first stage of a two-stage trial. The common variance term, �21 , is assumed to be known.
Assuming that large values indicate the most benefit, the ‘best’ treatment, Ts , s 2 f1; :::kg, is selected
as the one with the top-ranking MLE. That is, Xs DMaxfX1; :::; Xkg. Treatment Ts is taken forward in
isolation for testing on an independent population in stage 2. Let Ys �N

�
�s; �

2
2

�
be the estimate for �s

at stage 2.
Let X0 and Y0 represent the normally distributed treatment effect estimates for the control group at

stages 1 and 2, with mean �0 and variances �21 and �22 , respectively. At the end of the trial, we are inter-
ested in estimating the contrast �s � �0. Because the control group always proceeds to the final stage,
�0 is unbiasedly estimated by its MLE, and we therefore focus our attention on estimation of �s only.
The MLE of �s at stage 2 and its (assumed) variance are given by

O�s D
�22Xs C �

2
1Ys

�21 C �
2
2

; Var . O�s/D
�21�

2
2

�21 C �
2
2

: (1)

Because it ignores the selection of Xs , O�s is positively biased (potentially seriously so), and Var . O�s/ is
also incorrect. We can express the most efficient unbiased estimate for �s as

Q�s D O�s �
�22q
�21 C �

2
2

�

"q
�2
1
C�2

2

�2
1

. O�s �Xr/

#

ˆ

"q
�2
1
C�2

2

�2
1

. O�s �Xr/

# ; (2)

where �.:/ and ˆ.:/ are the standard normal density and distribution functions, respectively, and where
Xr is defined as the second best performing treatment at stage 2, that is, Xr D MaxfX1; :::; Xkg =Xs .
This is referred to as the UMVCUE [4, 6].

2.1. Assessing estimators of �s

For any estimator of �s , ��s , we can express its bias and MSE as

Bias
�
��s
�
D

kX
iD1

E
�
��s ��i jTs D Ti

�
P.Ts D Ti /;

MSE
�
��s
�
D

kX
iD1

E
h�
��s ��i

�2
jTs D Ti

i
P.Ts D Ti /:

(3)
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This form (from Posch [12]) makes clear that at the trial outset, �s is a random variable. By definition,
Bias. Q�s/ = 0, and MSE. Q�s/ is smaller than any other ��s that is also unbiased. This of course does not
mean that MSE. Q�s/ is smaller than any biased estimator; for example, it is generally true that MSE. Q�s/
� MSE. O�s/ (see Section 5 for example). Furthermore, it is commonly agreed that MSE (a measure
equivalent to its variance + squared bias) provides a far better summary of an estimator’s worth than bias
alone.

3. Shrinkage estimation

The standard motivation for using shrinkage methods is to provide simultaneous, accurate estimation
for a group of parameters, where accuracy is defined via the combined MSE. For example, if we were
interested in jointly estimating the true mean effect of all k treatments �1; :::; �k using only stage 1 data,
then it will generally be true that the combined MSE,

kX
iD1

E
�
.��i ��i /

2
�
; (4)

is far smaller when ��i equals L�Li as opposed to the MLE Xi , where L�Li is Lindley’s estimator [13]:

L�Li D
OBCXi C .1� OBC/ NX (5)

and

OBC Dmax
n
0; 1� OC

o
; OC D

.k � 3/�21Pk
iD1.Xi �

NX/2
; NX D

kX
iD1

Xi=k: (6)

Although shrinkage formula (5) was not originally proposed using a Bayesian argument, it can be easily
understood and shown to be optimal within a Bayesian framework. Assume that a priori �1; :::; �k are
themselves independent and identically distributed (i.i.d) N.�; �2/ random variables and only stage 1
data are available for the k treatments. Given �i , the distribution of its MLE Xi is O�i j�i � N

�
�i ; �

2
1

�
.

The posterior distribution of �i given O�i is then

�i j O�i �N

�
�2

�21 C �
2
O�i C

�21
�21 C �

2
�;

�21 �
2

�21 C �
2

�
: (7)

L�Li can therefore be viewed as an ‘Empirical Bayes’ estimate for the posterior mean of equation (7),

with NX , Xi and OC substituted for �, O�i and
�2
1

�2
1
C�2

, respectively. NX is clearly an unbiased estimate of �,

but it is perhaps less obvious that OC is an unbiased estimate for
�2
1

�2
1
C�2

, regardless of the true value of

�2. If 1� OC gives a negative value, it is replaced by 0 in the definition of OBC. This ‘plus rule’ has been
shown to further reduce the MSE of the resulting estimate L�Li [14].

