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ABSTRACT Microbiota is implicated in hepatocellular carcinoma (HCC). The spec-
trum of intratumoral microbiota associated with HCC progression remains elusive.
Fluorescence in situ hybridization revealed that microbial DNAs were distributed in
the cytosol of liver hepatocytes and erythrocytes. Viable anaerobic or aerobic bacte-
ria were recovered in HCC tissues by fresh tissue culture. We performed a compre-
hensive DNA sequencing of bacterial 16S rRNA genes in 156 samples from 28 normal
liver, 64 peritumoral, and 64 HCC tissues, and the DNA sequencing yielded 4.2 million
high-quality reads. Both alpha and beta diversity in peritumor and HCC microbiota were
increased compared to normal controls. The most predominant phyla in HCC were
Patescibacteria, Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota. phyla of
Proteobacteria, Firmicutes, and Actinobacteriota, and classes of Bacilli and Actinobacteria,
were consistently enriched in peritumor and HCC tissues, while Gammaproteobacteria
was especially abundant in HCC tissues compared to normal controls. Streptococcaceae
and Lactococcus were the marker taxa of HCC cirrhosis. The Staphylococcus branch and
Caulobacter branch were selectively enriched in HBV-negative HCCs. The abundance of
Proteobacteria, Gammaproteobacteria, Firmicutes, Actinobacteriota, and Saccharimonadia
were associated with the clinicopathological features of HCC patients. The inferred func-
tions of different taxa were changed between the microbiota of normal liver and peritu-
mor/HCC. Random forest machine learning achieved great discriminative performance in
HCC prediction (area under the curve [AUC] = 1.00 in the training cohort, AUC = 0.950
for top five class signature, and AUC = 0.943 for the top 50 operational taxonomy units
[OTUs] in the validation cohort). Our analysis highlights the complexity and diversity of
the liver and HCC microbiota and established a specific intratumoral microbial signature
for the potential prediction of HCC.

IMPORTANCE Gut microbiome is an important regulator of hepatic inflammation,
detoxification, and immunity, and contributes to the carcinogenesis of liver cancer.
Intratumoral bacteria are supposed to be closer to the tumor cells, forming a micro-
environment that may be relevant to the pathological process of hepatocellular
carcinoma (HCC). However, the presence of viable intratumoral bacteria remains
unclear. It is worth exploring whether the metataxonomic characteristics of intratu-
moral bacteria can be used as a potential marker for HCC prediction. Here, we pres-
ent the first evidence of the existence of viable intratumoral bacteria in HCC using
the tissue culture method. We revealed that microbial DNAs were distributed in the
cytosol of liver hepatocytes and erythrocytes. We analyzed the diversity, structure,
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and abundance of normal liver and HCC microbiota. We built a machine learning
model for HCC prediction using intratumoral bacterial features. We show that specific
taxa represent potential targets for both therapeutic and diagnostic interventions.

KEYWORDS hepatocellular carcinoma, microbiota, fluorescence in situ hybridization,
bacteria, machine learning

Liver cancer is the sixth most common cancer and the fourth most deadly cancer
worldwide (1). According to GLOBALCAN statistics, there were 840,000 new cases

and 780,000 liver cancer deaths in 2018 (2). Hepatocellular carcinoma (HCC) accounts
for 75% to 85% of primary liver cancer cases, which may be caused by alcoholic hepati-
tis, nonalcoholic steatohepatitis, obesity, smoking, type 2 diabetes, or aflatoxin expo-
sure (2). However, the major risk factor of HCC (especially in Asia) is chronic infection
with hepatitis B virus (HBV) or hepatitis C virus (HCV) (3).

Other microorganisms may also lead to the occurrence and development of HCC
and other liver diseases. Through the gut-liver axis, gut microbiota may modulate liver
diseases, including liver cancer, by transporting bacteria and their metabolites to the
liver through the vascular and portal circulation systems (4, 5). Gut microbiota can
influence the hepatotoxicity of certain drugs, such as tacrine (6). Intestinal microbiota
and bacteria-derived lipopolysaccharide and Toll-like receptors have been shown to
promote HCC (7). Gut bacteria mediate the conversion of primary bile acid to second-
ary bile acid, increase the accumulation of natural killer (NK) and T cells and stimulate
the production of interferon gamma, thereby eliciting an antitumor effect in HCC (8).
Gut microbial metabolites, such as lipoteichoic acid and deoxycholic acid, contribute
to the development of HCC (9, 10). These data suggest that commensal bacteria are
important regulators of hepatic inflammation, detoxification, and immunity, and con-
tribute to chronic diseases, fibrosis, and liver cancer. A comprehensive metataxonomic
analysis has been performed to address the composition, abundance, and dysbiosis of
gut microbiota of liver diseases, including HCC (5, 11). The gut microbiome of patients
with liver cirrhosis was characterized and compared with that of healthy controls. The
results showed that most of the gut species enriched in patients with liver cirrhosis ori-
ginated from the oral cavity (12).

