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Programmed −1 ribosomal frameshifting (−1 PRF) is one viral translation strategy to express overlapping
genes in positive-strand RNA viruses. Red clover necrotic mosaic virus (RCNMV) uses this strategy to express its
replicase component protein p88. In this study, we used a cell-free translation system to map cis-acting RNA
elements required for −1 PRF. Our results show that a small stem-loop structure adjacent to the cap-
independent translation element in the 3′ untranslated region (UTR) of RCNMV RNA1 is required for−1 PRF.
Site-directed mutagenesis experiments suggested that this stem-loop regulates−1 PRF via base-pairing with
complementary sequences in a bulged stem-loop adjacent to the shifty site. The existence of RNA elements
responsible for−1 PRF and the cap-independent translation of replicase proteins in the 3′UTR of RNA1might
be important for switching translation to replication and for regulating the ratio of p88 to p27.
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Introduction

The genomic RNAs of positive-strand RNA viruses are often
polycistronic. Therefore, these viruses must have some strategies to
translate the downstream open reading frame (ORF). The production
of subgenomic RNAs (sgRNAs) is one of these strategies and is used by
many viruses (Miller and Koev, 2000). Another strategy is a
translational read-through mechanism, in which a stop codon is
skipped in-frame by a suppressor tRNA that can recognize the stop
codon, and translation continues to produce a C-terminally extended
protein (Lobanov et al., 2010).

Programmed −1 ribosomal frameshifting (−1 PRF) is a strategy
to express a downstream ORF. In response to certain signals encoded
in mRNA, a small percentage of ribosomes are induced to move back
by one nucleotide and to continue translation in the new (−1) frame
(Brierley, 1995; Giedroc and Cornish, 2009). As a result, a stop codon
in the first ORF is skipped, and a C-terminally extended protein is
produced at a certain ratio. This mechanism is used by many viruses,
including those in Retroviridae, Nidovirales, astroviruses, Totiviridae,
and Luteoviridae, to produce viral replicase protein (Brierley, 1995).
Typically, −1 PRF requires two cis-acting RNA elements. The first
element is a heptanucleotide sequence where the reading frame
shifts. This sequence usually fits the consensus X XxY YYZ (the zero
frame is indicated by a space; X is any identical base, Y is A or U, Z is
not G, and lowercase indicates a consensus with some exceptions)
(Dreher and Miller, 2006; Jacks et al., 1988). A second element is an
RNA secondary structure immediately downstream from the shifty
site (Brierley et al., 1989; Brierley and Pennell, 2001). This RNA
structure is regarded as a physical barrier to stop translating ri-
bosomes and to shift the reading frame (Namy et al., 2006). A
pseudoknot or a very stable RNA structure is usually proposed for the
second element (Giedroc and Cornish, 2009). In addition to these RNA
elements, Barley yellow dwarf virus (BYDV) requires a third RNA
element that is located in the 3′ untranslated region (UTR) (Paul et al.,
2001). This far-downstream element is thought to base-pair with a
bulge-loop in a stem-loop adjacent to the shifty site, where it
facilitates frameshifting (Barry and Miller, 2002).

Red clover necrotic mosaic virus (RCNMV) is a member of the genus
Dianthovirus in the family Tombusviridae. Its genome comprises two
positive-sense single-stranded RNA molecules, RNA1 and RNA2. Both
genomic RNAs lack a cap structure at the 5′ end (Mizumoto et al.,
2003), and a poly(A) tail at the 3′ end (Lommel et al., 1988; Mizumoto

http://dx.doi.org/10.1016/j.virol.2011.05.012
mailto:okuno@kais.kyoto-u.ac.jp
http://dx.doi.org/10.1016/j.virol.2011.05.012
http://www.sciencedirect.com/science/journal/00426822


170 Y. Tajima et al. / Virology 417 (2011) 169–178
et al., 2002; Xiong and Lommel, 1989). Instead, RNA1 contains an
essential RNA element (3′TE-DR1) that is required for cap-independent
translation (Mizumoto et al., 2003). RNA1 encodes replicase component
protein p27 and its N-terminally coincident but C-terminally distinct
protein p88 (Xiong and Lommel, 1989). Both p27 and p88 are required
for RNA replication and are contained in RCNMV RNA replicase
complexes (Bates et al., 1995; Mine et al., 2010a, b). RNA1 also encodes
a coat protein that is expressed from sgRNA (Xiong et al., 1993a; Zavriev
et al., 1996). RNA2encodes a cell-to-cellmovementprotein (Xionget al.,
1993a).

p27 is an auxiliary replicase protein that plays essential roles in
multiple steps in RCNMV RNA replication: specific recognition of viral
RNA and recruitment of viral RNAs to the endoplasmic reticulum
membrane, the site of RNA replication (Hyodo et al., 2011; Mine et al.,
2010b). p88 has an RNA-dependent RNA polymerase motif (Koonin,
1991) and is required in cis for the replication of RNA1 in a
translation-coupled manner (Iwakawa et al., 2011; Okamoto et al.,
2008). p88 is translated via a−1 PRF event, which occurs in less than
10% of translations from RNA1 in plant and rabbit reticulocyte lysate
(Kim and Lommel, 1994, 1998; Xiong et al., 1993b). Several previous
works identified two cis-acting RNA elements that are necessary and
sufficient for −1 PRF in RCNMV RNA1. One element is the
heptanucleotide sequence G GAU UUU, where frameshifting takes
place (Kim and Lommel, 1994; Xiong et al., 1993b). The other element
is a bulged stem-loop structure predicted to be adjacent to the shifty
site (Kim and Lommel, 1998). In addition to these elements, our
previous study suggested that the third cis-acting RNA element
required for −1 PRF could exist in the 3′ UTR of RCNMV RNA1
(Iwakawa et al., 2007).