3.1. Carreras and Brannath’s approach

Hwang [15] explicitly considered estimation of a single mean parameter from a k component system,
where all k components have normally distributed estimates with a common variance and the single
component is identified by having the largest estimate. This is identical to estimating �s using only
stage 1 data in a two-stage drop-the-losers trial. He proved that when the treatment means follow a
N.�; �2/ prior distribution (for any � and �2 > 0), so that their posterior distributions obey equation
(7) and L�Ls is defined by equation (5) with i D s (i.e. drop-the-losers selection), then the dominance
result MSE

�
L�Ls
�
6MSE.Xs/ holds. Within the context of a two-stage drop-the-loser trial, Carreras and

Brannath use Hwang’s result to show that their estimator for �s at stage two

L�CBs D t L�Ls C .1� t /Ys; for t D
1=�21

1=�21 C 1=�
2
2

D
�22

�21 C �
2
2

(8)

analogously dominates O�s from equation (1). Their result relies on the fact that equation (1) is equivalent
to replacing L�CBs in equation (8) with Xs . This also occurs naturally when the shrinkage factor C is set
to 0.
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3.2. An alternative formulation

Carreras and Brannath’s method for estimating �s following a two-stage drop-the-loser trial can itself
be viewed as a two-stage approach. That is, only the stage 1 data are used in the standard shrinkage
estimator L�Ls , and then, stage 2 data on the selected treatment, Ys , are added separately in equation (8)
afterwards. Although L�CBs has the nice dominance property over the MLE, it is useful to consider
whether it can itself be improved upon. For example, why not use all of the stages 1 and 2 data to
define a single shrinkage estimator? Although this sounds straightforward, it does impose some extra
complications. Despite being only truly concerned with estimation of the top-ranking treatment’s mean,
�s , Carreras and Brannath’s method is defined to find shrinkage estimates given k parameter estimates
with a common variance. This means that we are assuming the posterior distribution for �i implied by
(7) (ignoring the stage 2 data), which enables the use of L�Ls from (5). However, if we use all of the data
(including the stage 2 data Ys), we may assume the following set-up:

�i �N
�
�; �2

�
;

O�i j�i �N.�i ; Wi /; where

O�i DXi ; Wi D �
2
1 if i ¤ s or O�i D

�22Xi C �
2
1Yi

�21 C �
2
2

; Wi D
�21�

2
2

�21 C �
2
2

if i D s.

Further assuming that the �i s are stochastically independent and the O�i s are conditionally independent
given �i , then

�i j O�i �N

�
�2

Wi C �2
O�i C

Wi

Wi C �2
�;

Wi�
2

Wi C �2

�
(9)

becomes the distribution with which to construct shrinkage estimates for the �i s. The fact that Wi is not
constant makes specification of single appropriate shrinkage factor C and estimate for the grand mean
� far less straightforward. In Section 4, we will discuss estimation for this new setting, pointing out its
connection with model fitting in the area of meta-analysis.

4. Estimation for the new target

4.1. Direct estimation

Under the framework of equation (9), if the parameters � and �2 were known, the best estimate for �s
is given by

�2

Ws C �2
O�s C

Ws

Ws C �2
� (10)

Furthermore, with infinite data, it is clear that directly replacing � and �2 in this expression with consis-
tent estimates, O� and O�2, would give equation (10). If one assumes that �2 is known, then the variance
of the posterior distribution in (9) also becomes completely known. It is then possible to show that the
MLE for � is

O��2 D

�
�21�

2
2 C �

2�22
�
Xs C

�
�41 C �

2�21
�
Ys C .k � 1/q NX�s

kqC �41
; (11)

where q D �21�
2
2C�

2
�
�21 C �

2
2

�
and NX�s D 1=.k�1/

P
i¤s Xi . �

2 could then be estimated by maximis-
ing the posterior likelihood of (9) with respect to �2 at � D O��2 . See the Appendix for further details.
We will refer to the estimate for �s obtained by directly plugging in the previous estimates to equation
(10) as O�MPLs . Although this approach is fairly crude, it will be interesting to observe the performance
of O�MPLs compared to several ‘legitimate’ shrinkage estimators that are now introduced.