In addition to the gut microbiota, tissue-enriched and intratumoral bacteria may be
associated with carcinogenesis. There is growing evidence that different types of
human cancers, such as breast, lung, ovary, pancreas, melanoma, bone, and brain
tumors, have a unique microbiota composition of intratumoral bacteria (13). Interestingly,
most of the intratumoral bacteria in these cancer types are located intracellularly and are
found in both cancer cells and immune cells (13). The analysis of the microbiota of pan-
creatic adenocarcinoma showed different alpha-diversity in patients with long-term or
short-term survival, with the tumor microbiota cross-talking with the gut microbiota and
modulating the host’s immune response (14). These findings indicate that the intratumoral
microbiota is heterogeneous across different cancer types and may also differ from the asso-
ciated gut microbiota. The intratumoral microbiota may contribute to cancer carcinogenesis
or immunity through different mechanisms and signaling. In contrast to the gut microbiota,
the intratumoral microbiota of liver cancer remains elusive. Although a recent study has
shown that the liver tissue in nonalcoholic fatty liver disease (NAFLD) has a taxonomic pro-
file of a variety of bacteria DNA (15), the presence of viable bacteria in the liver and the cel-
lular distribution of intratumoral bacteria remain known. Furthermore, the dysbiosis of the
HCC microbiota, the disease state-specific taxa of HCC, and the association of the bacteria
burden with the clinicopathological characteristics of HCC should be addressed.

Here, we analyzed the microbial spectrum of human normal liver, peritumor, and
HCC tissues using 16S rRNA gene sequencing of 155 liver samples and identified spe-
cific microbial signatures that could be potentially used for HCC diagnosis. We also
verified the existence of intratumoral microbes in HCC using fluorescence in situ
hybridization (FISH) and fresh tissue culture methods.
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RESULTS
HCC microbial DNA was enriched in the cytoplasm of hepatocytes and erythro-

cytes. To evaluate the distribution and abundance of the microbial DNA in liver cancer,
we performed a FISH analysis of an HCC tissue and its related peritumor tissue freshly
collected during cancer resection, using a 16S rRNA probe, as previously reported (13).
For comparison purposes, we repeated hematoxylin and eosin (H&E) staining and
Gram staining with consecutive sections (see Fig. S1A in the supplemental material).
The FISH signals were distributed in the cancerous and peritumoral tissues and con-
centrated in some areas (Fig. S1B). Hepatocytes (HCC tissue) within the congestion
area were also strongly stained, especially in the cytosol rather than the nucleus
(Fig. 1). In the peritumoral tissue, we found that the FISH signals were enriched in the
nucleus-free red blood cells (RBCs) in several expanded sinusoid areas that emitted the
strongest signals (Fig. S2). The accumulation of RBCs in the sinusoid indicated serious
congestion of the injured liver tissue. Negative probe staining also showed visible
signal, but mainly concentrated on the nuclei. Hepatic bile ductules circulated with
simple columnar epithelium were negative for bacterial 16S rRNA probe staining (Fig.
S3 and S4).

Viable and infectious bacteria were present in HCC tissues. To investigate the
presence of viable bacteria in the liver, we performed tissue culture using fresh HCC tis-
sues collected during surgery. As a positive control, the aerobic cultures of an environ-
ment sample yielded thousands of colonies, while the anaerobic cultures produced
more than 30 visible colonies (Fig. S5A and B). On the other hand, aerobic or anaerobic
cultures of negative controls yielded no visible colonies even after prolonged incuba-
tion, indicating the reliability of our tissue culture method (Fig. S5C and D). Twelve
paired peritumoral and HCC tissues were homogenized and subjected to aerobic and
anaerobic cultures in parallel (Table S1). After prolonged incubation of the liver sam-
ples, two peritumor tissues and three HCC tissues grew visible colonies, while no colo-
nies appeared in the cultures of the other samples (Fig. S5E–J). These colonies were
subjected to colony PCR (using 16S rRNA gene primers) and DNA sequencing (Table
S2A). Thirteen colonies were identified, of which two colonies (14P-G-2 and 9T-G-1)
were Staphylococcus aureus (Fig. S5G and H), while eight colonies were facultative
anaerobes of the genus Rothia. Two colonies in the HCC tissues were aerobic species
of the family Bacillaceae (1T-B-1 and 1T-B-2) (Fig. S5I). One colony was a microaero-
philic bacterium belonging to the genus Corynebacterium sp. (Fig. S5J). These results
suggest that the liver cancer tissue contains viable intratumoral bacteria.

The metataxonomic analysis of liver cancer. 16S rRNA gene sequencing repre-
sents a robust and culture-independent strategy for determining the structure and abun-
dance of environmental microbiota. We performed high-throughput 16S rRNA gene
sequencing to address the structure and abundance of the liver cancer microbiota. The
“16S_rRNA cohort” contains 168 liver tissue samples from 100 individuals, including 68
HCCs and paired peritumor tissues, 3 independent peritumor tissues, and 29 normal liver
tissues which were isolated from patients with liver metastasis of colon cancer or other
non-HCC diseases (Fig. S6A, Table S1). The median age of the control and HCC groups
was comparable (58 versus 60 years), while the incidence was higher in men with HCC
(56 men versus 15 women) compared to controls (13 men versus 16 women).