In this study, using a cell-free extract in vitro assay system prepared
from evacuolated tobacco BY-2 protoplast lysate (BYL; Komoda et al.,
2004), we mapped the third cis-acting RNA element required for
efficient −1 PRF. Our results show that a small stable stem-loop
structure adjacent to 3′TE-DR1 in the 3′ UTR of RNA1 is required for
efficient−1 PRF and that this stem-loop structure promotes−1 PRF via
base-pairing with a bulge of the stem-loop structure adjacent to the
shifty site.

Results

Mapping of the regions required for −1 PRF in the 3′ UTR of RCNMV
RNA1

Our previous study showed that several capped RNA1 mutants
with deletions in the 3′ UTR supported the accumulation of negative-
strand RNA2 less efficiently than did the wild-type (wt) RNA1 in BYL,
although these RNA1 mutants produced p27 to similar or even higher
levels than did wt RNA1 (Iwakawa et al., 2007). This result suggests
that the deleted regions are involved in the production of p88, which
is translated via −1 PRF. To investigate whether the 3′ UTR of RNA1
has the cis-acting RNA element(s) required for −1 PRF and the
production of p88, we tested RNA1 mutants with a series of deletions
in their 3′ UTR (Figs. 1A and B, Iwakawa et al., 2007) for their ability to
produce p88 in BYL.We used capped viral RNA transcripts because the
3′ UTR of RNA1 contains RNA elements essential for cap-independent
translation of both p88 and p27 (Iwakawa et al., 2007; Mizumoto
et al., 2003). Capped RNA1mutants were incubated in BYL at 17 °C for
4 h, and the accumulated levels of p27 and p88 were analyzed by
western blotting using an anti-p27 antiserum. For this assay, we
used the membrane fraction of BYL obtained after centrifugation at
20,000×g for 10 min because the level of p88 accumulated in BYL was
below the detectable threshold (data not shown). An RNA1 mutant
(R1-SM) that has mutations in the heptanucleotide shifty site was
used as a negative control. d3′SLB, d3′SLC, and d3′SLDE-5′ accumu-
lated lower levels of p88 than those accumulated inwt RNA1, whereas
all the RNA1s tested accumulated p27 to similar levels (Fig. 1C, lanes
3–5). d3′SLF that lacks the 3′ terminal SL required for negative-strand
synthesis (Iwakawa et al., 2007) accumulated p88 as efficiently as wt
RNA1 (Fig. 1C, lane 7), suggesting that RNA replication, including
negative-strand RNA synthesis and accumulations of dsRNAs, has no
or little effects on the production of p88 via −1 PRF in BYL. These
results suggest that the regions, including SLB, SLC, and SLDE, contain
cis-acting RNA elements required for −1 PRF. To delimit the regions
required for −1 PRF, we constructed RNA1 mutants with a series of
deletions in the regions (Figs. 1A and D) and tested them as described
above. Western blot analysis showed that the accumulated levels of
p88 were much lower in RNA1 mutants with deletions in the stem of
SLC than in wt RNA1 and in other RNA1 mutants despite their ability
to accumulate p27 to a level similar to that in wt RNA1 (Fig. 1E, lanes 4
and 6). Deletions in SLB and SLDE affected the accumulation of p88
mildly (Fig. 1E, lanes 2, 3, 7, and 8). Interestingly, deletion of 3′TE-
DR1c did not affect the accumulation of p88 (Fig. 1E, lane 5). This
result suggests that the region of SLC, except for 3′TE-DR1c, is
involved in efficient −1 PRF.

To delineate the regions required for −1 PRF more precisely, we
tested RNA1 mutants with smaller deletions in SLC (Figs. 2A and B).
Deletions of two-thirds of the 5′ stem of SLC and half of the 3′ stem of
SLC severely decreased the accumulated levels of p88 without
affecting the accumulation of p27 (Fig. 2C, lanes 2, 3, and 7). These
results suggest that the nucleotide sequences and/or RNA structures
in the basal region of SLC are important for −1 PRF.
A small stem-loop in SLC is required for −1 PRF

To identify the cis-acting RNA elements required for −1 PRF in
SLC, we analyzed the RNA secondary structures predicted in this
limited region using the Mfold program (version 3.4; Zuker, 2003). A
basal stem of SLC and a small stem-loop structure (named here
SLCsSL) are predicted here (Fig. 3A). In particular, SLCsSL is expected
to be a stable structure (ΔG=−15.52 kcal/mol at 17 °C), and we
focused on SLCsSL.

To investigate the role of SLCsSL in −1 PRF, we tested RNA1
mutantswith nucleotides substituted in the loop or the stem of SLCsSL
using the method described above. Disruption of the stem of SLCsSL
reduced the accumulation of p88 markedly, and restoration of the
stem structure by compensatory mutations restored the ability to
accumulate p88 (Fig. 3B, lanes 2–4). 3′SLCsSL-mLoop, which has
nucleotide substitutions in the loop of SLCsSL, accumulated p88 at
very low levels (Fig. 3B, lane 5). Nucleotide changes in the basal short
stem of SLC that disrupt and restore the stem structure did not affect
the accumulated levels of p88 (Fig. 3B, lanes 6–8). All the RNA1
mutants used here accumulated p27 to levels similar to that of wt
RNA1 (Fig. 3B). These results strongly suggest that both the stem
structure and the loop sequence of SLCsSL are required for −1 PRF in
BYL.