4.2. Shrinkage estimation: Carter and Rolph’s standard prior approach

Carter and Rolph [16] investigate shrinkage methods for jointly estimating the parameters of a k com-
ponent system with unequal variances, as set up in equation (9). We will use it specifically to yield an
estimate for �s in the context of a two-stage drop-the-loser trial of the form
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OBCs O�s C
�
1� OBCs

	
O�; where OBCs Dmax

n
0; 1� OCs

o
; (12)

so as to approximate equation (10). Although not immediately obvious, it can be shown that their sug-
gested approach is equivalent the following procedure. First define a new weight Vi D .Wi C �2/, and
find the value of �2 that solves Q.�2/D k � 1, where

Q.�2/D

kX
iD1

V �1i
�
O�i � O�.�

2/
�2
; for O�.�2/D

Pk
iD1 V

�1
i O�iPk

iD1 V
�1
i

: (13)

IfQ.�2/D k�1 for a �2 < 0, then the estimate is truncated to 0.Q.�2/ is known in the area of medical
meta-analysis as the ‘generalised’ Q statistic [17, 18], and this estimation method for � is known as the
Paule–Mandel method of moments algorithm [19, 20]. Let the estimate for �2 derived in this manner be
equal to O�2PM . The shrinkage factor for �s is then approximated by

OCs D
.k � 3/Ws�

O�2PM CW
�
Q
�
O�2PM

�
C .k � 3/.Ws �W /

; where W D

kX
iD1

Wi=k: (14)

The form of OCs may appear complicated, but it has the nice property that if the Wi s are all equal, then
it reduces to the original OC given in equation (6). In our context, the Wi s can only approach equality as
�22 !1 or as the stage 2 sample size tends to zero. OCs can be inserted into equation (12) along with the
MLE O�s and grand mean O� given by O�

�
O�2PM

�
, to yield a new shrinkage estimator for �s . We will refer

to this estimator as L��
2

s – the ‘�2’ denoting that this parameter is additionally and explicitly estimated.

4.3. Shrinkage estimation: Carter and Rolph’s proportional prior approach

Carter and Rolph [16] also propose an alternative method for applying shrinkage estimation within the
unequal variance context, which usefully avoids an iterative estimation of �2. It relies on the assumption
of a different prior distribution for the treatment parameters, namely �i �N.�;Wi�2/. This asserts that
the prior uncertainty around each treatment’s mean is directly proportional to the variance of its estimate,
O�i . By replacing �2 with Wi�2 in (9), it is clear that this implies the posterior distribution:

�i j O�i �N

�
�2

1C �2
O�i C

1

1C �2
�;

Wi�
2

.1C �2/

�
; (15)

the mean of which becomes an alternative target to estimate. Because this mean does not depend on Wi ,
it suffices to calculate a single shrinkage factor OC using all of the data. This can then, in conjunction with
an estimate for �, be used to estimate �s via equation (12). Turning first to estimation of �: Under the
proportional prior, the unconditional distribution of the estimates is O�i �N

�
�; �2i .1C �

2/
�
. Therefore,

given weights V �i D �
2
i .1C �

2/, the inverse variance weighted average

O�.�2/D

Pk
iD1 V

�1�
i O�iPk

iD1 V
�1�
i

D O�.0/ 8�2:

O�.0/ is referred to in meta-analysis as the ‘fixed-effects’ estimate for �, as opposed to a ‘random-effects’
estimate, of which O�

�
O�2PM

�
is an example. Of course, when �2 is estimated to be 0, they are equal.

Turning now to estimation of �s via OC : It can easily be shown that Carter and Rolph’s approach in
this context is equivalent to choosing:

OC D OC.0/D
k � 3

Q.0/
; where Q.0/DQ.�2 D 0/: (16)

OC.0/ can be seen as a simple generalisation of the OC in equation (6) for the case where the Wi terms are
not constant.Q.0/ is known as Cochrane’s heterogeneity statistic in meta-analysis and is closely related
to the DerSimonian and Laird estimator for �2, �2DL [20]. For example, when Q.0/ > k � 1,

Q.0/� .k � 1/

Q.0/
D

�2DL
�2DLC N�

2
D I 2
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where N�2 is called the ‘typical’ within study variance and I 2 is a popular measure of ‘inconsistency’
(heterogeneity) among studies in a meta-analysis [21]. We will refer to the resulting estimator (which
utilises OC.0/ and O�.0/) as L�0s .