The 16S rRNA genes of 155 samples were successfully amplified and sequenced,
while 13 samples failed with no visible PCR bands (Fig. S6A). We also sequenced 14
negative-control samples, including six DNA extraction controls that used blank extrac-
tion reagents in two extraction experiments and eight PCR amplification controls that
used sterile water in three batches of PCR experiments. The concentrations of the DNA
extracts and the PCR product were extremely lower in the extraction negative controls
than that of the liver tissue samples (Fig. S6B). The sequencing yielded 4,191,508 high-
quality and valid reads for liver samples, and 23,854 valid reads for the blank reagent
controls (Table S2B). Seven liver tissues with valid reads ,10,000 were considered
unsuccessful and excluded from downstream analysis (Fig. S6B). The negative control
results were used for contamination filtering by the decontam program (16). Finally,
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FIG 1 FISH analysis of liver cancer. Formalin-fixed paraffin-embedded (FFPE) liver cancer sections were deparaffinized, rehydrated, and probed with Cy3-
labeled probes EUB338 (59-GCTGCCTCCCGTAGGAGT-39) (red) or Cy5-labeled nonspecific complement probe (59-CGACGGAGGGCATCCTCA-39) (pink). Both
probes have been recently used to analyze the intratumoral microbiota of human cancer tissues (13). The nuclei were counterstained with diamidino-
phenyl-indole (DAPI). A. Single-mode image of the staining. The yellow box indicates the region enlarged in the low right. B. DAPI staining of the nuclei. C.
EUB338 staining. D. Negative staining. E. The merged image of different staining. The yellow arrows indicate clustered RBCs in the congestion area. The
arrowheads indicate RBCs outside the congestion area. F. Hematoxylin-eosin staining of a sequential tissue section. The region corresponding to the FISH
image was shown. RBC, red blood cell. HC, hepatocyte. CV, central vein.
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the sequences were assembled into 3,504 operational taxonomy units (OTUs) with
97% sequence similarity and taxonomic identities were determined.

Alpha diversity of the microbiota was significantly higher in HCC than in the
normal liver. The Venn diagram showed that 508 OTUs were shared among the three
groups, while 709 OTUs were shared between the peritumoral microbiota (PtM) and the
HCC microbiota (HccM) (Fig. 2A). PtM (Sobs_index/Padj = 5e-8; Chao_index/Padj = 1.9e-7;
Ace_index/Padj = 1.1e-7) and HccM (Sobs_index/Padj = 1.7e-8; Chao_index, Padj = 1.8e-8;

FIG 2 The a-diversities of NM, PtM, and HccM. A. The Venn diagram of the OTUs identified from NM, PtM, and HccM. B–H. The alpha diversity between
three groups, including the richness indices Sobs (B), Chao (C), and Ace (D), diversity indices Shannon (E) and Simpson (F), and evenness indices
Shannoneven (G) and Heip (H), were evaluated using two-sided Wilcoxon sum rank test. I. PCoA of binary Jaccard distance at the OTU level. The ellipses
indicate the confidence interval (CI). The difference between the groups was tested using the Adonis algorithm with the number of replacements of
999.
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Ace_index/Padj = 1.5e-8) had significantly higher richness indices at the OTU or species
level than the normal liver microbiota (NM) (Fig. 2B–D, Fig. S7A to C). Compared to NM,
the diversity index Shannon was increased in PtM (OTU/Padj = 2.7e-9) and HccM (OTU/
Padj = 1.8e-9), while Simpson was decreased in PtM (OTU/Padj = 1.1e-7) and HccM (OTU/
Padj = 1.2e-8), which also indicated that PtM and HccM had a higher bacterial diversity
(Fig. 2E and F, Fig. S7D and E). Furthermore, the evenness index of PtM (Shannoneven/
Padj = 6.9e-9; Heip/Padj = 2.3e-7) and HccM (Shannoneven/Padj = 1.5e-7; Heip/Padj = 6.8e-6)
were significantly higher than those of NM (Fig. 2G and H, Fig. S7F and G). No significant
differences in alpha diversity were observed between PtM and HccM.

Principal coordinate analysis (PCoA) of the binary_jaccard distance at the OTU or
species level revealed that NM was significantly different from PtM and HccM (OTU,
R = 0.1078/Adonis P = 0.001) (Fig. 2I, Fig. S7H). Especially, eight peritumor samples
were clustered with the normal samples, indicating their similarities in microbial fea-
tures. Interestingly, the samples clustered closer together had lower Shannon diversity
(especially the normal sample), whereas the more widely dispersed samples had higher
Shannon diversity (Fig. S7I). Partial Least Squares Discriminant Analysis (PLS-DA) repre-
sents a discriminant analysis method for revealing specific bacterial taxa that contrib-
ute to major differences between different microhabitats. PLS-DA analysis performed
at the phylum level revealed a similar bacterial profile separating the sample groups.
Component one, which characterized the normal subjects with bacterial taxa Acidobacteriota,
Patescibacteria, and others, accounted for 12.9% of the variance, while component three,
which characterized the HCC subjects with Proteobacteria, Patescibacteria, and other taxa,
accounted for 6.4% of the variance (Fig. S7J).