To investigate the roles of SLCsSL in RCNMV replication in vivo, we
performed protoplast experiments. BY-2 protoplasts were inoculated
with uncapped transcripts of RNA1 mutants with mutations in SLCsSL
used in BYL experiments (Fig. 3A) together with RNA2, and RCNMV
replication was assessed by analyzing the accumulation of viral RNAs
and p27 by northern andwestern blot analyses using appropriate RNA
probes and an anti-p27 antiserum. RNA1 mutants with the
stem structure of SLCsSL disrupted, or the mutant with nucleotides
substituted in its loop did not replicate efficiently and failed to support
the efficient replication of RNA2, whereas the mutant with the stem
structure of SLCsSL restored replicated and supported the replication
of RNA2 as efficiently as wt RNA1 (Fig. 3D, lanes 2–5). All these
uncapped transcripts accumulated p27 to similar levels in BYL (data
not shown). Together with the results in BYL, these results suggest
that both the stem structure and the loop sequence of SLCsSL are
required for −1 PRF in RCNMV RNA1.



A

C

U

U
U

U
U

U

U

AA
A

A
A
A
A
A
A

A

AAAA

A 

C
C

CCC
C
C

C 

C

U

A

A

C
G

G

G
G

G
G

G

G

G

U

U

A
C

C

GUAA   UUGG

U
U

U

A

A

A
A

A
A

C
C
CC

C

C

C

U
U
U
U

U
U

C

U

U
A
G
C

G

G

G

G

G

A

A
A
C

G
G
G
G

G

A

U

GG

AA
A
AA

A
A

A

A

A
A

A

A

AA

U
U

U

U

U

U

U
U

U

UUUUUUUUU

C

C

C
C

C
C

C

C

C

C
C

C

C

G
G
G

G

G
G
G

G

G
G

G
GGG

U

U
U

U

UU

U

U

U

C

C
C

C

C

C

C

C

C
C

CC

C

C
C

C

C

C
C

C

C

C

G
G

G
G
G

G

G
G
G

G
GGG

G

G
G

G

G

G
G

G

G
G

G

G

G
G

G
G

G

A
A

A
A

A

A

A
AA
A

A

A

A
A
A

A
AA

A
A

A

AAA
A

A

A

A

A

A

A

UUUU

UU

U

U

U

U

U

U
U

U

U
U

U
U

U

AA

A

A

A

CC C

C

C

C

C

CCCC

C
C
C
C

C
C

G

G

G

GG
G

G
G
G

G
G

G

G

G
G

G

A

AA

A

A

A

A

A

A

A
A

U
U

UU

U

U
U

UU

U

U
U

U

U
U

U

U

U

C

CC

C

C

C

C
C

C
C

C

C
C

C
G

G

G G

G

GG

G
G

G

G

G
G
G

G

-
-
-
-
-

-
-
-
-

-
-
-
-
-

-
-
-
-
--

-
-
-
-

-
-
-

-
-

-
-
-
-
-
-

-
-
-

-
-
-
-
-
-

-
-
-
-

-
-
-

-
-
-
-
-
-

-
-
-

-
-
-
-
-

-
-
-
-

-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-

-
-
-

-
-
-

-
-
-
-
-
-

-
-
-
-
-
-
-
-

-
-
-
-
-
-

-
-

A G

SLA SLB SLC
U

3444

U

U

U

U

U

U

U CCCC

C

C

C

C
C

G
G

G
G

G

G
A

AA
A

A

A
A

-

-
-
-
-
-
-
-
-
-

SLF

3890

U

U

U

AA

A

A
A

A

A

A
C

C

C

G

G

G

G

G

GUUAAUAAAACAGGAGAAUAUU

-

-
-
-
-

SLDE

CC

SLDa
SLDb

SLDc

3' TE-DR1

3' TE-DR1c

C

3494 3547

3520

3756

3857

3607
3720

3794
3832

p27

p88
CP

3′ UTR

RNA1

5′ 3′

B

SLFSLDESLDa-c3' TE-DR1cSLBSLA
38903444

d3'SLA

d3'SLB

d3'SLC

d3'SLDE-5'

d3'SLDE-3'

d3'SLF

SLC

3547 3607 3720 37563494 3832 3857

C

p88

p27

w
t R

N
A1

d3
′S

LA

d3
′S

LB

d3
′S

LC

d3
′S

LD
E-

5'
d3

′S
LD

E-
3'

d3
′S

LF

M
oc

k

R
1-

SM

CBB

Ratio of p88 
to p27(%) 100

33.3
± 13.3

55.1
± 8.1

83.9
± 2.3 

87.9
± 7.2 0

0
± 1.5

D

SLDESLDb

SLDc

3' TE-DR1c
SLB

3839
3520

SLDa

d3'SLB-5′

d3'SLB-3′

d3'SLC-5′

d3'SLC-3′

d3′ TE

d3'SLD-5′

d3'SLD-3′

SLC

6573027370637453

3494

3794 3832

E

w
t R

N
A1

d3
′S

LB
-3

′

d3
′S

LB
-5

′

d3
′S

LD
-5

′

d3
′S

LC
-5

′

d3
′S

LC
-3

′

d3
′S

LD
-3

′

d3
′ T

E

M
oc

k

p88

p27

R
1-

SM

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9

CBB

0001

93.5
± 13.4

34.9
± 8.1

102.5
± 19.6

72.3
± 15.5

33.3
± 5.0

56.0
± 8.9

19.2
± 1.7

51.2
± 3.4

58.1
± 8.8

10.6
± 4.1

Ratio of p88 
to p27(%)