4.4. Incorporating ‘Limiting Translation’

It is well known that shrinkage methods can perform poorly with respect to specific parameter compo-
nents of a larger system, when the magnitude of the specific parameters are among the most extreme.
For this reason, Efron and Morris [22] suggest the use of a ‘Limiting Translation’ (LT) strategy that
constrains one shrinkage estimator to be within a certain distance of the MLE. Efron [14] and Johnson
[23] suggest a practical choice for this constraint of one unit of the MLE’s standard error. The effect of
applying LT to a single extreme parameter component of a larger system, say a �i from �1; :::; �k , is to
dramatically reduce the i’th contribution to the overall MSE of equation (4), at the expense of increasing
the total value of equation (4) by a small margin.

Although from equation (3), we can see that, at the trial outset, �s is not a single parameter but rather a
weighted mixture of all k fixed parameter values �1; :::; �k , the specific values of those parameters may
mean that �s is consistently an outlier. For example, this would certainly be the case if one treatment
was far more effective than any other because it would monopolise the value of �s . We can apply LT to
the shrinkage estimator L�0s by subtracting O�s from equation (12), constraining the result to be 6

p
Ws

and noting that the definition of OC.0/ in equation (16) becomes

OC.0/Dmin



.k � 3/

Q.0/
;

p
Ws

j O�.0/� O�sj

�
: (17)

This estimator will be referred to as L�0s .LT /. LT versions of all other estimators are clearly possible but
are not considered here.

4.5. Some implications of using L�0s

When deriving the form of L�0s , there is no inherent mathematical difficulty in assuming an N.�;Wi�2/
prior distribution (with varying Wi s) for the �i s because the resulting posterior distribution for �i j O�i
remains in the normal family. However, this shrinkage approach does raise certain philosophical ques-
tions when applied in the context of a two-stage drop-the-loser trial. The primary issue is that we do not
know a priori which treatment will be selected. So, assigning the N.�;Ws�2/ prior to �s (for general
values of � and �2) is only possible after we have observed the first stage data. This violates the principle
of ‘Temporal Coherency’ [24] that states that the prior must be specified in advance and constant in time.
Indeed, this principle is overwhelmingly adhered to by practitioners of Bayesian inference in the inter-
est of maintaining scientific objectivity. A consequence of this temporal violation, which becomes most
apparent in Section 5, is that there is no general way to simulate data consistent with the assumptions of
L�0s . To understand this, suppose we wanted to generate trial data consistent with the shrinkage estimator
L��
2

s instead. We simply start by simulating the �i s from an N.�; �2/ density given values for � and �2,
which can then be used to generate the trial data for stages one and two (X1; :::; Xk; Ys). These data can
then be used to specify the distributions O�i j�i and �i j O�i from equation (9). Clearly, we can not follow
an equivalent data-generating procedure when the �i s come from an N.�;Wi�2/ prior density because,
as previously stated, the prior can only be specified after seeing the data. The single exception is when
�2=0 (implying a degenerate normal prior) in which case the �i s all take the value � with probability 1.
This is equivalent to assuming a fixed effects model with only one unknown parameter, �.

Of course, despite these philosophical concerns, we are still free and able to evaluate L�0s in a simulation
study without exactly mimicking the data-generating process it relies upon.

5. Simulation study

We simulate trial data under a two-stage drop-the-loser design in order to quantify the bias and

MSE of four new estimators
�
O�MPLs ; L��

2

s ; L�
0
s and L�0s .LT /

	
for �s , alongside the existing estimators�

L�CBs ; O�s; Q�s
�
. We use the definition of bias and MSE from equation (3), which can be simply and accu-

rately approximated by averaging over all simulations where, in each single case, a treatment Ti out of
k is ranked top at the end of stage 1 so that �s D �i . We chose four different levels of standard error
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associated with the stage 1 and 2 estimates, along with four different scenarios for the six unknown
means:

� Scenario I. True means �N.0; 1/;
� Scenario II: True means all 0;
� Scenario III: One true meanD 1, 5 means equal to 0;
� Scenario IV: One true mean D 1.5, 5 means equal to 0.