The bacterial profile of HCC is significantly different from that of the normal
liver. The comparison of taxonomic abundance among NM, PtM, and HccM was listed in
Table S2C to E. The phyla Patesibacteria, Proteobacteria, Bacteroidota, Firmicutes, and
Actinobacteriota accounted for 92.88% of all taxa (Fig. 3A and B). At the class level, the top
five classes were Parcubacteria, Gammaproteobacteria, Bacteroidia, Alphaproteobacteria, and
Bacilli, from highest to lowest (Fig. 3B). The composition and abundance of bacteria at other
levels were shown in Fig. S8. At the phylum level, PtM was enriched in Proteobacteria (Padj =
0.0050; Wilcoxon Sum Rank test [similarly hereinafter]), Firmicutes (Padj = 0.0003), and
Actinobacteriota (Padj = 0.0081), compared to NM, which showed higher levels of
Patescibacteria (Padj = 0.0003) and Acidobacteriota (Padj = 0.0037) (Fig. 3C, Table S2C). At the
class level, PtM was prevalent with Bacilli (Padj = 0.0001) and Actinobacteria (Padj = 0.0417),
compared to NM, which contained significantly higher Parcubacteria (Padj = 0.0001) and
Acidobacteriae (Padj = 0.0001) (Fig. 3D).

Regarding HCC, at the phylum level, HccM showed a higher prevalence of Proteobacteria
(Padj = 0.0000), Firmicutes (Padj = 0.0000), and Actinobacteriota (Padj = 0.0045), and reduced
prevalence of Patescibacteria (Padj=0.0000) and Acidobacteriota (Padj = 0.0005) compared to
NM (Fig. 3E). At the class level, HccM was enriched for Gammaproteobacteria (Padj = 0.0056),
Bacilli (Padj = 0.0000), and Actinobacteria (Padj = 0.0159) compared to NM, which contained
significantly higher levels of Parcubacteria (Padj = 0.0000) and Acidobacteriae (Padj = 0.0000)
(Fig. 3F, Table S2D).

The above observations suggested that HccM and PtM had a quite similar profile of
enriched or reduced taxa compared to NM. The five differential taxa (phyla or classes)
were not statistically different between HccM and PtM (Fig. 3G and H). However, as of
note, Gammaproteobacteria was significantly enriched in HccM but not PtM compared
to NM. To verify the results of 16S rRNA sequencing, we performed a qPCR analysis of
Gammaproteobacteria using samples from the 16S_rRNA cohort and an independent
cohort containing 12 samples (qPCR_cohort) (Table S1). Consistent with the results of
16S rRNA gene sequencing, the abundance of Gammaproteobacteria in cancerous tis-
sues was significantly higher (Student’ s t test, P = 0.033 in 16S_rRNA cohort or P =
0.0005 in qPCR_cohort) than in the normal samples (Fig. 3I and J). The peritumor tis-
sues showed a higher average abundance of Gammaproteobacteria than normal tis-
sues, although no statistical significance was achieved. Normal and peritumor samples
did not differ significantly in terms of Gammaproteobacteria.
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FIG 3 The profile of intratumoral microbes among normal, peritumor, and HCC tissues. A. The pie plot shows the proportion of
each phylum in all liver microbiota based on OTU. B. The bar plot of the taxonomic composition at the phylum and class levels of

(Continued on next page)

Microbiome Analysis of Hepatocellular Carcinoma Microbiology Spectrum

September/October 2022 Volume 10 Issue 5 10.1128/spectrum.00983-22 7

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.00983-22


The enrichment of taxa at other taxonomic levels in HccM or PtM compared to NM
was also shown in Table S2E. Heatmap analysis revealed the relationship between
identified genera and the abundance across different liver microbiota (Fig. S9).

Specific bacteria taxa of HccM revealed by the linear discriminant analysis
(LDA) effect size (LEfSe) analysis. To further confirm the statistical differences and identify
biological important taxa that distinguish different microhabitats, we performed LEfSe analy-
sis with a logarithmic LDA score cutoff$3.0 (Table S3A). LEfSe results confirmed that the PtM
of HCC patients had increased phyla Proteobacteria, Firmicutes, and Actinobacteriota, and
classes Bacilli, Gammaproteobacteria, Alphaproteobacteria, Saccharimonadia, Actinobacteria,
Thermoleophilia, and Negativicutes, but decreased phyla Protescibacteria and Acidobacteriota,
and classes Acidobacteriae and Clostridia, compared to NM controls (Fig. 4A and B). In HccM
of HCC patients, the phyla Proteobacteria, Firmicutes, and Actinobacteriota, and classes

FIG 4 LEfSe analysis reveals the specific taxa of NM, PtM, and HccM. A. Cladogram showing the taxonomic tree of taxa with significantly differential
abundance between normal (N) and peritumor (P) tissues. B. Histogram plot showing the linear discriminant analysis (LDA) scores (.3) of bacterial taxa
with significantly differential abundance between normal and peritumor subjects. C. Cladogram showing the taxonomic tree of taxa with significantly
differential abundance between normal (N) and HCC (T) tissues. D. Histogram plot showing the LDA scores (.3) of bacterial taxa with significant
differential abundance between normal (N) and HCC subjects (T). The asterisks indicate the taxa with LDA scores . 4.