Fig. 1. Identification of the regions required for−1 PRF in RCNMV RNA1. (A) Schematic diagram of RCNMV RNA1 and the secondary structure predicted in the 3′UTR (Iwakawa et al.,
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We next compared the nucleotide sequence and the secondary
structure of the SLCsSL among dianthoviruses. The nucleotide
sequences in the region were highly conserved in RCNMV Canadian
strain and Sweet clover necrotic mosaic virus, but were less conserved
in Carnation ringspot virus (CRSV) (Fig. 3C). However, the RNA
secondary structures predicted there by the Mfold program were
highly conserved among all dianthoviruses (Fig. 3C). These findings
support the idea that the RNA secondary structure of SLCsSL, rather
than its nucleotide sequences, is important for −1 PRF.

In addition, to verify the computer-predicted structure of SLCsSL, we
performed enzymatic probing in solution. In this assay, in vitro tran-
scribed full-length wt RNA1 was used as a template for the reactions.
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The signals of RNase V1, which preferentially digests double-stranded
regions, were found in the predicted stem of SLCsSL, and those of RNase
A, which preferentially cleaves phosphodiester bonds after the 3′
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phosphates of unpaired cytosine and uracil, were found in the predicted
loop of SLCsSL (Figs. 4A and B). These results support the predicted
structures of SLCsSL.
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A long-distance RNA–RNA interaction between SLCsSL and a bulged
stem-loop adjacent to the slippage site is required for −1 PRF in RCNMV
RNA1

Wenext investigated how SLCsSL, which is locatedmore than 2.5 kb
from the shifty site, participates in −1 PRF. We hypothesized that
SLCsSL stimulates −1 PRF via an interaction with the upstream signal.
To address this issue, we examined the nucleotide sequences of the
upstream cis-acting RNA element that is complementary to the loop
sequence of SLCsSL. Five bases 897-GGGUA-901 in the bulge of the
stem-loop adjacent to the shifty site (named here 5′BulgeSL) can po-
tentially base-pair to five bases 3562-UACCC-3566 in the loop sequence
of SLCsSL (Fig. 5A). These long-distance base-pairings are possible in
all dianthoviruses, although the sequences in the 5′BulgeSL (831-
AAGGUA-836) and the SLCsSL (3507-UACCUU-3512) of CRSV slightly
differ from those of other dianthoviruses (Fig. 5A, data not shown).
Interestingly, as shown in Fig. 5A, the RNA secondary structures of both
5′BulgeSL and SLCsSL are quite similar to those of a bulged stem-loop
adjacent to the shifty site and a stem-loop predicted in the 3′ UTR of
BYDV genomic RNA (Barry and Miller, 2002). Moreover, in BYDV, the
long-distance base-pairing between them is required for efficient −1
PRF (Barry and Miller, 2002).

To test if the possible long-distance RNA–RNA interaction is
required for −1 PRF, we constructed RNA1 mutants with mutations
that disrupt and restore the potential base-pairings. These RNA1
mutants were analyzed in both BYL and BY-2 protoplasts as described
above. 5′BulgeSL-m1 and 5′BulgeSL-m2 have mutations in the bulge
of 5′BulgeSL, 3′SLCsSL-mLoop and 3′SLCsSL-mLoop2 have mutations
in the loop sequence of SLCsSL, and Restore-1 and Restore-2 have
mutations in both the 5′ bulge and the 3′ loop, which restore the
potential base-pairings between them (Fig. 5B). 5′BulgeSL-m1 has the
mutation in the central two bases that alters the amino acid sequence
of p88, arginine to serine and valine to leucine at positions 259 and
260, respectively, but the mutation in 5′BulgeSL-m2 does not alter it.
All the RNA1 mutants with mutations that disrupt the 5′–3′ long-
distance RNA–RNA interaction accumulated much less p88 in BYL
(Fig. 5C, lanes 2, 3, 5, and 6) and failed to support the efficient
accumulation of viral genomic RNAs in BY-2 protoplasts (Fig. 5D, lanes
2, 3, 5, and 6). By contrast, RNA1 mutants with mutations that
restored the 5′–3′ long-distance RNA–RNA interaction accumulated
p88 as efficiently as did wt RNA1 in BYL (Fig. 5C, lanes 4 and 7) and
supported the accumulation of viral genomic RNAs in BY-2 pro-
toplasts (Fig. 5D, lanes 4 and 7). It should be noted that, although the C
to U mutation in 3′SLCsSL-mLoop2 still allows non-Watoson–Crick
base-pairing (G–U), this mutation greatly reduced the accumulated
level of p88 (Fig. 5C, lane 6). These results suggest that the stable long-
distance RNA–RNA base-pairing between 5′BulgeSL and SLCsSL is
required for efficient −1 PRF in RCNMV RNA1.

