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The structure and function of the human brain are highly stereotyped, implying a conserved 

molecular program responsible for its development, cellular structure, and function. We applied a 

correlation-based metric of “differential stability” (DS) to assess reproducibility of gene 

expression patterning across 132 structures in six individual brains, revealing meso-scale genetic 

organization. The highest DS genes are highly biologically relevant, with enrichment for brain-

related biological annotations, disease associations, drug targets, and literature citations. Using 

high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, 

which represent distinct cell types, intracellular components, and/or associations with 

neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to 

non-neuronal networks showed higher preservation between human and mouse; however, many 

diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly 

consistent transcriptional architecture in neocortex is correlated with resting state functional 

connectivity, suggesting a link between conserved gene expression and functionally relevant 

circuitry.

The adult human brain is composed of many regions with distinct distributions of cell types 

and patterns of functional connectivity. Underlying this complexity is differential 

transcription, whereby different brain regions and their constituent cell types express unique 

combinations of genes during their developmental specification and maturation and in their 

mature functional state. Despite a range of brain sizes across individuals and variation in 

sulcal patterning in the neocortex, the general anatomical positioning of and connectivity 

between regions is highly stereotyped between individuals, suggesting that a significant 

proportion of the transcriptional coding for this common architecture is conserved across the 

human population.

We aimed to identify the core or “canonical” transcriptional machinery conserved across 

individuals, in contrast to numerous studies that explore genetic variants associated with 

disease traits by analyzing enormous sample sizes in population studies
1, 2. If common 

expression relationships can be identified with high confidence in modest sample sizes and 

with good anatomical coverage of various brain regions, the resulting “default gene 

network” could provide a base template for understanding the genetic underpinnings of 

highly conserved features of brain organization and a baseline from which deviations in 

individual patients may be measured and associated with diseases such as autism, 

schizophrenia, epilepsy, and major depression. While prior studies have identified gene 

networks associated with normal and diseased brain architecture in limited brain regions
3–7

, 

the new availability of a dataset with vastly enhanced structural coverage allows an explicit 

approach aimed at identifying network structure common across individuals that is related to 

structural and functional organization of the entire brain.

We approached this problem by identifying genes with highly consistent patterning across 

anatomical structures in six independent human brains of the Allen Human Brain Atlas 

(http://human.brain-map.org/) using the concept of differential stability (DS), which we 

define as the tendency for a gene to exhibit reproducible differential expression relationships 

across brain structure
8
. To understand large-scale transcriptome organization, we apply 

weighted gene co-expression network analysis (WGCNA)
9, 10

 to sets of high DS genes. This 
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and other quantitative network-based approaches have proven to be powerful tools for 

elucidating cell type, anatomic, and species-specific patterning. Studies using these methods 

suggest that, largely because of their nonparametric statistically robust nature, conserved 

differential expression relationships may be more descriptive of transcriptome organization 

than absolute magnitude of expression level
3, 5, 11–13

. We find that high DS genes, and the 

gene networks involving them, show highly significant enrichment of functional ontology, 

disease and drug association terms as well as strong relationships to anatomical structure and 

functional connectivity, indicating they may represent essential transcriptional features of the 

human brain.

RESULTS

Conserved transcriptional patterning in adult human brain

To identify genes with highly conserved patterning across brain regions, we analyzed the 

complete dataset from the Allen Human Brain Atlas consisting of six neurotypical adult 

whole brains. This included 3 Caucasian males, 2 African American males and 1 Caucasian 

woman, the first two of which were part of an initial report on the project
3
. For each brain, 

345–911 samples spanning one (n=4) or both (n=2) hemispheres were analyzed using whole 

genome Agilent microarrays. In total, samples from 232 discrete brain structures were 

sampled at least once in at least one brain. We first focused on comparing expression 

patterns for a smaller set of 96 brain regions that were sampled at least twice in at least five 

brains, pooling across hemispheres (Supplementary Table 1). Figure 1a shows the number of 

genes (out of the 81.8% expressed in all 6 brains, Supplementary Methods) that are 

differentially expressed between pairs of these regions in at least five of six specimens. 

Large transcriptional differences are seen between major structures. Heterogeneity within 

subdivisions is also evident, such as the distinctive patterning of primary visual cortex 

compared to other cortical regions
3, 14

 and complex differentiation of nuclei in the 

brainstem. In contrast, cortex, cerebellum, and amygdala are notably homogenous across 

their constituent subdivisions. This representation highlights the magnitude of meso-scale 

(fine but not cellular resolution) similarities and differences between brain regions. In 

addition to the open access data resource (www.brain-map.org), this new map, its associated 

genes, meta-data, and anatomic guide are available for dynamic online browsing (http://

casestudies.brain-map.org/ggb).

In addition to globally conserved differential relationships, the patterning for any given gene 

across structures in different individuals is often well conserved. Figure 1b shows the CNS-

specific cell adhesion proto-cadherin family member PCDH8, implicated in the development 

of schizophrenia
15

, having a distinctive brain-wide pattern that is highly consistent across all 

six brains. High conservation of anatomical patterning across individuals has been proposed 

to explain common core functionality of the human brain
16, 17

, and we sought to test that 

hypothesis with this dataset. So as to not overly bias the analysis toward the homogeneous 

cortex and cerebellum, here we treated all samples from the same cortical or cerebellar lobes 

as a single brain region (Supplementary Table 1). Finally, by including all available 

structures, we retain a set of 132 of the original 232 structures, which are used for the 

remainder of the analysis.
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Genes with conserved patterning relate to brain function

To quantify reproducibility of expression, we measure the tendency of any one gene to have 

consistently higher expression in one region than another across all brains sampled. We call 

this concept differential stability (DS), which we quantify as the average Pearson correlation 

ρ between pairs of brain specimens over a set of anatomic regions. This concept of 

reproducibility of structural patterning is well defined and can be captured nearly 

equivalently by a variety of other metrics (see Supplementary Methods). DS effectively 

measures the fraction of preserved differential relationships between regions, with a bias for 

stronger differentials (Fig. 2a). We denote the DS of a gene g over a set of anatomic regions 

S as ΔS(g), which ranges between ΔBR=0.970 to −0.057 for the 17,348 uniquely annotated 

human transcripts represented on the microarrays (Supplementary Table 2).

The gene with highest DS is FOXG1 (ΔBR=0.970), a transcription factor regulating the 

development of the early born Cajal-Retzius cells in the cerebral cortex
18, 19

. PCDH8 

(shown in Fig. 1B) also has high DS, with ΔBR=0.931. Calcium channels and genes 

associated with calcium/calmodulin signaling (NRGN, CAMK2A, CAMKV) are 

overrepresented among high DS genes (p<1.32e-04, BH corrected) indicating a strong 

conservation of these signaling pathways. Interestingly, potassium channels (p<1.70e-12) are 

the most over-represented among high DS genes, exhibiting diverse and specific expression 

patterns (Supplementary Fig. 1). The DS metric selects for genes with moderate to high 

expression level and moderate to high variability across structures; however, there is no 

significant relationship (ρ=0.064) between mean gene expression level and high DS (Fig. 

2b).