FIG 3 Legend (Continued)
NM, PtM, and HccM. C and D. Taxa abundance at the phylum or class level with significant difference between normal and
peritumor microbiota. The significance was calculated using the two-tailed Wilcoxon sum rank test with continuity correction. The
P-value was adjusted using the FDR method with 95% CI calculated using the bootstrap method. The adjusted P-values are shown
on the top of the bars. E and F. Taxa abundance at the phylum or class level with significant difference between normal and HCC
microbiota. G and H. Taxa abundance at the phylum or class level with significant difference between PtM and HccM. I and J. The
abundances of Gammaproteobacteria were validated using qPCR analysis of the subjects randomly selected from the 16S_rRNA
cohort (I) and an independent cohort (qPCR_cohort) (J) containing 6 peritumor (P) and 6 tumor (T) samples. The normal (N) samples
measured were randomly selected from the 16S_rRNA cohort. The significance was calculated using unpaired and two-sided
Student's t test. NS, nonsignificant.
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Bacilli, Gammaproteobacteria, Alphaproteobacteria, Saccharimonadia, and Actinobacteria,
were specifically enriched, whereas the phyla Protescibacteria and Acidobacteriota and
classes Parcubacteria and Acidobacteriae were reduced, compared with NM controls
(Fig. 4C and D).

In tissue culture, we have identified several viable species in peritumor or HCC speci-
mens. Among these species, Rothia and Kocuria sp. belonged to the family Micrococcaceae
(class Actinobacteria), which was found to be significantly enriched in both peritumor (LDA
score = 3.10, Kruskal-Wallis test/Padj = 0.0256) and HCC (LDA score = 3.35, Padj = 0.0004)
(Table S3B). Corynebacterium jeikeium, a member of the order Corynebacteriales (class
Actinobacteria), was found to be enriched in both peritumor (LDA score = 3.27, Padj =
0.0016) and HCC (LDA score = 3.38, Padj = 0.0030). The viable species Cytobacillus horneck-
iae and S. aureus belonged to the class Bacilli (Table S2).

Bacteria taxa showing differential abundance between HCCs with cirrhosis and
HCCs without cirrhosis. We analyzed the bacteria taxa that differed in abundance
between cirrhotic (n = 28) and noncirrhotic (n = 34) HCC (Table S1A). Three HCCs were
excluded from the analysis due to a low number of reads (,10,000). We found that the
family Streptococcaceae (Wilcoxon test, adjusted P = 0.047) and the genus Lactococcus (P =
0.036) were significantly higher in cirrhotic HCCs than in noncirrhotic HCCs (Fig. 5A). On the
other hand, the phylum Verrucomicrobiota, class Chlamydiae, order Xanthomonadales and
Caulobacterales, family Caulobacteraceae, and genus Bradyrhizobium were significantly
reduced in cirrhotic HCCs. We performed LEfSe analysis and revealed that Streptococcaceae
and Lactococcus were the marker taxa of cirrhosis of HCC (Fig. 5B). Streptococcaceae and
Lactococcus were significantly enriched in HCC tissues compared to normal liver tissues
(Fig. 5C).

Bacteria taxa enriched in HBV-negative HccM. Although HBV represents the
major viral oncogenic agent of HCC, there were HCCs of HBV-negative. Whether bac-
teria play a role in the pathological process of HBV-negative liver cancer remains to
be studied. Wilcoxon sum-rank test revealed that the Staphylococcus branch and
Caulobacter branch were selectively enriched in HBV-negative HCCs (n = 22) (Fig.
S10A), which was further confirmed by LEfSe analysis (Fig. S10B). Interestingly, the
Caulobacter branch was also identified as enriched taxa in noncirrhotic HccM, as
shown above. On the other hand, a Streptococcus species was ranked as the top
taxon in HBV-positive HCCs (Fig. S10B). The Streptococcus branch was also overrepre-
sented in HccM with cirrhosis.