The underlying distribution of the treatment parameters is a key factor driving the Bayesian motiva-
tion of any shrinkage estimator. Scenario I is compatible with the prior assumptions of L��

2

s and L�CBs .
Scenario II is compatible with the prior assumptions of all shrinkage estimators, despite being non-
stochastic, because it is equivalent to scenario I with �2 D 0. Carreras and Brannath’s dominance result
for L�CBs is valid for scenarios I and II . Scenarios III and IV are not compatible with any shrinkage
estimator. However, all scenarios are compatible with the assumptions of the UMVCUE, in the sense
that it maintains its unbiasedness for any constellation of parameter values.

We show the results for the 16 simulation scenarios in Table I. All reported figures are based on
50 000 simulations. For each simulation scenario, we show the bias and

p
MSE in units of the MLE

O�ss naive standard error,
p
Ws , to make comparisons easier. We do not show the bias of Q� because it is

always zero, except for sampling error. All of the shrinkage estimators generally outperform the MLE
in terms of bias and

p
MSE, the exception being simulation 15, scenario IV. Carreras and Brannath [10]

show theoretically that the MLE is maximally biased when all treatment means are equal. The results
of scenario II supports this. L�CBs and L��

2

s s performances are fairly equal. L�CBs tends to have a smaller
bias than L��

2

s but a larger
p

MSE. The performance of O�MPL
s varies considerably; it is the best estimator

Table I. Bias and mean squared error (MSE) of the various estimands over the 16 scenarios of a two-stage
drop-the-loser trial with k D 6 initial treatments.

�1; �2
Bias

�
��s
� p

MSE .��s /

values O�s L�CBs L��
2

s L�0s L�0s .LT / O�MPL
s Q�s O�s L�CBs L��

2

s L�0s L�0s .LT / O�
MPL
s

Scenario I: true means �N.0; 1/
1.(1,1) 0.63 0.19 0.22 0.11 0.11 �0.17 1.21 1.12 0.97 0.96 0.95 0.94 0.97
2.(2,1) 0.51 0.18 0.29 0.11 0.11 �0.03 1.08 1.08 0.98 0.97 0.92 0.92 0.91

3.
�
1
2 ; 1

	
0.51 0.13 0.14 0.11 0.11 �0.22 1.35 1.08 0.99 0.99 0.98 0.98 1.04

4.
�
1; 12

	
0.40 0.12 0.17 0.00 0.00 �0.14 1.07 1.05 0.99 0.98 0.98 0.98 1.01

Scenario II: true means all 0
5.(1,1) 0.89 0.35 0.45 0.35 0.36 0.16 1.27 1.23 0.92 0.87 0.79 0.79 0.65
6.(2,1) 0.57 0.22 0.39 0.22 0.23 0.12 1.09 1.10 0.97 0.95 0.83 0.83 0.78

7.
�
1
2 ; 1

	
1.14 0.45 0.48 0.45 0.47 0.17 1.64 1.35 0.86 0.84 0.81 0.82 0.58

8.
�
1; 12

	
0.57 0.22 0.39 0.23 0.23 0.12 1.08 1.09 0.96 0.94 0.83 0.83 0.77

Scenario III: one true meanD 1, 5D 0
9.(1,1) 0.78 0.25 0.32 0.21 0.22 �0.03 1.24 1.19 0.94 0.93 0.88 0.88 0.84
10.(2,1) 0.55 0.20 0.36 0.19 0.19 0.08 1.08 1.09 0.97 0.95 0.85 0.85 0.81

11.
�
1
2 ; 1

	
0.59 �0.07 �0.06 �0.10 �0.09 �0.56 1.40 1.14 1.04 1.05 1.05 1.04 1.20

12.
�
1; 12

	
0.50 0.16 0.28 0.11 0.11 �0.02 1.08 1.08 0.98 0.97 0.93 0.93 0.93

Scenario IV: one true meanD 1.5, 5D 0
13.(1,1) 0.64 0.11 0.16 0.05 0.06 �0.24 1.21 1.14 0.98 0.99 0.98 0.98 1.02
14.(2,1) 0.53 0.19 0.33 0.16 0.16 0.04 1.08 1.08 0.97 0.96 0.88 0.88 0.86