Previous studies have demonstrated transcriptional similarity based on anatomical 

proximity
3, 14

, which may reflect phylogenetic and ontogenetic distance
20

. Consistent with 

this observation, the relationship between anatomical structures based on these top DS genes 

generally resembles the physical topography and developmental origins of brain regions, as 

shown by multidimensional scaling (MDS) in which distance is determined by correlation 

between samples (Fig. 2c). This ordering and separation between structures is progressively 

less preserved with decreasing DS (Supplementary Figure 2). In contrast, low DS genes with 

ubiquitous expression (lower 25th percentile in variability across brain regions, below the 

horizontal green line in Fig. 2b; Supplementary Table 3), such as the ubiquitin isoforms 

UBB and UBC, are typically not brain specific. Instead, they appear to provide the basal 

machinery common to all cell and are enriched for housekeeping functions such as RNA 

binding (p<3.26e-21), KEGG spliceosome pathway (p<6.4e-13), and mitochondrial 

ribosomal proteins (p<1.32e-10).

The top 10th percentile set of genes (n=1735) ranked by DS is significantly over-represented 

in many functional categories (Fig. 2d), including gene ontology (GO) molecular function, 

cellular component and biological processes associated with neuronal function, and 

transcription factor binding sites (Supplementary Table 4). Furthermore, the top DS genes 

have a disproportionate number of drug interactions and a monotonically decreasing 

association with miRNA targets. Specifically, the first DS decile collectively has 4651 

interactions with small molecule drugs and chemicals from major databases (including 
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DrugBank and the Comparative Toxicogenomic Database, Methods), more than 30 times 

the number in the third decile. There is also a strong relationship between DS and the 

probability a given gene has been studied in the context of the brain (Fig. 2e, blue).

Finally, brain-related diseases are associated with higher DS genes. The distribution of genes 

associated with neurological and psychiatric diseases is shifted towards high DS compared 

to all genes (Fig. 2f), based on 2289 gene sets from the Autworks database (http://

autworks.hms.harvard.edu/)
21

. Genes sets associated with mental disorders (p<8.06e-31) are 

significantly enriched in the top 10% of DS genes (Fig. 2f; Supplementary Table 5), in 

particular those for schizophrenia (p<9.14e-30), autism (p<3.45e-17), epilepsy (p<1.00e-11), 

bipolar disorder (p<4.94e-14), and major depression (p<4.60e-10). This result was 

independently reproduced in gene sets from the Simons Foundation Autism Research 

Initiative Database (https://gene.sfari.org/autdb/Welcome.do; n=666; p<1.19e-38) and 

Alzheimer’s-related genes from the Alzheimer’s Forum (www.alzforum.org; n=630; 

p<3.55e-07). Taken together these observations indicate that tightly regulated structural 

transcription is quite important for brain function and dysfunction.

A canonical brain transcription co-expression network

Given the relevance of high DS genes to brain function demonstrated above, we sought to 

understand the gene regulatory landscape by deriving a core set of co-expression modules 

based on high DS genes that capture most of the variation between regions. Despite the 

cellular heterogeneity inherent in different brain regions, network analytic techniques like 

weighted gene co-expression network analysis (WGCNA)
10

 have revealed biologically 

meaningful trends in meso-scale sampled transcriptome data that relate to anatomy and brain 

function. Indeed, previous analysis using WGCNA on the first human brain from this dataset 

identified co-expression modules that were generally corroborated in the second brain
3
.

Using the six brains now available, we identified a consensus network
22

 common to all 

brains (Fig. 3a, panel 1), using the 50% highest DS genes (ΔBR>0.5284, g=8674, 

Supplementary Methods). This network identified 32 major transcriptional patterns, or 

modules, each represented by a characteristic expression pattern across brain structures, the 

module eigengene (ME), in each brain (Fig. 3a, panel 2). All genes were then assigned to 

one of the 32 modules if their average correlation to the corresponding ME across all six 

brains was greater than 0.4. The great majority of all genes (90.1%, 15,627) are correlated 

with this relatively small set of patterns (Supplementary Table 6), and the MEs derived from 

these genes are highly stable (Fig. 3b). Furthermore, these patterns are likely to be 

representative of a larger population as they are highly consistent across all six individuals, 

and patterns identified using any five brains could be found reproducibly in the sixth 

(Supplementary Methods; Supplementary Fig. 3).

Previous studies demonstrated that brain gene modules often correspond to expression in 

major cell classes including neurons and glia
3, 5. To ask how these 32 modules represent 

expression in specific cell types, we assessed the distribution of genes within each module 

that are known to be enriched (at least 1.5-fold) for neurons, oligodendrocytes and astrocytes 

in mouse cultured preparations
23

 (Supplementary Table 7). While not a perfect comparison 

given the differences between species and in vivo versus in vitro, there was a clear ordering 
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of modules that could be seen based on predominance of neuronal gene expression (Fig. 3c). 

These proportions ranged widely from those with largely neuronal signatures (M1-M15) to 

essentially non-neuronal (M16-M32). Interestingly, the proportion of genes assigned to 

modules with high neuronal expression (M1-M15, blue in Fig. 3d) was significantly greater 

for the highest DS gene set (top 10%).

To characterize each module functionally, we used the ToppGene portal (https://

toppgene.cchmc.org/;
24

; Supplementary Methods) to identify significant enrichments in 

gene ontology, pathways, cytoband, disease association, transcription factor binding sites, 

micro RNAs, drug targets, and protein-protein interactions (Fig. 3e; Supplementary Table 8). 

Interestingly, over 96% of all annotations were associated with just 17 of the 32 modules 

(left-most in Fig. 3e) including those restricted to the highly studied nigro-striatal pathway 

structures associated with Parkinson’s disease (M10 and M12) as well as a set of 

predominantly non-neuronal modules (M24, M23, M25, M30; Table 1). Consistent with the 

overlap with neuronal genes, modules M1-M6 contain by far the most neuronal function-

related annotations, including synapse structure and transmission, neurogenesis and neural 

projection, channel dynamics. The most non-neuronal modules (M21-M32) show strong and 

unique associations with vasculature development (M21, q<1.17e-17, FDR 0.01), immune 

system function (M25, q<3.71e-35), and myelination and glial ensheathment (M30, 

q<1.48e-06). While by construction there are no common genes between any pairs of 

modules, there are common functional interactions between modules and enrichments based 

on ontology, pathway, and function. These relationships generally reflect neuronal versus 

non-neuronal module content and are summarized in Supplementary Figure 4.

From a global anatomical perspective, the 32 gene modules were predominantly enriched 

either in the telencephalon or in non-telencephalic deeper brain structures (Fig. 4a). 

Individual modules were enriched in distinct combinations of structures (Fig. 4b; 

Supplementary Figs. 5–8) and were associated with distinct functional pathways, disease 

and drug interactions (Table 1; Supplementary Fig. 9). For example, M1 is highly enriched 

in cortex, hippocampus, amygdala, and striatum, with genes associated with synaptic 

transmission and in genes down-regulated in Alzheimer’s disease. Some modules were 

remarkably selective for particular brain regions, such as M6 in cortex, M10 in striatum, 

M11 in thalamus, M12 in the substantia nigra, M14 in hypothalamus, M16 in dentate gyrus, 

and M17 in the cerebellum. In agreement with known function, M12 is uniquely associated 

with dopamine biosynthesis (q<8.39e-06) and cocaine addiction (q<5.64e-05). Other 

modules showed more complex anatomical patterning, such as non-telencephalic expression 

(M19), the inverse of M1. M19 is associated with mitochondria (q<5.50e-82) and 

demyelination (q<2.57e-04), and has strong disease associations with Alzheimer’s 

(q<3.98e-22), Parkinson’s (q<1.62e-27), and the neurodevelopmental disorder Leigh’s 

syndrome (q<2.18e-08). Consistent with its non-neuronal enrichment noted above, M25 is 

enriched in the glia-rich corpus callosum and internal portion of the globus pallidus, and is 

associated with immune response (q<3.71e-35) and systemic lupus erythemetosis 

(q<8.49e-29). The complete set of module patterns are provided in Supplementary Figures 

5–8, and the complete functional annotations in Supplementary Table 8.
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Finally, a small number (302) of high DS genes appear to have unique spatial expression 

patterns, and were not strongly correlated to any of the 32 module eigengenes. 50 of these 

genes are shown in Figure 5, illustrating the diversity of their expression patterns. 