Intratumoral microbial compositions correlate with the clinicopathological pa-
rameters of HCC patients. Next, we asked whether the abundance of these key bacte-
ria species was associated with the clinicopathological parameters of HCC patients. We
found that the abundance of Firmicutes was correlated with cirrhosis inflammation
grading (x 2 = 4.667, P = 0.0308) (Table S3C). The phylum Actinobacteriota showed a
significant prevalence in female patients (x2 = 6.6670, P = 0.0098) and was related to
larger tumor volume (x2 = 5.1923, P = 0.0027). At the class level, Saccharimonadia was
related to cirrhosis inflammation grading (x 2 = 5.5100, P = 0.0189) and tumor volume
(x 2 = 5.1923, P = 0.0227). Lactococcus (genus) was significantly associated with cirrho-
sis status (x 2 = 6.7873, P = 0.0092) and HBcAb status (x 2 = 8.2162, P = 0.0042). These
findings indicated that the intratumoral microbes were correlated with the clinicopa-
thological features of HCC.

Altered pathways in liver microbial communities. PiCRUSt2 was used to infer the
function of the liver microbiota based on the OTU table. Analysis against MetaCyc met-
abolic pathway database revealed that 28 and 16 functional pathways were signifi-
cantly changed between NM and PtM, and between NM and HccM, respectively
(Fig. 6A and B). The palmitate biosynthesis pathway of bacteria was increased in both
PtM (two-sided Welch’s t-test, P = 2.38e-9) and HccM (two-sided Welch’s t-test,
P = 1.16e-10) compared to NM. In contrast, only six functional pathways were changed
between PtM and HccM, indicating the similarity of these two microbiotas (Fig. 6C).
The abundances of 11 clusters of orthologous groups (COG) functional categories in
NM were significantly different from PtM (Fig. S11A). Furthermore, the 11 COGs
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showed differential abundance between NM and HccM (Fig. S11B). Compared with
NM, three COGs were reduced in PtM and HccM, including energy production and con-
version (Kruskal-Wallis test [similarly hereinafter], Padj = 6.04e-5), amino acid transport
and metabolism (Padj = 1.46e-3), and signal transduction mechanism (Padj = 3.17e-4),
while four COGs were upregulated in PtM and HccM, including nucleotide transport
and metabolism (Padj = 1.72e-5), inorganic ion transport and metabolism, translation/ri-
bosomal structure and biogenesis (Padj = 1.69e-4), replication/recombination and repair
(Padj = 1.09e-5), and cell cycle control/cell division (Padj = 7.31e-8) (Fig. S11C).
Consistent with the alpha diversity analyses, PtM and HccM shared common functional
features.

The results of the Kyoto Encyclopedia of Genes and Genome (KEGG) analysis at level
2 were the same as the COG analysis (Fig. S12A). Analysis of KEGG pathways at level

FIG 5 Bacterial taxa with differential abundance between HCCs with cirrhosis and HCCs without cirrhosis. A. The bacterial taxa showed a significant
difference between cirrhosis (n = 34) and noncirrhosis (n = 26) HCC. The two-tailed P-value was calculated using Wilcoxon sum-rank test, and the P-value
was adjusted using the FDR method. The 0.95% confidence intervals (CIs) were calculated using the bootstrap method. B. The cladogram and bar plot of
LEfSe analysis shows the major taxa with the most abundance and a significant LDA score .3 in noncirrhosis and cirrhosis HCC. C. Abundance of
Streptococcaceae and Lactococcus in normal liver and HCC tissues.
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FIG 6 Inferred functions by PICRUSt across different liver microbiota. MetaCyc pathway analyses of different liver microbiota were
performed using PICRUSt 2.0 (http://picrust.github.io/picrust/). The Kruskal-Wallis two-sided Welch’s t-test (threshold = 0.95) was used to
test multiple comparisons of NM and PtM (A), NM and HccM (B), or PtM and HccM (C). N, normal liver; P, peritumor; T, tumor.
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three showed more metabolic changes between NM and PtM/HccM microbiota,
including the upregulation of biosynthesis of amino acids in PtM/HccM (Fig. S12B).
Taken together, the functional changes of different liver microbiota may play an impor-
tant role in the progression of liver cancer.

Identification of liver microbial signature for HCC prediction. The intratumoral
microbial signatures may be useful for developing potential diagnostic or prognostic
biomarkers for cancer. To build a clinical index for the diagnosis of HCC, we used a
training cohort containing 40 HCC and 21 normal liver subjects to build a random for-
est (RF) prediction model using all microbial features at the class level. This model per-
formed well not only in the training cohort (area under the curve [AUC] = 1.000) but
also in the validation cohort containing 20 HCC and 7 normal subjects (AUC = 0.968)
(Fig. 7A). To build a simplified model with reduced microbial signatures, we used 10-fold
cross validation to prioritize the top features and selected the top five class species, includ-
ing Bacilli, Acidobacteriae, Parcubacteria, Saccharimonadia, and Gammaproteobacteria
(Fig. 7B and C). The reduced RF model separated HCC subjects from normal subjects in the
training cohort (Fig. 7D), and its performance was verified in the validation cohort (Fig. 7E).
The reduced model achieved comparable performance to the model using all class signa-
tures (Fig. 7F). Since OTU-based predictors may be more accurate and reproducible (17), we
analyzed the prediction power of the RF model using OTUs. First, we built an RF model
using all 3,504 OTU features that achieved high prediction power (AUC = 1.000 in the train-
ing cohort and AUC = 0.939 in the validation cohort) (Fig. S13A). Using a 10-fold cross vali-
dation strategy, the top 50 OTU features were prioritized (Fig. S13B, C, Table S3D). The
reduced RF model correctly predicted HCC subjects in both the training cohort and the vali-
dation cohort (Fig. S13D, E). The performance of the reduced model was comparable to
that of the RF model using all OTU features (Fig. S13F).