15.
�
1
2 ; 1

	
0.21 �0.40 �0.39 �0.43 �0.43 �0.94 1.17 1.04 1.16 1.17 1.19 1.18 1.49

16.
�
1; 12

	
0.40 0.07 0.16 �0.01 �0.01 �0.16 1.07 1.05 0.99 0.99 1.01 1.01 1.04
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in terms of
p

MSE in 8 out of 16 simulations but is sometimes the worst estimator by far (e.g. simula-
tions 11 and 15). Unlike the other shrinkage estimators, it is also negatively biased in general. L�0s and
L�0s .LT / perform similarly and are consistently the most reliable estimators across the 16 scenarios. It is
perhaps surprising that their similarity extends to scenarios III and IV, where one would suspect the LT
strategy would come into play. This implies that the difference between O�s and L�0s is still almost always
less than

p
Ws .

Figures 1–3 show the results of three further simulation studies. In each case, �1 D �2 D 1. Figure 1
shows the scaled bias and

p
MSE of the estimators for a trial with k D 6 treatments, 5 of which have

true mean 0 and one of which has true mean ı, as ı is varied between 0 and 5. In order to highlight
the strength of the selection effect as a function of ı, we also plot the average value of �s (labelled as
‘EŒ�s�’). One can see that the bias of the shrinkage estimators changes sign as ı increases whereas the
bias of the MLE decreases from 0.8 to 0 as ı increases. Of the shrinkage estimators, L�0s and L�0s .LT /
have the smallest bias and MSE (and are indistinguishable) for ı up to 1.8. For ı 6 2.2, the shrinkage
estimators dominate the MLE in terms of

p
MSE. O�MPL

s has the smallest bias of all for ı 6 1.5 but, by

far, has the largest (negative) bias as ı increases. O�MPL
s also has the smallest

p
MSE of all estimators for

small ı, but as ı increases, its MSE increases dramatically.

Figure 1. Bias and mean squared error (MSE) of the estimators as a function of ı. Key: maximum likelihood
estimate (black), UMVCUE (red), L�CBs (red-dashed), L��

2

s (blue-dashed), L�0s (green dashed), L�0s .LT / (green
dot-dashed) and O�MPL

s (orange dot-dashed).

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 388–400
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Figure 2 shows the results of a simulation for k D 6 treatments with mean parameters drawn from a
N.0; �2/ distribution as �2 is varied between 0 and 4 (the choice of � D 0 is clearly unimportant). The
bias of all shrinkage estimators decreases towards 0 as �2 increases, although this happens most rapidly
for L�0s and L�0s .LT / so that they are the least biased. For values of �2 greater than 1, O�MPL

s is consistently
negatively biased. The

p
MSE of the shrinkage estimators appears to asymptote upwards towards

p
Ws

(towards 1 after scaling) as �2 increases, but remain below that of the MLE in this range.
In an effort to separate L�0s and L�0s .LT /, Figure 3 shows the results of a simulation assuming that the

treatment mean parameters are drawn from a N.0; 1/ distribution, but the number of treatments, k, is
varied between 5 and 20. As k increases, the positive bias exhibited by L�0s decreases, quickly becoming
large and negative. L�CBs and L��

2

s do not to suffer in the same way; their biases asymptote towards 0 as k
increases. L�0s .LT / appears to protect L�0s well from its tendency for negative bias beyond k D 10. From
the right-hand panel, one can see that the price L�0s .LT / pays for this bias protection is an increase in
p

MSE. Interestingly, as k increases beyond 15, even the UMVCUE has a smaller
p

MSE than the MLE.

5.1. Summary of findings

Across all simulations, the performance of L��
2

s is most similar to Carreras and Brannath’s original
estimator L�CBs , but the two estimators that performed the best were L�0s and O�MPLs . However, the rea-
sons for the latter’s apparent success are now qualified. Estimation of the heterogeneity parameter �2 is

Figure 2. Bias and mean squared error (MSE) of the estimators as a function of �2. Key: Same as Figure 1.