Discussion

In this paper, we show that a cis-acting RNA element in the 3′UTR of
RCNMV RNA1 facilitates −1 PRF through base-pairing with a bulge
sequence in the stem-loop structure (5′BulgeSL) predicted to be just
downstream of the shifty site. Two cis-acting RNA elements, a
heptanucleotide sequence and 5′BulgeSL, are required for −1 PRF in
RCNMVRNA1 (Kimand Lommel, 1994, 1998; Xiong et al., 1993b). In the
predicted structure of 5′BulgeSL (Fig. 5A; Kim and Lommel, 1998), the
five-nucleotide sequence (897-GGGUA-901) involved in the long-
distance interaction can potentially base-pair to five bases 869-
UAUCC-873 in the large loop sequence of the 5′BulgeSL and could
formanapical loop-internal loop interaction (Mazauric et al., 2008). The
putative pseudoknot played no role in−1 PRF in an assay using rabbit
reticulocyte lysate and in infectivity assays usingNicotiana benthamiana
(Kim and Lommel, 1998), supporting the role of the five-nucleotide
sequence in the bulge in a long-distance interaction. However, nu-
cleotide substitutions in the bulge sequences in 5′BulgeSL caused no
deleterious effects on the accumulation of p88 in rabbit reticulocyte
lysate or on the infectivity in N. benthamiana (Kim and Lommel, 1998).
These results contrast with our data showing that nucleotide sub-
stitutions in the same bulge sequences almost abolished the ability of
RNA1 to accumulate p88 in BYL and to replicate and support RNA2
replication in BY-2 protoplasts (Figs. 5C and D). Such differences might
arise from different assay systems and host plants. The requirement of
RNA elements in the 3′TE-DR1-mediated cap-independent translation
of RCNMV RNA1 differs between host plants (Sarawaneeyaruk et al.,
2009). Alternatively, the six nucleotides changed in the previous
research might produce other long-distance interactions to promote
−1 PRF.

Roles of a long-distance RNA–RNA interaction in −1 PRF in the
production of p88

Long-distance RNA–RNA interactions regulate various steps in the
viral life cycle. For example, BYDV and Tomato bushy stunt virus
(TBSV) require RNA–RNA base-pairings between the 5′UTR and the 3′
UTR to initiate translation (Fabian and White, 2004; Guo et al., 2001;
Nicholson et al., 2010; Treder et al., 2008). Bacteriophage Qβ and TBSV
require a long-distance RNA–RNA interaction for RNA replication
(Klovins et al., 1998; Panavas and Nagy, 2005). Viruses such as Potato
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virus X, Flock house virus, and Coronavirus require long-distance base-
pairings for sgRNA transcription (Kim and Hemenway, 1999;
Lindenbach et al., 2002; Moreno et al., 2008). In the case of RCNMV,
an intermolecular RNA–RNA interaction plays an essential role in
sgRNA transcription (Sit et al., 1998). In addition to these roles, a long-
distance RNA–RNA interaction is required for −1 PRF in BYDV (Barry
and Miller, 2002; Paul et al., 2001) and in RCNMV (Fig. 5). In many
viruses, RNA pseudoknot structures predicted to be adjacent to the
heptanucleotide shifty site alone seem sufficient for −1 PRF (Giedroc
and Cornish, 2009). Such RNA pseudoknot structures are regarded as a
physical barrier to stop translating ribosomes and facilitate −1 PRF
(Namy et al., 2006). It is unclear why the downstream complex stem-
loop structure (5′BulgeSL) alone is not enough to facilitate −1 PRF in
RCNMV RNA1 or in BYDV. Because the potential base-pairing between
the bulge sequence and the large loop sequence within the 5′BulgeSL,
which could form an atypical pseudoknot, has no role in −1 PRF in



175Y. Tajima et al. / Virology 417 (2011) 169–178
RCNMV RNA1 (Kim and Lommel, 1998), 5′BulgeSL might not be
strong enough to stall the translating ribosomes efficiently. Kissing
RNA–RNA interactions between two stem-loops are more stable than
a simple RNA helix of the same sequence (Weixlbaumer et al., 2004).
Taking this into account, the long-distance base-pairings between the
stem-loop in the 3′ UTR and the 5′BulgeSL seem to be required to
stabilize the 5′BulgeSL to allow for the stalling of the elongating
ribosomes over the shifty site to promote −1 PRF in RCNMV RNA1.
Switching from translation to replication

The existence of RNA elements responsible for −1 PRF and the
cap-independent translation of replicase proteins in the 3′ UTR of
RNA1 (Mizumoto et al., 2003; this paper) might be important for
switching translation to replication. A model for the switch from
translation to replication has been reported in BYDV, in that the
passage of RNA replicase on the 3′ UTR of the viral genome disrupts
the structures of the 3′ RNA elements, which are needed for two sets
of the long-distance base-pairing required for cap-independent
translation and −1 PRF (Barry and Miller, 2002). However, a long-
distance RNA–RNA base-pairing between the 5′ and 3′ UTRs seems
not to be essential for 3′TE-DR1-mediated cap-independent transla-
tion in RCNMV RNA1 (Sarawaneeyaruk et al., 2009).