DISCUSSION

Gut microbiota is associated with the carcinogenesis and/or pathogenesis of human
cancers, including liver cancer (5, 6). Furthermore, intratumoral bacteria have been
found in a variety of human cancers, including pancreatic cancer, breast cancer, lung
cancer, ovary cancer, melanoma, bone cancer, and brain cancers (13, 14). As one of the
most important digestive organs, the liver has always been considered sterile.
However, a recent study shows that the liver tissue of NAFLD contains a diverse reper-
toire of bacterial DNA (15). Here, we performed a FISH analysis using a bacterial 16S
rRNA probe and revealed that liver RBCs were strongly stained in the peritumoral and
tumor tissues. Blood is the carrier of the microbiome, which was confirmed using qPCR
array analysis of the plasma from patients with cirrhosis (18). Mitchell et al. (19) argued
that the pleomorphic structures in the blood are RBC-derived microparticles, not bacte-
ria. However, conclusive evidence for the presence of bacteria in blood was provided
by Paisse et al. (20) who prepared different blood fractions and analyzed bacterial 16S
rRNA gene by real-time qPCR and MiSeq sequencing in a rigorous experimental setup.
They revealed that RBCs contain more bacteria DNA than total plasma. Further evi-
dence was provided by Damgaard et al. (21) who identified viable bacteria on plates
inoculated with RBCs isolated from healthy individuals under anaerobic and aerobic
culture conditions. Bacteria growth was observed in 21 of 60 RBC fractions in their cul-
tures, and the colonies were identified using PCR and 16S rRNA gene sequencing.
Viable bacteria, such as Streptococcus or Staphylococcus, have been found to inhabit
the blood cells of healthy individuals (22, 23). Streptococcus pneumoniae can live intra-
cellularly in RBCs to evade human innate immunity (24). These observations indicate
that RBCs may represent important carriers of live bacteria into the liver, as we further
illustrated in the current analysis.

Through the gut-liver microbiota axis, gut microbiota may modulate liver disease
by transporting bacterial substances to the liver through the vascular and portal circu-
lation systems (4, 5). Although another way bacteria entering the liver may be in the
biliary tract where microbiota has been found (25–28), this pathway might not be as
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FIG 7 Microbial class-based diagnostic biomarker for HCC. A. Receiver operating characteristic (ROC) curves of the predictive performance of the class-based
predictors for the RF model built on all class species. The blue and red curves indicated the performance of the model in the training cohort (HCC patient = 40,
healthy = 20) and validation cohort (HCC patient = 20, healthy = 7), respectively. B. Cross-validation error curve shows the 10-fold cross validation method to
prioritize top features used to build a simplified model. C. The top five class species prioritized by the 10-fold cross validation method. D. Performance of the
simplified model using the top five class species in the training cohort containing 40 HCC patients and 20 healthy individuals. E. Performance of the simplified
model using the top five class species in the validation cohort containing 20 HCC patients and 7 healthy individuals. F. ROC curves of predictive performance
for the class-based predictors of the simplified RF model built on the top five class species. The blue and red curves indicate the performance of the model in
the training cohort (HCC patient = 40, healthy = 20) and validation cohort (HCC patient = 20, healthy = 7), respectively.
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popular as the vascular pathway, because the fluorescence signal of the biliary tract
was not visible in the FISH assay. Therefore, circulating cells like RBCs might be the
potential carriers of bacterial substances into the liver. We found that the fluorescent
signal of bacteria was enriched intracellularly in hepatocytes, especially in the cytosol
rather than in the nucleus, which is consistent with the observations in other cancer
types (13, 14). Since RBCs lack a nucleus, the FISH signal was spread throughout the
RBCs. Nejman et al. (13) demonstrated by lipopolysaccharide (LPS) staining and trans-
mission electron microscopy (TEM) that intratumoral bacteria lost their cell walls and
localized in the cytosol and close to the nuclear membrane. These observations sug-
gest that intracellular bacteria may exist in three forms: processed bacterial compo-
nents like LPS, DNA, or lipoteichoic acid (LTA), bacteria without a cell wall, and bacteria
with an intact cell wall, the latter of which may generate viable colonies in tissue
cultures.