396

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 388–400



J. BOWDEN, W. BRANNATH AND E. GLIMM

Figure 3. Bias and mean squared error (MSE) of the estimators as a function of k. Key: Same as Figure 1.

challenging when its true value is small or the number of treatments is small. When k is small or there
is little apparent variation between treatment effect estimates . O�1; :::; O�k/, the estimate for �2 is often
likely to be at or close to zero, even when its true value is larger. This fact is well documented in the
meta-analysis literature, where quantification of the (between trial) heterogeneity parameter is often not
recommended unless the number of studies is sufficiently large (at least 10). Although poor estimation of
�2 impacts L��

2

s and O�MPLs , the latter is most strongly affected because from equation (10) when �2 D 0,
it reduces via equation (11) to the fixed effects estimate for �, O�.0/. However, when the Paule–Mandel
estimate for �2 is zero, L��

2

s does not shrink to exactly O�.0/ because OCs in equation (14) is not equal

to 0. This explains why O�MPL
s performs so well in Scenario II, Table I, and for small values of ı; �2; k in

Figures 1–3 because in these situations, the true value of �s is always close (or equal) to �. Conversely,
it also explains why it performs badly when �s is truly very different from � (e.g. Scenario IV, Table I,
and large values of ı; �2; k in Figures 1–3).

The LT version of L�0s only helped to improve its performance in simulations when the number of treat-
ments rose above 10, which is unrealistically large for most clinical trials settings. It therefore appears
to be an unnecessary extension in this context. However, it could potentially be implemented in a more
sophisticated manner than we have here. For example, the width of the protection region around the
MLE can be tuned to control its bias and MSE, rather than being fixed at a specific value as we did.
Efron and Morris [22] provide the theoretical framework for doing this in a general shrinkage estimation
context, but their method would need to be altered before application to drop-the-loser designs, in order
to account for the selection mechanism. This is a topic for further research. One could also argue that by
shrinking the prior variance for �s after selection, L�0s already contains and in-built form of LT.

© 2013 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 388–400
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6. Discussion

In this paper, we have reviewed the shrinkage estimation strategy of Carreras and Brannath [10] for
two-stage drop-the-loser designs. As an extension, we propose that rather than using only the first stage
data, the stage two data should also be used to furnish a single shrinkage equation. Although this strat-
egy replaces two formulae with one, evaluation of this single shrinkage formula is much harder because
the variance of its k estimated components are no longer equal. By incorporating the methods of Carter
and Rolph [16] and Efron and Morris [22], we identified several alternative procedures. The alternative
approaches necessitate either explicit estimation of an additional between treatment arm heterogene-
ity parameter �2 (for O�MPLs and L��

2

s ) or a different (and quite unnatural) prior distribution for the
mean treatment effects (for L�0s /. The new methods tend to outperform Carreras and Brannath’s original
estimator, but unfortunately, no equivalent dominance results could be shown.

From looking at the simulations in totality, the estimator that consistently performs well when �s is
close to and far from the overall mean of all treatments is L�0s . Some may object philosophically to its
use in this context because of concerns over Temporal Coherency. However, as Cox [25] states: There
may be certain situations where it is perfectly right to modify one’s prior beliefs as more data become
available. Furthermore, when one’s prior uncertainty about a parameter is allowed to change over time in
a manner proportional to the (increasing) size of the data sample, then the resulting Bayesian inference
starts to approximate a classical significance test [26]. This is exactly what occurs in the drop-the-loser
context when, at the point of selection, the variance of the prior for �s shrinks from �21 �

2 to Ws�2 – for
example, by a factor of 2 when �21 D �22 . It is therefore pertinent to note that the formula for L�0s can
also be arrived at by applying Lindley’s original equal variance shrinkage formula (5) to the standardised
MLEs, O�i=

p
Wi , [16] because they are sufficient test statistics for the null hypothesis �D 0.

We chose to illustrate the different estimation approaches for trials involving five or more treatments.
Apart from O�MPLs , all of the shrinkage estimators discussed in this paper are only defined for k > 4, as
indicated by the factors of .k � 3/ they contain. However, we can crudely apply them for the k D 3 case
by simply replacing these terms with (k � 2) instead – as performed by Carreras and Brannath [10]. We
repeated the simulations shown in Figures (1) and (2) for k D 3 using this crude fix to see how it affected
the performance of the various estimators. The results (not shown) were qualitatively very similar.