RCNMV RNA1 requires p88 in cis for its replication (Iwakawa et al.,
2011; Okamoto et al., 2008). This suggests that only RNA1 molecule,
in which −1 PRF occurs, can be a template for RNA replication. p88
binds to RNA1 and its 3′ UTR fragment (named SR1f) (Iwakawa et al.,
2008) through a puromycin-insensitive translation-coupled mecha-
nism (Iwakawa et al., 2011). The p88 bound in the 3′ UTR might
become a core for assembling the 480-kDa RNA replicase complexes
with p27 and host proteins to initiate negative-strand RNA synthesis
(Mine et al., 2010a, b). The p88 binding or the formation of the 480-
kDa RNA replicase complexes in the 3′ UTR of RNA1 might disrupt the
structures of the 3′ RNA elements required for 3′TE-DR1-mediated
cap-independent translation and −1 PRF. Structural rearrangement
of RNA elements is reported in Turnip crinkle virus, in that the binding
of RNA-dependent RNA-polymerase to the 3′ UTR of the viral genomic
RNA induces a conformational shift of the RNA element required for
efficient ribosome binding, causing a transient switch from translation
to replication (Yuan et al., 2009).

In contrast to p88, p27 binds to RCNMVRNA1 through a puromycin-
sensitive translation-coupledmechanism, and it does not bind to the 3′
UTR fragment SR1f (Iwakawa et al., 2011). These previous results
suggest that p27 is associated mainly with translating RNA1 with
polyribosomes because puromycin, a peptidyl acceptor antibiotic,
causes polypeptide chain termination and induces the dissociation of
polyribosomes frommRNA (Blobel and Sabatini, 1971; Lehninger et al.,
1993), and suggest that p27 does not bind to the 3′ UTR of RNA1. The
lack of the association between p27 and the 3′UTR of RNA1might allow
translating RNA1 to continue to be a template for further translation for
p27 until −1 PRF occurs by an unknown mechanism(s) that regulates
the frequency of −1 PRF. Thus, the existence of RNA elements
responsible for −1 PRF in the translation of p88 in the 3′ UTR of RNA1
and the distinct binding properties between p27 and p88 might be
important for regulating the ratio of p88 and p27.

In summary, we present a model for regulation of translation and
replication in RCNMVRNA1 (Fig. 6). In thismodel, p27 interacts with its
template RNA1 except for the 3′ UTR. The production of sufficient
amounts of p27 allows 5′BulgeSL to access SLCsSL by an unknown
mechanism. The formation of base-pairings between 5′BulgeSL and
SLCsSL facilitates the translation of p88 via −1 PRF. p88 interacts with
the 3′UTR of its template RNA1. The interaction of p88 or the formation
of the 480-kDa replicase complex disrupts the structures of the 3′ RNA
elements required for both cap-independent translation and −1 PRF,
causing a switch from translation to replication of RCNMV RNA1.
Materials and methods

Plasmids construction

pUCR1 and pRC2|G are full-length cDNA clones of RNA1 and RNA2 of
RCNMV Australian strain, respectively (Takeda et al., 2005; Xiong and
Lommel, 1991). Constructs described previously that were used in this
study included: pUCR1-d3′SLA, pUCR1-d3′SLB, pUCR1-d3′SLC, pUCR1-
d3′SLD (we renamed as pUCR1-d3′SLDE-5′ in this paper), pUCR1-d3′
SLE (we renamed as d3′SLDE-3′ in this paper), pUCR1-d3′SLF, and
pUCR1-d3′TE (Iwakawa et al., 2007). All constructs were verified by
sequencing. The primers used in this study are listed in Table 1.

DNA fragments were amplified by PCR from pUCR1 using primer
A1+3380 plus one each of following: dSLB-5′-, dSLB-3′-, dSLC-5′-,
dSLC-3′-, dSLD-5′-, dSLD-3′-, dSLC-5′a-, dSLC-5′b-, dSLC-5′c-, dSLC-3′
a-, dSLC-3′b-, SLC sSL5′b-, SLC sSL3′b-, SLC sSLmR-, SLC sSLmLoop-,
SLC largeSL5′b-, SLC largeSL3′b-, and SLC sSLmLoop2-, respectively.
Another primer M4 was used together with one each following:
dSLB-5′+, dSLB-3′+, dSLC-5′+, dSLC-3′+, dSLD-5′+, dSLD-3′+,
dSLC-5′a+, dSLC-5′b+, dSLC-5′c+, dSLC-3′a+, dSLC-3′b+, SLC
sSL5′b+, SLC sSL3′b+, SLC sSLmR+, SLC sSLmLoop+, SLC largeSL5′
b+, SLC largeSL3′b+, and SLC sSLmloop2+, respectively. Then a PCR
fragment was amplified from amixture of these two fragments using
the primers A1+3380 andM4, digested withMluI and SphI and used
to replace the corresponding region of pUCR1.

pUCR1-3′SLCbSL-R

DNA fragments were amplified by PCR from pUCR1 using three
sets of primers, A1+3380 plus SLC largeSL5′b-, SLC largeSL5′b+ plus
SLC largeSL3′b-, and SLC largeSL3′b+ plus M4. The amplified DNA
fragments were mixed and further amplified by PCR using the primer
pair A1+3380 and M4. The amplified DNA fragments were digested
with MluI and SphI, and used to replace the corresponding region of
pUCR1.