Surprisingly, among these outlier patterns are a number of extensively studied genes, 

including somatostatin (SST), CART prepropeptide (CARTPT), Met proto-oncogene (MET) 

and Calbindin 1 (CALB1), as well as regional markers (i.e., UTS2D, amygdala; SLC17A8, 

claustrum; and RRS1, inferior olive). These uniquely patterned yet stable genes are enriched 

in GPCR pathway and signaling events (q<2.59e-09, Supplementary Table 9). This set is 

over-represented for genes identified through association analysis of regulatory and non-

synonymous SNPs involved in neurotransmission and neurodevelopment (q<2.11e-15)
25

 and 

that confer susceptibility to bipolar and obsessive-compulsive disorders and major 

depression, as well as anorexia nervosa (q<7.23e-12)
26

. Thus, while the great majority of 

genes are correlated with a small number of global expression patterns across the brain, a 

small number of functionally important genes have patterns of spatial regulation that are 

distinct from these modules.

Differential gene module conservation from human to mouse

Are these core transcriptional modules unique to the human brain or do they reflect 

mammalian brain architecture more generally? To address this question we compared 

anatomical distributions and within-module co-expression metrics in human to those in 

mouse, a dominant model organism in biomedical research. We created an expression matrix 

for a set of 53 mouse structures unequivocally matching those in the human microarray data, 

using spatially quantified in situ hybridization (ISH) data for the 2651 genes with n≥2 data 

in the Allen Mouse Brain Atlas
27

 (Methods, Supplementary Table 1). We then created a 

mouse module eigengene for each of the 32 modules defined in human, using the subset of 

genes present in both species. We used a previously described module preservation index
22 

to assess the degree to which the co-expression structure of genes within these mouse 

modules is conserved. Some modules were well preserved (Fig. 6a), including the neuronal-

enriched modules M1, M6 and M7, whereas many of the most non-neuronal modules (M25-

M32) were poorly preserved. Because this metric is an aggregate score of all genes in a 

module, we then scored the percentage of genes in each module whose mouse patterns were 

well correlated with the structural expression pattern of the corresponding human module 

eigengene (ρ > 0.4). In general, this percentage varied with neuronal content (Fig. 6b), and 

decreased with decreasing DS (data not shown). In addition, the most neuron-associated 

modules had the largest number of genes with highly correlated patterns across structures. 

Interestingly, each module also contained genes that were not only poorly correlated to the 

human module, but were instead very highly correlated (ρ > 0.8) to a different human 

module eigengene. Supplementary Table 10 lists the module assignments for each cross-

species gene, and whether the gene’s patterning is conserved in mouse.

Despite massive differences in size and measurement techniques of these two data 

modalities, many of the modules had very highly correlated expression across specific 

anatomical regions (Fig. 6c–g). For example, the forebrain-enriched and neuron-associated 

M6, striatal M10, thalamic M11 and cerebellar M17 had nearly identical patterning. In 

contrast, the module eigengenes for the non-neuronal module M30 was very poorly 
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correlated. Despite this variation in the overall strength of correlation across species, 

individual genes with matching anatomical and cellular patterns could be found for each 

module (left 2 ISH panels in Fig. 6c–g). On the other hand, for each module there were 

genes whose pattern fundamentally shifts between species (far right ISH panels), for 

example from thalamic to cerebellar in M11 or from glial to neuronal in M30. Thus, it 

appears that even in highly preserved modules, some individual genes differ in their 

patterning across species. The frequency of these changes in gene regulation varies by 

module, with better general pattern conservation in the more strongly neuronal modules.

Functional connectivity relates to transcription in cortex

Despite its relative homogeneity compared to other brain regions, human neocortex shows 

variations in transcriptional patterns that are consistent across individuals and are correlated 

with topographical position across the cortical sheet
3
. Recent work has revealed that 

functional brain networks determined using resting-state functional magnetic resonance 

imaging (fMRI) can be recapitulated using correlated gene expression in postmortem brain 

tissue
28

. To explore whether genes with highly consistent cortical patterning across 

individuals drive this functional organization, we compared transcriptional variation of high 

DS genes with recent resting state functional connectivity data from the Human Connectome 
Project (HCP, www.humanconnectome.org)

29
. We generated a parcellated connectivity 

matrix C (netmat, Methods) averaged across 447 subjects (rightmost panel in Fig. 7a) using 

the partial correlation
30

 among spatially contiguous nodes derived from the resting-state 

network identified by Yeo et al. (2011)
31

. We then mapped each cortical region containing 

transcriptional data onto these corresponding 52 parcels, and analyzed parcels containing at 

least one gene expression sample.

Because the transcriptional differences between cortical areas are generally smaller than 

between major brain regions, we recalculated DS selectively for cortex using those 52 

cortical regions matching the functional parcels above. A smaller percentage of genes have 

high DS in cortex (Fig. 7b); in contrast to whole brain, the top 5th percentile (n=867) of DS 

cortex genes had ΔCTX>0.357 versus ΔBR>0.854 for whole brain. The rank ordering of 

genes by whole-brain DS vs cortex-only DS differs markedly, with only 31% of the top 5% 

of cortical DS genes in the top 5% of brain-wide DS, (Fig. 7b). For example, the MET proto 

oncogene, a functional marker of gliobastoma (see http://glioblastoma.alleninstitute.org/;
32

) 

is ranked first in cortex (ΔCTX=0.761), but ranked 985 for the whole brain. In contrast, the 

classical complement pathway C1R gene that mediates immune and antibody response and 

is synthesized by both neurons and glia
33

 has cortical rank 569 vs. a brain-wide rank of 

10094; the C1R gene may contribute to inflammatory and degenerative diseases of the CNS 

including Alzheimer’s disease
33–35

. Thus, the DS metric applied to cortex alone identifies 

genes having more subtle but consistent variation across functionally defined cortical parcels 

that is not captured when highly distinct structures across the whole brain are included. 

Local DS scores across 20 major brain structures are supplied in Supplementary Table 11.

To examine which genes have spatial expression patterns that correlate with functional 

connectivity patterns, and whether this is related to cortical DS, we correlated (Pearson ρ) 

the parcellated connectome matrix C with gene co-expression matrices E(g) for each of 
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17,348 genes with data pooled to the same regions (Fig. 7c, Supplementary Methods). Fig. 

7d shows that higher cortical DS of a gene is predictive of a stronger correlation between 

functional connectivity and cortical gene expression pattern (ρ = 0.46, p<2.2e-16; the 

correlation with brain-wide DS alone was much weaker (ρ=0.17), indicating that the 

conserved cortical genes correlate most strongly with cortical functional connectivity. 

Further, we found that 136 genes whose polymorphisms significantly affect resting-state 

functional connectivity in a large sample of healthy adolescents
28

 have both higher 

correlation of expression with functional connectivity (μ=0.12, p<2.2e-192) and higher DS 

(ΔCTX=0.40, p<1.2e-325) in human cortex (red points, Fig. 7d), though they constitute only 

a minority (15%) of the highest cortical 5th percentile DS genes. Significant ontological 

categories of this highest cortical 5th percentile DS genes include main axon (p<7.84e-09), 

neuron projection (p<2.2e-04), calcium and sodium channel activity (p<3.46e-11), and axon 

guidance Reactome pathway (p<2.22e-04). These categories are consistent with a role for 

these genes in neuronal connectivity and function as suggested in other studies
28

. 