Throughout this paper, we have attempted to stress the link between shrinkage estimation in the
adaptive trial context with that of meta-analysis. We have shown that L�0s , which incorporates the fixed
effects estimate O�.0/, works well as an estimator for �s under drop-the-losers selection. It is therefore
interesting to note the following: In meta-analyses that exhibit substantial amounts of between study
heterogeneity, the random effects estimate for � is known to be unreliable when the heterogeneity is
thought to be driven by dissemination bias (i.e. selective reporting and publication of extreme findings)
[18, 27]. In order to address this, it has been advocated that the fixed effects estimate O�.0/ be used as
the preferred measure of overall effect instead [28, 29]. Thus, despite the fact that in the adaptive trial
setting, the parameter of interest is O�s and in meta-analysis, it is the overall grand mean �, when the
data are affected by some form of selection, Carter and Rolph’s proportional prior approach appears to
be an effective solution to both problems.

Bowden and Glimm [30] have extended the idea of a two-stage drop-loser-trial to allow the best
performing treatment to be identified over multiple stages. The motivation for adding further stages of
selection is that one can markedly increase the probability of selecting the truly best treatment (and
subsequently declaring it effective in a confirmatory analysis), whilst keeping trial costs to a minimum.
Many other multi-arm multi-stage (MAMS) designs incorporating treatment selection rules have also
been proposed with a similar motivation in mind, see for example [31, 32]. Because they ignore the
selection process altogether and use all of the data to define a target posterior distribution or shrinkage
equation, O�MPL

s , L��
2

s and L�0s should be simple to apply in any of these contexts. It is not so obvious to
see how Carreras and Brannath’s original estimator, L�CBs , would generalise to the multi-stage context or
if the dominance results that make it attractive in the two-stage case would remain in intact.

A simple, straightforward translation of the shrinkage estimators proposed here to other multi-arm
trial designs is only immediate if the k treatment effect estimates are independent before selection. If,
as in the MAMS design of Royston et al. [33], the treatment effect summarised time-to-event data in
the form of a log-hazard ratio, then the effect estimates would be intrinsically correlated across treat-
ment arms because of their shared control group data. Extending shrinkage estimation to account for
inter-dependence of this sort is another topic for further research.
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Appendix A: Details for the calculation of O�MPL
s

Assume without loss of generality that s D 1, so that �1 is the mean of the best performing treatment.
Let Z D .X1; Y1; X2; :::; Xk; / equal the complete vector of data from the two-stage trial. Under the
framework of equation (9), the model induces the unconditional distribution Z � N(�1kC1,†), where

† D

�
†2 0
0

�
�21 C �

2
�

Ik�1

�
; †2 D

�
�21 C �

2 �2

�2 �22 C �
2

�

Assuming that � and �2 are known, then the best linear prediction of �1j� is given in equation (10),
which is equivalent to

�21�
2
1�C �

2
2 �
2X1C �

2
1 �
2Y1

�21�
2
2 C �

2
1 �
2C �22 �

2

The empirical question is how to estimate � and �2 as accurately as possible. If we were to assume
that �2 is known, then † becomes a completely known matrix. Then, it is easily seen from differen-
tiating a

0

†a C �a
0

1kC1 with respect to a and � that the linear combination a
0

Z , which minimises
Var(a

0

Z /D a
0

†a, is given by

aD
†�11kC1

1
0

kC1
†�11kC1

As this also maximises the multivariate normal likelihood, a
0

Z is also equivalent to the MLE for �.
Because † is diagonal, its inverse is trivially

†�1 D

�
†�12 0

0
�
�21 C �

2
��1

Ik�1

�

with

†�12 D
1

�21�
2
2 C �

2
1 �
2C �22 �

2

�
�22 C �

2 ��2

��2 �21 C �
2

�

Hence, we obtain the estimate for O��2 given in equation (11). We then plug O��2 into the log-likelihood
for �2 given �:

l l.�2/D�
1

2

�
logDet.†/C .Z� O��2/

0

†�1.Z� O��2/C .Z� O��2/
	

D
1

2

�
.k � 1/ log

�
�21 C �

2
�
C log

�
�21�

2
2 C �

2
1 �
2C �22 �

2
�

C.Z� O��2/
0

†�1.Z� O��2/C .Z� O��2/
	

and maximise to obtain an estimate for �2
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