pUCR1-SM, pUCR1-5′BulgeSL -m1, and pUCR1-5′BulgeSL -m2

DNA fragments were amplified by PCR from pUCR1 using primer
R1_EcoRI+ plus one each following: Slippery-, slipSLm1-, and
slipSLm2-, respectively. Another primer R1_XhoI- was used together
with one each of following: Slippery+, slipSLm1+, and slipSLm2+,
respectively. Recombinant PCR products were amplified with the
primer pair R1_EcoRI+ and R1_XhoI+, digested with EcoRI and XhoI
and used to replace the corresponding region of pUCR1.

pUCR1-Restore-1 and pUCR1-Restore-2

DNA fragments were amplified by PCR from pUCR1 using primer
R1_EcoRI+ plus one each following: slipSLm1- and slipSLm2-,
respectively. Another primer R1_XhoI- was used together with one
each of following: slipSLm1+ and slipSLm2+, respectively. Recom-
binant PCR products were amplified with the primer pair R1_EcoRI+
and R1_XhoI+, digested with EcoRI and XhoI and used to replace the
corresponding region of pUCR1-3′SLCsSL-mLoop and pUCR1-3′
SLCsSL-mLoop2, respectively.

Protoplast experiments

BY-2protoplast experimentswereperformedas describedpreviously
(Iwakawa et al., 2007). Briefly, RNA1 (1.1 pmol) or its derivatives with
RNA2 (1.1 pmol) was suspended in 0.2 ml cold MES buffer and mixed
with 0.6 ml of BY-2 protoplast solution (1.67×106 cells/ml) before
electroporation using a Pulse Controller Plus (Bio-Rad). Protoplasts were
incubated at 17 °C for 16 h in the dark. Total RNAs were subjected to
northernblot analysis as describedpreviously (Iwakawaet al., 2007). The



Fig. 6. Amodel for regulation of translation and replication. (A) At the early replication step, an auxiliary replicase protein p27 is produced via 3′TE-DR1-mediated cap-independent
translation. p27 interacts with translating RNA1 except for its 3′UTR (Iwakawa et al., 2011). The lack of the association of p27with the 3′ UTR containing 3′TE-DR1 allows translating
RNA1 to continue to be a template for p27. (B) Sufficient amounts of p27 on RNA1 allow 5′BulgeSL to access SLCsSL by an unknown mechanism. (C) The interaction between
5'BulgeSL and SLCsSL facilitates the production of p88 via−1 PRF. (D) p88 binds to the 3′ UTR of RNA1 through a translation-coupled manner by an unknownmechanism (Iwakawa
et al., 2011). The p88 binding or the formation the 480-kDa replicase complex in the 3′ UTR of RNA1 disrupts RNA structures required for both cap-independent translation and−1
PRF. The conformational change of RNA structure causes a switch from translation to replication of RNA1.
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probe-specific RNA signals were detected using a luminescent image
analyzer (LAS 1000 Plus; Fuji Photo Film). Total proteins were subjected
to western blot analysis using an anti-p27 antiserum, and the signals
were detected using a luminescent image analyzer (LAS 1000 Plus).
BYL experiments

Preparation of cell-free extracts of evacuolated tobacco BY-2 pro-
toplasts and in vitro translation/replication reaction were as described
previously (Komoda et al., 2004). Western blot analysis was performed
essentially as described previously (Iwakawa et al., 2007). Briefly, capped
RNA1 (1.5 μg) or its mutants were incubated in 25 μl BYL at 17 °C for 4 h
together with uncapped RNA2 (100 ng). After incubation, BYL was
centrifuged at 20,000×g for 10 min at 4 °C to obtainmembrane fractions.
The proteins from membrane fractions were analyzed by western
blotting using an anti-p27 antiserum. The signals were detected with a
luminescent image analyzer (LAS 1000 Plus), and the signal intensities
were quantified with the Image Gauge program (Fuji Photo Film).
Enzymatic probing of the RNA secondary structures

Enzymatic probing was performed essentially as described previ-
ously (Fabian and White, 2008; Wu et al., 2001). Briefly, in vitro
transcribed wt RNA1 (approximately 14 pmol) was treated by heating



Table 1
List of primer and their sequences used for PCR to generate constructs.