Supplementary Table 12 gives the functional genetic correlations and associated p-values for 

all 6 brains.

DISCUSSION

While a great deal of human brain genomic research focuses on individual variation to 

understand the genetic underpinnings of neurological and neuropsychiatric disease, less 

emphasis has been placed on understanding the core, “canonical” brain transcriptional 

regulatory architecture common to all humans. Using the rich microarray profiling dataset in 

the Allen Human Brain Atlas (http://human.brain-map.org), we demonstrate that many 

genes show highly consistent patterns of transcriptional regulation across brain regions that 

can be quantified using a metric of differential stability (DS). Those genes with the most 

consistent anatomical patterning across individuals appear to be particularly significant for 

brain function and disease. Remarkably, the highest 10% of brain-wide DS genes are 

substantially overrepresented for known drug targets and are highly significantly enriched 

for functional annotations of many cellular functions and biological pathways. This suggests 

that these genes represent a functionally critical set whose transcriptional regulation is 

tightly controlled. While we recognize there may remain ascertainment bias in the selection 

of regional transcriptional patterns insofar as they may be preferentially annotated in 

available studies, these findings appear relevant as we find that genes with non-specific 

patterning or ubiquitous expression tend to represent more basal cell functions. Interestingly, 

approximately 9% of this most conserved gene set has no functional annotation to date, thus 

representing a set of rich targets for future research into human brain function.

Taking this concept of conserved patterning from genes to gene networks, we demonstrate 

the existence of a relatively small (32) set of consensus co-expression gene networks that 

explain the vast majority (90.1%, ρ>0.4) of transcriptional variation across adult brain 

regions. Although the anatomical sampling in this study was not cell type-specific, some of 

these networks appear to represent co-expression in broad cell classes such as telencephalic 

neurons, oligodendrocytes, astrocytes and vasculature, as observed previously
3, 5. A second 

set of networks show striking enrichment in specific brain regions such as the striatum, 

thalamus, cerebellum and substantia nigra, presumably reflecting unique and coherent 
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expression signatures responsible for the functions of specific neuronal types in these 

regions. The final set of networks were more difficult to interpret, showing consistent but 

more complex distributed anatomical patterning and enriched in genes associated with 

organelles or cellular machinery such as mitochondria, the proteasome, ribonucleoprotein 

complexes and chromatin. These networks may represent core intracellular pathways that 

tend to be co-expressed and also differentially enriched in particular brain regions. A small 

set of highly patterned and consistent genes were not correlated to these consensus networks 

but rather showed unique patterns. Surprisingly, many of those genes are well studied as 

markers of specific cell types (e.g. VIP and SST for GABAergic interneurons) or 

developmental zones (homeobox genes) and are not representative of the patterning of the 

great majority of genes.

Prior studies of the adult and developing brain have applied similar network methods to 

understand co-expression relationships in normal or disease states. Oldham et al. (2008) 

identified sets of modules in normal human cortex, caudate nucleus and cerebellum 

reflecting the composition of these regions (i.e., different cell types and cellular processes)
5
. 

More recent papers studied several brain regions across development. For example, Kang et 

al (2011) created a network using data from six brain structures across pre- and post-natal 

development and found modules related to different spatiotemporal profiles
4
, while 

Voineagu et al (2011) studied changes in expression modules in the autistic brain
7
. In our 

initial assessment of the first two brains in the Allen Human Brain Atlas
3
, we identified 

groups of genes related both to major cell types (i.e., astrocytes, choroid plexus, etc.), as 

well as to specific brain regions (i.e., striatum, cerebellum). This study builds upon and 

complements our initial results in two important ways: first, we sample brain regions at 

relatively equal depth by decreasing representation of cortex and cerebellum in the analysis, 

and second, we perform a consensus network analysis, which exclusively identifies common 

patterns across brains. Despite similarities in data type and methodology, these differences in 

analysis strategies and experimental design make direct comparisons with previous studies 

challenging. We also note DS provides complementary information from the network-based 

gene correlations (kME) presented here and in previous studies, and that both are valuable for 

understanding brain function (Supplementary Analysis).

Many differences in gene regulation across species have been previously described
36–39

. For 

example, a study of ~700 genes in human versus mouse cortex by in situ hybridization found 

approximately 25% of genes having at least subtle differences in areal or cellular 

patterning
39

, and the frequency of differences appears to vary as a function of evolutionary 

distance
37

. Here we find that the different co-expression networks vary in their conservation 

between species as well. In general, both the co-expression statistics and anatomical 

patterning of neuron-associated modules were better preserved than glia-associated modules, 

similar to findings from a meta-analysis of microarray studies which showed better 

preservation of neuronal gene co-expression compared to glial and disease-related genes
36

. 

Why glial expression would be less well conserved is unclear, although major differences in 

glial structure and function between human and mice have been described
38

. One possible 

explanation is that result may reflect the difference between clear anatomical parcellation of 

neuronal types into specific nuclei in both species compared to more widely distributed 

patterning of glia; therefore, differences in glial distribution across species would make glial 
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modules appear less conserved. However, this does not seem likely to explain this 

difference. First, glial modules are among the most stable and robust in the brain despite the 

lack of strict anatomical segregation. Furthermore, this lack of conservation for glial 

modules was observed both anatomically and also in the within-module correlation of glial 

genes which is independent of anatomical distribution. Interestingly, many individual genes 

shift their global expression from one major pattern to another. This may represent a 

mechanism for species differentiation where mutations lead to dramatic shifts in gene 

regulation across brain regions.

Functional connectivity as measured using fMRI is a powerful but indirect measure of 

network organization that can provide high spatial resolution but should not be considered a 

surrogate for direct anatomical connectivity
29, 30

. The canonical transcriptional architecture 

of the human brain may in some respects be considered a genetic analog to group average 

anatomical or functional architecture revealed by MRI
40, 41, 42

. As before
28

, we report here a 

significant correlation between the transcriptional patterning in the neocortex and functional 

connectivity (as manifested by the partial correlation functional connectivity matrix), and we 

obtain this result with an independent imaging dataset (HCP). This correlation was only 

evident for genes having consistent cortical patterning across individuals (i.e., high DS in 

cortex), in part because the high cortical DS genes show more variation across cortex and in 

part because these genes represent the consistent transcriptional features. There might be a 

causal relationship, as suggested for mice, in which genes associated with neuronal 

connectivity are particularly likely to also be correlated with long-range connectivity 

patterns
43, 44

. Exploring the nature of such relationships will be an interesting new avenue of 

research, facilitated by our identification of many genes that are involved.

Transcriptional regulation patterns are informative about human brain organization at 

multiple scales. The DS metric, when applied only to neocortex where transcriptional 

variation is much less than between major brain regions, identifies genes that vary 

consistently across cortical regions, and these genes are preferentially correlated with resting 

state functional cortical architecture. Since many of the core co-expression networks 

described here at the meso-scale appear to reflect the underlying cellular architecture, it is 

likely that discrete cell types similarly display highly conserved transcriptional regulation 

critical to cellular function. The recent explosion of cell type and single cell profiling 

techniques, coupled with the emphasis on cellular characterization through the BRAIN 

initiative and other efforts will provide the means to explore the canonical cell type 

architecture of normal and diseased human brains in the near future.

ONLINE METHODS

AHBA data and normalization

The study used the completed 6 human brain data set from the Allen Human Brain Atlas 

(http://human.brain-map.org/). Briefly, approximately 500 anatomically discrete samples 

were collected from cortex, subcortex, cerebellum, and brainstem of each brain and profiled 

for genome-wide gene expression using a custom Agilent 8x60K cDNA array chip. Two 

methods were used to dissect samples: (1) a scalpel-based manual macrodissection method 

primarily for cortical and other relatively large uniform samples; and (2) laser 
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microdissection (LMD) for small or oddly-shaped structures such as subcortical or 

brainstem areas. Over the multi-year course of the project, 6 brains were processed serially 

(i.e., expression profiles for the first brain were completed before profiling the second brain), 

and multiple batches of samples were submitted per brain. Due to the complexity and timing 

of entire process, assessing and minimizing non-biological systematic biases among 

different batches within a brain and across all brains while keeping biological variations is a 

crucial step in the data analysis. The same control samples are included in all batches to 

serve this purpose. Within each batch, array-specific biases characterized by probe GC 

content, location in the chip, and experiment-wise mean intensity are corrected. The 75th 

percentile expression levels of all samples in each batch are then aligned. Within a brain, 

cross-batch correction is done so that the mean expression levels of control samples in the 

batches may be aligned. Adjustment is made due to the bias introduced in sample quality 

and expression level by different dissection methods. Across brains, brain-wise mean 

expressions as well as control samples’ mean expression are aligned. More details on the 

microarray data normalization are available at http://human.brain-map.org/.

Annotation

In addition to the Allen Institute Human Brain Atlas and Mouse Atlas databases, the 

ToppGene (https://toppgene.cchmc.org) portal
24

 was used to access an extensive list of 

databases, and to calculate p-values from hypergeometric tests, corrected for multiple 

comparisons. Those used in this study included the following: gene ontology (GO) 

annotations (biological process, cellular component, and molecular function); pathway 

annotations (Biosystems, BIOCYC, KEGG, and REACTOME); microRNA targets (the full 

set indicated on https://toppgene.cchmc.org/navigation/database.jsp, including 

MicroRNA.org, Pic Tar, and TargetScane); computational cancer related gene sets (from 

Broad MSigDb - http://www.broadinstitute.org/gsea/msigdb/collections.jsp); drug 

annotations (from Drug Bank, Comparitive Toxicogenomics Database, including marker and 

therapeutic, and Broad Institute CMAP). Significant genes were identified using the 

ToppFun application. For disease annotations we used the Autworks database (http://

autworks.hms.harvard.edu), listing genes associated with 2,288 disease states, including 

Autism. Gene sets from the Simons Foundation Autism Research Initiative Database 

(https://gene.sfari.org/autdb/Welcome.do) were also compared for Autism relevance. 

Alzheimer’s-related genes were retrieved from the Alzheimer’s Forum (www.alzforum.org).

Correlation metrics and differential stability

Average Pearson correlation over 15 pairs of 6 brains was used for measuring differential 

stability between brains and networks. For each gene g expressing in a pair of brains Bi(g), 

Bj(g) with common anatomic structures S, compute the Pearson correlation ρs (Bi(g), Bj(g)). 

The differential stability of Δs(g) is defined as the average ρs over (n=15) pairs of brains. 

Pearson correlation was used for comparing genes to modules
5
. The R package (www.r-

project.org) was used for statistical analysis throughout. See Supplementary Analysis for 

comparable metrics.
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WGCNA consensus network construction

The general framework of WGCNA has been described in detail previously
10

, and it has 

been packaged into a user-friendly R library
9
. In short, Pearson’s correlations were 

calculated for all pairs of genes, and then a signed similarity (Sij) parameter was derived: Sij 

= (1 + cor(xi,xj))/2, where gene expression profiles xi and xj consist of the expression of 

genes i and j across multiple microarray samples. In the signed network, the similarity 

between genes reflects the sign of the correlation of their expression profiles. The signed 

similarity (Sij) was then raised to power β to represent the connection strength (aij): aij = Sij
β 

(here β=14). This step aims to emphasize strong correlations and reduce the emphasis of 

weak correlations on an exponential scale. The resulting adjacency matrix is then 

transformed into a topological overlap matrix, defined as 

 that essentially assesses to what extent each 

pair of genes has common expression patterns with all other genes in the network. 

Topological overlap has been shown to be a more biologically relevant metric than 

adjacency in many cases
10

.

Here we constructed a signed network for each brain, summarizing gene expression across 

the subset of 132 broad brain structures sampled in each of six adult human brains (as 

described below). Since we are primarily interested in finding expression patterns conserved 

between brains, these networks included only the 50% of genes with highest differential 

stability score (N=8674, DS>0.5284). From these six individual brain networks we then 

created a consensus network to identify common expression patterns across individuals, 

following the published method
22

 with a few modifications. Specifically, the consensus 

network was created by calculating the component-wise minimum values for topologic 

overlap (TO) across all six brains, after appropriately scaling each individual network. Genes 

were hierarchically clustered using 1-TO as the distance measure, and initial module 

assignments were determined by using a dynamic tree-cutting algorithm (cutreeHybrid using 

all default parameters, except deepSplit=4, cutHeight=0.999, minClusterSize=30, and 

pamStage=FALSE)
46

.

Modules were then iteratively merged until all pairs of module eigengenes (ME; i.e., the first 

principle component of the module) were correlated with R<0.8, using the following 

strategy: 1) calculate the MEs; 2) identify the most highly correlated pair of MEs; 3) if 

R>0.8 merge these two modules and repeat steps 1–3. Next, modules were assessed for 

coherency and incoherent modules were removed from consideration using the following 

strategy: 1) calculate the MEs; 2) calculate the Pearson correlation between each gene and 

each ME—referred to as a gene’s module membership (kME)
5
—and re-assign each gene to 

the module to which it is most highly correlated; 3) find the module for which the largest 

number of genes were reassigned; 4) if <70% of the genes in this module remain in the 

module after re-assignment, remove the module and repeat steps 1–4. Finally, after 

generation, merging, and deletion of modules, all 17,348 expressed genes were assigned to 

modules based on kME (as above), and genes with kME<0.4 against all modules were 

considered unassigned. Module eigengenes were calculated using all available data, but for 

brevity visualizations only include the 62 structures present in all six brains (Supplementary 
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Table 1) in addition to CGS, CPLV, and Pa. This method is entirely automated, resulting in 

an unbiased collection of distinct, yet well-defined modules. This same strategy was used to 

construct networks and define modules for the 50% of genes with the lowest differential 

stability and for the leave-one-out analysis. Alternative network strategies are discussed in 

detail in the Supplemental Analysis.

Module enrichment analysis

Module enrichment analysis was performed using the userListEnrichment R function in the 

WGCNA library
47

. These tests included enrichment for gene ontology categories, brain cell 

types, brain regions, disease classes, and results from previous network analyses, with 

primary references cited in the main text as appropriate. All p-values in this analysis were 

Bonferroni corrected for multiple hypergeometric test comparisons. The ToppGene facility 

(https://topgene.cchmc.org)
24

 was used for access to annotation databases as discussed 

above.

Gene expression quantification in mouse

Expression levels of mouse in situ hybridization data from the Allen Mouse Brain Atlas 

were quantified using “expression energy” (fraction of stained volume * average intensity of 

stain), as described previously
18, 27

. Coronal data for 2,651 genes with expression in human 

and reproducible coronal and sagittal series in mouse (ρ>0.7) were included for comparison 

between species. For each of 53 human structures, average expression energy was calculated 

across all voxels in matched mouse structures. These values were treated the same way as 

microarray intensities for between-species correlations and network statistics. Genes in 

mouse were assigned to the same modules as their human orthologs. See Supplementary 

Methods for details on the comparison between mouse and human MEs.