Primers Sequence

R1_EcoRI+ CCTCAGTAAATGAATTCTTCG
R1_XhoI- CCACCTTCTCGAGTACATCG
Slippery+ CAAATCCCTTGAGGACTTCTAGGCGGCCCACTCAGCTTTC
Slippery- GGCCGCCTAGAAGTCCTCAAGGGATTTGAACCCAGC
A1+3380 TGCAGTTTTCAGGTTCC
M4 GTTTTCCCAGTCACGAC
dSLB-5′+ AAGAGGGGAACAACAGTAAAATTGCAAAAAATAGAG
dSLB-5′- GCAATTTTACTGTTGTTCCCCTCTTGCAACTCG
dSLB-3′+ CCCTGTTGGCAATAGGAGTAGTTCCCGTACCC
dSLB-3′- ACTACTCCTATTGCCAACAGGGTCGGCGAG
dSLC-5′+ AATAGAGTGCGACCCTGGGAAACAGGTACC
dSLC-5′- CCCAGGGTCGCACTCTATTTTTTGCAATTTTACTG
dSLC-3′+ GTGCGCACGTTTTTCTTTTAGGTAGGAGCAC
dSLC-3′- CCTAAAAGAAAAACGTGCGCACAACCACACAGAGG
dSLD-5′+ GTTATTTCCTTACCTCTGGTAAAACAAAATTGGC
dSLD-5′- ACCAGAGGTAAGGAAATAACTACAACAGTGAG
dSLD-3′+ AGAGGGCGCAAACTCAGGTTAATAAAACAG
dSLD-3′- AACCTGAGTTTGCGCCCTCTGGAGCAAGTGC
dSLC-5′a+ AATAGAGTGCGCGGGAGCAAGACCCTACTAC
dSLC-5′a- CTTGCTCCCGCGCACTCTATTTTTTGCA
dSLC-5′b+ TCCCGTACCCCAGTAGACGAACCGGCATCG
dSLC-5′b- GTTCGTCTACTGGGGTACGGGAACTACTCCTAG
dSLC-5′c+ GACCCTACTAGACCCTGGGAAACAGGTACC
dSLC-5′c- GTTTCCCAGGGTCTAGTAGGGTCTTGCTCCCGC
dSLC-3′a+ GTGCGCACGTCTGTTGTAGTTATTTCCTTTTTC
dSLC-3′a- ACTACAACAGACGTGCGCACAACCACACAG
dSLC-3′b+ GAAGACTCTCATTTTCTTTTAGGTAGGAGCAC
dSLC-3′b- CTAAAAGAAAATGAGAGTCTTCCGACAACGAC
SLC sSL5′b+ GAGTGCTAGGAGTAGTTGGGGTACCCGCGGGAGCAAGACCC
SLC sSL5′b- GTCTTGCTCCCGCGGGTACCCCAACTACTCCTAGCACTCTAT
SLC sSL3′b+ GGAGTAGTTCCCGTACCCGCCCCAGCAAGACCCTACTACAGTAG
SLC sSL3′b- CTGTAGTAGGGTCTTGCTGGGGCGGGTACGGGAACTACTCC
SLC sSLmLoop+ GCTAGGAGTAGTTCCCGTAGGCGCGGGAGCAAGACCCTACTAC
SLC sSLmLoop- GTAGGGTCTTGCTCCCGCGCCTACGGGAACTACTCCTAGC
SLC sSLmR+ GAGTGCTAGGAGTAGTTGGGGTACCCGCCCCAGCAAGACCCTA-

CTACAGTAG
SLC sSLmR- CTGTAGTAGGGTCTTGCTGGGGCGGGTACCCCAACTACTCCTA-

GCACTCTAT
SLC largeSL5′b+ GCAAAAAATAGAGTGCTACCAGTAGTTCCCGTACCCGCGG
SLC largeSL5′b- GCGGGTACGGGAACTACTGGTAGCACTCTATTTTTTGCAA
SLC largeSL3′b+ CTCACTGTTGTAGTTATTTGGTTTTTCTTTTAGGTAGGAGC
SLC largeSL3′b- GCTCCTACCTAAAAGAAAAACCAAATAACTACAACAGTGAG
slipSLm1+ GGCATCCCGGAAATCAGCCTAGCTGAGAAGCGGGCCAGTAG
slipSLm1- GGCCCGCTTCTCAGCTAGGCTGATTTCCGGGATGCCTAAAATAG
slipSLm2+ GGCATCCCGGAAATCAGAGTAGCTGAGAAGCGGGCCAGTAG
slipSLm2- GGCCCGCTTCTCAGCTACTCTGATTTCCGGGATGCCTAAAATAG
SLC sSLmLoop2+ GCTAGGAGTAGTTCCCGTACTCGCGGGAGCAAGACCCTACTAC
SLC sSLmLoop2- GTAGGGTCTTGCTCCCGCGAGTACGGGAACTACTCCTAGC
3′SLCsSL-2forSP TCCGACAACGACGTGCGCAC
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at 65 °C for 2 min, 37 °C for 10 min, and 25 °C for 10 min in reaction
buffer (10 mM Tris [pH 7.0], 100 mM KCl, 10 mM MgCl2) with 3 μg of
yeast RNA in 20 μl volume. One microliter of 0.1 U/μl RNase V1
(Ambion) or 0.1 ng/μl RNase A (Qiagen) was added to each of the
pretreated RNAs and incubated at 25 °C for 1 min. As a control, 1 μl of
nuclease-free water was added to the pretreated RNA and incubated at
25 °C for 1 min. The reaction was terminated by phenol-chloroform
extraction, and ethanol precipitated, washed with 70% ethanol, and
dried by vacuum. The cleavage products were resuspended in 8 μl
nuclease-free water. One microliter of each enzymatically treated RNA
transcripts was mixed with 0.5 μl of 10 pmol/μl primer, incubated at
90 °C for 1 min and then transferred to room temperature for 5 min. The
extension reaction was carried out in a final volume of 9.5 μl that
included reverse transcriptase (Superscript III, Invitrogen), a 1×
concentration of the buffer provided by the manufacturer, 0.05 mM
each of dCTP, dGTP and dTTP, 5 mM of DTT, 0.5 μl of 40 U/μl RNase
inhibitor (TOYOBO), and 10 μCi [α-35S] dATP. The reaction was
incubated at 55 °C for 5 min, and then 0.5 μl of each of the four dNTPs
(10 mM) was added. The mixture was incubated at 55 °C for an
additional 20 min, and then the reactionwas stopped by the addition of
formamide loading dye. The extension products were separated in a 5%
(w/v) polyacrylamide gel in the presence of 8 M urea. Dideoxy
sequencing reactions were prepared using Sequenase™ Version 2.0
DNA sequencing Kit (USB), and the products were separated alongwith
the primer extension products.
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