Comparison with mouse ISH data

The Allen Institute Mouse Brain atlas has a comprehensive informatics pipeline (see 

Informatics Data Processing, http://help.brain-map.org/display/mousebrain/Documentation). 

While this data set only contains replicates for approximately 25% of genes, there are 2651 

genes which both had highly correlated expression patterns (ρ>0.7) in the voxel mapped 

coronal and sagittal series in mouse ISH data, and which could also be mapped using the 

orthologous gene symbols in mouse and human. In cases where gene symbol matching was 

ambiguous, the gene was omitted from the analysis. We mapped regions of the human 

ontology to analogous regions of the mouse (Supplementary Table 1). In total 62 structures 

were represented in all six human brains, and of those 53 had regions that could be defined 

in the voxel based mouse ISH data. In some cases this was due to species differences, where 

a human structure was not present in mouse, and in other cases it was due to technical details 

due to the level of annotation in mouse or human. In human, the networks were created by 

using all available regions in each brain (with contraction of cortex and cerebellum as noted 

above, ~100 regions per brain) but then visualized using only 65 structures (as discussed 

earlier). In mouse, the data was processed by finding the average expression energy (see web 

documentation above) of the 250 most highly expressed voxels in each of the 53 regions (or 

all voxels if fewer than 250 in a region), and then treating the resulting 2651x53 matrix as a 

microarray matrix. Modules eigengenes were calculated by first assigning to each mouse 
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gene the corresponding module label from the human high DS network, and then calculating 

the MEs by applying the moduleEigengenes function in the WGCNA library to the mouse 

expression energy matrix. The resulting MEs in mouse are compared with the corresponding 

values in human as discussed in the main text.

We note that, although we used all available mouse data, these 2651 genes were initially 

chosen to be run in coronal section because they were potentially biologically interesting in 

some way, and therefore represent a biased set of genes. Having said this, these genes were 

distributed across all of the human modules and therefore represent a fairly complete set of 

expression patterns at the whole-brain level. While the specific proportions of genes that 

agree between species may not be representative of the transcriptome as a whole, the 

assignment of genes as either conserved or not conserved in the text should accurately 

reflect their actual conservation based on these two data sets.

Functional connectivity

Resting-state functional connectivity was analyzed using data from the Human Connectome 

Project (HCP; http://www.humanconnectome.org/documentation/S500/). A group-average 

functional connectivity matrix (“dense connectome”) was generated from 468 subjects with 

complete 1 hour resting-state fMRI datasets (see Supplementary Methods). A cortical left-

hemisphere parcellation was generated using the 17-network resting-state-network 

parcellation of
31

, subdivided into 52 spatially contiguous left-hemisphere parcels, each at 

least 50 mm2 in cortical surface area. Parcellated connectomes were based on resting-state 

data from 447 HCP subjects using the 52 contiguous left hemisphere parcels and using 

FSLNets (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) to estimate partial correlation 

parcellated connectomes (see Supplementary Methods).

Differential stability in cortex and resting state network analysis

The resting-state functional connectivity analysis was based on data from the Human 

Connectome Project (HCP) (http://www.humanconnectome.org/documentation/S500/). To 

generate the functional connectivity map shown in Fig. 7a, a group-average functional 

connectivity matrix (“dense” functional connectome) was generated from 468 subjects 

having complete resting-state fMRI datasets (the ‘R468’ group). Each of four 15-min resting 

state runs for each subject in the group was cleaned (denoised) using 24-parameter motion 

regression followed by ICA+FIX denoising
30, 48

. The resulting cleaned runs were combined 

across the 468 related subjects, respectively, applying variance normalization of the time 

series using the same approach as MELODIC
49

, followed by a group- PCA approach (MIGP 

- MELODIC’s Incremental Group-PCA) that approximates full temporal concatenation of 

all subjects’ data. PCA is then used to output the strongest 4500 spatial eigenvectors (PCA 

components, weighted by the eigenvalues). Each gray ordinate’s spatial eigenvectors were 

correlated with those of every other gray ordinate to produce a dense connectome.

To generate a parcellation covering the entire left hemisphere with spatially contiguous 

parcels closely related to functional organization, we started with the 17-network resting-

state-network parcellation of Yeo et al., (2011). This was subdivided into 52 spatially 

contiguous left-hemisphere parcels, each at least 50 mm2 in cortical surface area (based on 
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the average surface area of each tile in standard-mesh cortical midthickness surfaces in a 

group of 196 HCP subjects). To generate the parcellated connectomes that are illustrated in 

Fig. 7a (right panel) and were used for the analyses in Fig. 7c–d, we used resting-state data 

from 447 HCP subjects having complete resting-state (and also task-fMRI) scans and used 

the aforementioned 52 contiguous parcels of the left hemisphere. Cleaned (as above) resting 

state time series were averaged across the gray ordinates within each left hemisphere parcel. 

FSLNets (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) was used to estimate partial 

correlation parcellated connectomes (52×52) in each resting state run of each subject, and 

these matrices were converted to z-scores. The z-scores were averaged across runs, and a 

one-sample t-test was performed across subjects (also converted to z-scores) to produce a 

group partial correlation parcellated connectome.

The next step is to map the Allen Human Brain Atlas (AHBA) tissue samples to the HCP 52 

region parcellation so that comparison can be made. Using the MNI centroid coordinate of 

the AHBA samples, and by manually examining each of the AHBA tissue samples using the 

online tools one can assign as set of HCP space voxels to each AHBA tissue sample. As 

each of the 52 parcels is composed of a set of voxels, we now have potentially one-to-many 

map from AHBA tissue to HCP parcels. If all ABHA tissue samples belong to a common 

HCP parcel we average the gene expression of that tissue in the corresponding parcel. 

However, some of the 52 parcels represent smaller regions of the brain and therefore there is 

no unique assignment of AHBA gene expression tissue samples to that region. Therefore if a 

collection of AHBA tissue samples intersects more than one region, we average the gene 

expression values as before but fractionally weight the expression contribution to each of the 

interesting HCP parcels. This has the effect of allowing some assignment of expression 

without overweighting non-unique samples. Supplementary Table 12 gives the sample 

distribution by parcels as well as the uniquely assigned samples.

To obtain the expression correlation matrix for a given gene (Fig. 7c, right panel), we 

transformed the expression values of that gene into z-scores over all the sampled brain 

regions (averaging sample data for those samples contained in the same parcel), and 

calculated the “co-expression” as the outer product of this z-score vector. Thus, if two 

regions both show high expression or low expression of the gene of interest, they will have a 

high positive co-expression value for that gene, whereas if they show opposite expression 

patterns, they will have a large negative value for that gene. After generating these matrices, 

we compared each of the 17,348 gene co-expression matrices to the parcellated connectome 

matrix by calculating the Pearson’s correlation between the vectorized upper diagonal 

elements of the matrices (Fig. 7d). We also obtained a significance value for each gene-

connectivity comparison using the randomized gene co-expression matrices. Supplementary 

Table 12 gives the complete distribution of tissue samples by HCP parcel for the 52 regions 

and the functional genetic correlations and p-values.

Statistics of the methods

Standard methods are presented without detailed description. Less standard methods are 

described in the main text, in the Online Methods, or through citations to references where 
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they are described in detail. To the best of our knowledge, statistical tests were chosen such 

that the data meet assumptions of the specific statistical test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Reproducible differential gene expression between brain regions across six individuals
(a) Consensus map of all genes differentially expressed between any pair of 96 regions in at 

least five of six specimens. Each matrix entry represents the number of genes with at least a 

fold change > 3 in expression level between those two structures (unpaired t-test, Benjamini 

& Hochberg FDR corrected q-value q< 0.01). The scale is log base 2 with deep blue 

indicating no genes that are differentially expressed above threshold. Large differences 

between major brain structures are apparent, with comparative homogeneity within 

structures such as cerebellum, amygdala, and cerebral cortex. LiG-str (Lingual Gyrus – 

striate cortex) contains primary visual cortex (red arrow), which shows differential 

expression relative to the rest of cerebral cortex. (b) Consistent expression pattern of PCDH8 

across individual brains (numbered 1–6), with cortical and cerebellar samples reduced to 

major lobes (shown for 65/132 structures for readability) (FL: frontal lobe, OL: occipital 

lobe, TL: temporal lobe, PL: parietal lobe). CTX: cortex; HP: hippocampus; AMG: 

amygdala; STR: striatum; HY: hypothalamus; TH: thalamus; CB: cerebellum; P: pons; MB: 

midbrain; WM: white matter; GPi, Globus pallidus, internal segment; CA2, Hippocampal 
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CA2 subfield; SNC, substantia nigra, pars compacta; Sp5, spinal trigeminal nucleus; Acb, 

nucleus accumbens.
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Figure 2. Relationship of DS to brain structure, function and disease
(a) DS is strongly correlated with the fraction of conserved differential gene expression 

relationships between brain regions (81 regions in >=5/6 brains, averaged across each pair of 

brains). PCDH8 (black) has high DS, whereas CKS2 (blue) and MYCN (red) show greater 

variability among individuals. (b) Variation over 132 structures (s.d.) versus expression level 

for all 17,348 genes. There is no significant relationship between the highest DS genes (top 

10% highlighted in red), and expression level (ρ=0.064). Green lines indicate 25th percentile 

in mean expression level and s.d., respectively. (c) Multi-dimensional scaling analysis to 

represent transcriptional similarity between anatomical structures using the top 10% of DS 

genes. Anatomical subdivisions generally cluster according to their membership in major 

brain structures, common ontogenetic origin and topographic proximity (see Supplementary 

Table 1 for abbreviations). (d) Highest DS genes are significantly overrepresented (B&H 

corrected, FDR q<0.01) in functional annotations, dramatically so for drug targets 

(TFBS=transcription factor binding site; GO:MF=Gene Ontology Molecular Function; 
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CC=Cellular Component; BP=Biological Process; miRNA = miRNA binding site). (e) 

Strong relationship between DS rank and frequency of study in the literature. Genes ordered 

by DS score on x-axis; the y-axis shows the fraction of genes in sliding windows of 600 

genes (blue) scored for brain citation based on PubMed queries of the form “gene name” + 

“brain” (scoring 0 no hit, 1 for positive hits). (f) DS distribution of genes associated with 

brain diseases relative to all genes, showing the 25th to 75th percentile range for each gene 

set from Autworks (left panel). Diseases are sorted by a hypergeometric test (right panel), 

assessing significance of overlap between each gene set and the top 10% of DS genes (-

log10 p-values).
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Figure 3. Consensus co-expression patterns of the adult brain
(a) Schematic showing network construction using consensus WGCNA on high DS genes

22
. 

Panel 1: Assignment of genes to modules. Panel 2: Module eigengene expression for M7 

showing consistent patterning across all 6 brains with peak expression in the striatum. (b) 

Distribution of DS scores for all genes (left) and genes with ΔBR> 0.528 used for initial 

network construction (middle). DS metric applied to MEs demonstrates very high 

consistency of module patterns across brains (right). Inset shows DS score for each ME. (c) 

Percentage of known neuron, astrocyte and oligodendrocyte-enriched genes in 32 modules, 

ordered by proportion of neuron-enriched gene membership. (d) Module composition for the 

top 10% of DS genes (left) versus all genes (right), with modules color-coded from high 

(blue) to low (red) neuron-enriched gene membership. Note larger proportion of genes 

assigned to more neuronal modules for high DS genes compared to all genes. (e) Majority of 

gene annotations are associated with a subset of modules. Log counts of number of 

significant (B&H corrected, FDR q<0.05) enrichments for gene ontology terms, protein 

interaction, cytoband, gene families, pathways, and drug interactions. Modules ordered from 

most (M24, left) to fewest (M8, right) annotations, with neuron-enriched gene membership 

indicated in top color bar.
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Figure 4. Anatomical specificity of module expression
(a) Hierarchical clustering of the modules M1-M32 with anatomic ordering fixed from 

cortex to brainstem. Individual modules are enriched in specific structures, with a major 

partition between predominantly telencephalic versus deeper brain region enrichment. (b) 

Anatomical patterning of 4 representative modules with average ME expression values 

plotted on brain diagrams and on bar plots (SEM error), with a representative hub gene. 

Anatomical structures (color-coded by major structure) ordered from neocortex (left) to 

brainstem (right). Plots for all modules provided in Supplementary Figures 5–8.
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Figure 5. Unique anatomical patterning of a subset of high DS genes
Relative (z-score normalized) expression of 50 genes (rows) across anatomical structures 

(columns) ordered from cortex to brainstem, clustered by expression pattern. The solute 

carrier family 17, member 8 (SLC17A8) gene is primarily expressed in the claustrum (Cl, 

cyan arrow), ribosome biogenesis regulator homolog (RRS1) is enriched in the inferior 

olivary nucleus (IO, black), and urotensin 2B (UTS2D, green) in the amygdala. These 

anatomically specific genes have low correlation with any of the 32 major modules.
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Figure 6. Module preservation from human to mouse
(a) Mouse-human module preservation index, which measures conserved within-module 

gene co-expression in an anatomy-independent fashion, shows the highest preservation of 

some of the most neuronal modules (M1, M6, M7). (b) Conservation of anatomical 

patterning, defined as the proportion of mouse genes correlated at ρ > 0.4 to the 

corresponding human ME (green bars). A subset of genes in each module are both poorly 

correlated to the human eigengene (gray bars), and very highly correlated to a different 

human module eigengene (ρ > 0.8, red bars). (c–g) Correspondence of ME anatomical 

patterning between human and mouse. Histogram representation of ME pattern in human 

(light blue) and mouse (orange), with overlap in green, demonstrating highly conserved 

patterns for M6, M10, M11 and M17, while M30 is weakly anti-correlated. Inset panels 

show correlation between mouse and human. Asterisks indicate samples present in human 

but not mouse. Mouse ISH for genes with matching and mismatched patterns in right panels, 

representing genes in the green and red categories in (b). Arrows indicate areas of 

differential regulation in mouse. All ISH images from the Allen Mouse Brain Atlas.
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Figure 7. Cortical DS and Functional Connectivity
(a) Resting-state functional connectivity from Human Connectome Project (HCP) data 

(www.humanconnectome.org;
29, 45

). (Column 1): Functional connectivity from a seed in 

lateral parietal cortex (black disk), based on a group-average of 468 HCP subjects and 

showing the full correlation results (scale: Fisher z-transformed ρ); dataset accessible via 

https://db.humanconnectome.org/data/projects/HCP_500). (Column 2): 52 left-hemisphere 

contiguous parcels (50 mm2 or larger) from the 17 resting-state networks (RSN) identified 

by Yeo et al. (2011). (Column 3): parcellated connectivity map for a default-mode network 

(DMN) parcel (black outline) containing the selected seed, based on 447 HCP subjects (a 

subset of the above 468) and using partial correlation (scale: z-score). (Column 4): Group-

average (n=447) parcellated connectome showing relative connection strength between 

regions, also based on partial correlation. White rectangular outline identifies connectivity 

map shown in col. 3. (b) Ranked cortical DS genes (solid red) and brain wide DS genes 

(black). Top 5th percentile g=867 cortex DS genes (vertical line) are shown as hatch marks 

just above the whole-brain DS curve. Red disk and triangle show two genes with differing 

brain-wide and cortical DS. (c) Functional correlation of parcellated RSN connectome (left 

panel) is compared with genetic co-expression similarity for each gene in each subject (right 

panel), using the same set of cortical parcels and by calculating the Pearson’s correlation 

between the vectorized upper diagonal elements of the matrices. (d) DS versus functional-

genetic correlation for 17,348 genes. Higher cortical DS genes are more predictive of 

functional cortical connectivity (ρ=0.46, p<2.2e-16), whereas the correlation is substantially 

weaker for brain wide DS (ρ=0.17; data not shown). Red points are 132 genes identified as 

drivers of functional connectivity in a postmortem brain tissue data set whose 
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polymorphisms significantly affect resting-state functional connectivity in a large sample of 

healthy adolescents
28

.
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Table 1
Ontological and functional associations of the canonical modules

Each module is given with a representative hub gene, anatomic description, ontology and pathway, drug and 

disease associations.

Module (Hub gene) Anatomy Ontology/Pathway (q-value FDR) Drug/Disease (q-value FDR)

MO1 (GABRB3) Telecephalon Synaptic transmission, q<1.07e-17, 
regulation of synaptic pasticity, 

q<1.04e-10 (*)

Cocaine related disorders, q<4.51e-09, nicotene 

addiction, q<5.38e-06 (*)

M03 (KCNAB2) Hippocampus, thalamus, pons, medulla Neurotransmitter transport, 

q<4.28e-06 (*), axon part, 8.62e-07 
(*)

Abnormality of pyramidal motor function, 
q<1.99e-03

M04 (GABARAPL1) Thalamocortical Synaptic vesicle cycle, q<4.66e-14 
(*), insulin receptor recycling, 

q<2.72e-05 (*)

Huntington’s Disease, q<1.28e-04 (*)

M06 (MEF2C) Neocortex, claustrum Postsynaptic membrane, 
q<2.5e-05, cell signaling, 
q<3.58e-06

Clozapine (schizophrenia, bipolar disease), 
q<1.87e-03

M07(NGEF) Striatum, neocortex, amygdala Calcium signaling pathway. 
q<1.07e-04, dendritic spine 

membrane, q<1.69e-03(*)

Fluxoxetine (depression, OCD), q< 4.34e-03

M09 (PGAP1) Hippocampus, amygdala, hypothalamus Synaptic membrane, q<5.23e-04, 
zinc finger, CH-2, q<6.23e-03

Cognitive impairment, q<5.99e-04, Amyotrophic 

lateral sclerosis, q<1.74e-03 (*)

M10 (ADORA2A) Striatum Monoamine GPCRs, q<7.27e-05 
(*), dopamine receptor signaling, 

q<3.30e-05(*)

Drug induced dyskinesia, q< 1.23e-06 (*), 
haloperidol (schizophrenia, Tourette’s), q< 
9.76e-07

M11 (NTNG1) Dorsal thalamus Cadherin signaling pathway, 

q<2.02e-03 (*), cholinergic 

synapse, q<2.45e-04 (*)

Alzheimer disease-presenilin pathway, q< 

2.78e-03 (*)

M12 (SLC6A3) Substantia nigra, ventral tegmental area Adrenaline, noradrenaline, 
q<5.48e-06, and dopamine 

biosynthesis, q<8.39e-06 (*)

Cocaine addiction, q <5.64e-05, dopamine, 
q<3.68e-06

M14 (TLE6) Hypothalamus Neuropeptide signaling, 

q<9.75e-03 (*), GPCR ligand 

binding, q<1.76e-04 (*)

X-linked mental retardation, 2.47e-03 (*), 
Praeder-Willi syndrome, q< 2.47e-03 (*)

M15(NEFH) Deep cerebellar nuclei, brainstem Neuron projection, q<3.42e-03, 

neurofilament, q<3.49e-04 (*)
Dexamethasone(cerebral Inflamatory), q<4.99e-03

M16 (SLC47A1) Dentate gyrus Protocadherin genes, q<5.740e-04 
(*)

Depressive disorder, 8.48e-03(*), Parkinson’s, 
q<8.48e-03

M17 (CBLN3) Cerebellar cortex Zinc fingers, C2H2-type, 
q<3.66e-05, spinal cord 

development, q<8.83e-03 (*)

M19 (VDAC2) Thalamus, cerebellar nuclei, brainstem Vasculature development, 

q<1.17e-17 (*), mitochondrial, 
q<5.50e-82

Ataxia, q<2.65e-09 (*), Leigh’s syndrome, 

q<2.18e-08 (*), Alzheimer’s disease, q<3.98e-22 
(*)

M20 (B3GAT1) White matter, neocortex, basal ganglia, 
ventral thalamus

Eukaryotic translation, q< 6.32e-03 
(*), ribosomal nucleolus, 
q<4.82e-14

Disease progression, q<5.79e-05, selenium, 
q<2.00e-06, Abnormal blood glucose, q<1.20e-03 
(*)

M21 (GBP4) Sensory-motor nuclei, choroid Vasculature development, 

q<1.17e-17 (*)
Toluene (abuse), q<3.61e-15, losartan (stroke), 
q<8.13e-08, azidothymidine (HIV), q<1.17e-07
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Module (Hub gene) Anatomy Ontology/Pathway (q-value FDR) Drug/Disease (q-value FDR)

M24 (POGZ) Cerebellar cortex, dentate gyrus, white 
matter, basal ganglia

Zinc fingers, C2H2-type, 
q<7.37e-40, chromatin 

organization, q<2.77e-16 (*)

Beta-methylcholine, q<1.53e-16, ellipticine 
(cancer), q<1.32e-09

M25 (RGS10) Ependyma, white matter, substantia 
nigra

Immune system regulation, q< 

3.71e-35 (*), inflamatory response, 

q<3.70e-26 (*)

Systemic lupus erythematosus, q < 8.49E-29 (*), 
Malignant glioblastoma, q<1.01e-9

M26 (MYCBP) Ependyma Cilium organization, q<1.47e-28 
(*), Axoneme,q<1.79e-33 (*)

Breathing disregulation, q < 2.25e-05 (*)

M28 (SERPINA6) Interbrain-hindbrain nuclei G-protein coupled receptors, 

q<4.06e-07 (*), olfactory receptors, 

q<1.0e-03 (*)

M29 (GAS5) White matter, substantia nigra, globus 
pallidus

Cytosolic ribosome, q<2.96e-102 
(*), translation activity, q<1.81e-85 
(*)

Influenza lifecyle, q<4.87E-69 (*), Vigabatrin 
(seizures, epilepsy), q<1.70e-18,

M30 (VAMP3) White matter, ventral thalamus, globus 
pallidus

Myelination, neuron ensheathment, 

q<1.48e-06(*)
Cognitive impairment, q<8.99e-06 (*), Hereditory 

spastic parapaligia, q< 7.83 e-03 (*)

M32 (SLC25A18) Striatum, amygdala, substantia nigra Glial cell differentiation, 
q<4.04E-05, astrocyte 

differentiation, q<2.42e-04 (*)

Dexamethasone (corticosteriod), q<1.58e-07, 

deafness, q<6.67e-3(*)

(*)
indicates uniquely associated with the module. Modules not reported are weakly annotated. All q-values 0.01 FDR.
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