Fresh tissue culture provided prior evidence of the existence of live bacteria in
human tumors (13). Furthermore, tissue culture coupled with D-alanine incorporation
confirmed that breast cancer tumors harbor viable intracellular bacteria (13). For the
first time, we found the presence of live bacteria in fresh peritumor and HCC tissues.
Among the identified bacteria, S. aureus is a known pathogen of many severe diseases
and its infection in the lung regulates metastasis of breast cancer cells (29), and it can
invade and remain viable in white blood cells (22). S. aureus can also invade erythro-
cytes to evade host innate immunity (24). Rothia kristinae is an unusual pathogen that
causes opportunistic infections in cancer patients (30, 31). C. horneckiae has been iden-
tified in cervical tissues from human papillomavirus-infected cervical cancers (32). All
these viable species belong to the class Bacilli or Actinobacteria, and they were identi-
fied as taxonomic markers of HCC by LEfSe analysis.

We performed a comprehensive metataxonomic analysis of 155 human liver speci-
mens. The alpha diversity of PtM and HccM was higher than that of NM. In PCoA, those
samples with low taxonomic diversity (e.g., normal samples) tended to cluster closely,
while those with high taxonomic diversity (e.g., HCC samples) tended to spread from
each other, which suggests that increased diversity of microbiota may contribute to
the heterogeneities of HCC. In contrast, the alpha diversity in PtM and HccM was not
significantly different, suggesting that peritumor tissues have similar histological fea-
tures to cancerous tissues, which may be due to their proximity to cancerous tissues. It
has been reported that less diversity of microbial communities may be associated with
worse disease, while higher diversity may indicate a healthy or better status. It was the
case for the gastric mucosal microbiota, which showed a decreased diversity in cancer
(33), while high diversity in pancreatic cancer was associated with better outcomes
(14). However, this was not the case for breast cancer, where the abundance and rich-
ness were higher in the breast tumor samples than in normal adjacent (peritumoral)
tissues and healthy breast tissues (13). Similarly, the diversity of gut microbes was also
upregulated in HCC from cirrhosis to early cirrhosis (11). These observations suggest
that disease progression may be related to the simplification or diversification of
microbiota in the microhabitat.

We revealed that phyla Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota
were the most abundant taxa in liver microhabitats. Patescibacteria is a recently identi-
fied superphylum that represents a group of microbial communities living in fresh-
water environments (34). Interestingly, Patescibacteria also inhabits the human body,
such as the lung (35), oral cavity (36), gut (37), and tumor tissues (38, 39). Patescibacteria
was found to be the fourth dominant phylum of human adipose tissue (40). The relative
abundance of gut Patescibacteria was 4-fold higher in pediatric multiple sclerosis com-
pared to the monophasic acquired demyelinating syndrome (37). In disease models, gut
Patescibacteria was found to be associated with antibiotic-induced diarrhea (41). In
human cancer, Patescibacteria was found to be enriched in signet-ring cell carcinoma of
gastric cancer (38). The abundance of oral Patescibacteria decreased significantly with
the grade of glioma (42), while the phylum Parcubacteria, a lower taxon of Patescibacteria,
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was increased in rectal cancer compared to noncancer samples (39). These observations
suggest that Patescibacteria/Parcubacteria may be associated with human diseases,
including cancers, while its roles remain elusive.

Using statistical analysis and the LEfSe method, the Phyla Proteobacteria, Firmicutes
and Actinobacteriota, and classes Bacilli and Actinobacteria, were consistently enriched
in peritumor and HCC tissues, while Gammaproteobacteria was especially abundant in
HCC tissues. Furthermore, by the Chi-square test, phyla Firmicutes and Actinobacteriota,
and class Saccharimonadia were found to be associated with the clinicopathological
characteristics of HCC patients, including sex, cirrhosis grading (inflammation activity),
or tumor volume, suggesting that these taxa might be linked to carcinogenesis or pro-
gression of HCC. Obesity increases the risk of HCC, and microbial derivatives promote
HCC development (9). Proteobacteria was also upregulated in NAFLD (15), and its
downstream branch, Gammaproteobacteria, was associated with histological severity
in patients with morbidity NAFLD (15). The increased burden in HCC and the significant
association with cirrhosis staging may indicate an important role for Proteobacteria and
Gammaproteobacteria in the carcinogenesis or progression of HCC. Interestingly, a
recent report has also found that Proteobacteria is one of the dominant phyla in liver
cancer (43). Gut Actinobacteriota (phylum) was significantly increased in early HCC
compared to liver cirrhosis (11). Given their correlation with tumor volume, both
Actinobacteriota (phylum) and Saccharimonadia (class) may contribute to the progres-
sion of HCC.

We found that family Streptococcaceae and genus Lactococcus were significantly
higher in HCCs with cirrhosis compared to HCCs without cirrhosis. Both taxa were also
significantly increased in HCC tissues compared to normal liver tissues, suggesting
these taxa may be associated with fibrosis and carcinogenesis of HCC. Interestingly, it
is often found that gut Streptococcaceae is prevalent in patients with cirrhosis (44–46).
Furthermore, Streptococcus gallolyticus is significantly associated with the occurrence
of HCC (47). Streptococcus intermedius-derived histone-like DNA-binding protein was
found to be involved in the pathogenesis of primary biliary cirrhosis (48). The abun-
dance of Lactococcus was increased in gastric cancer (49). Ma et al. (50) showed that
both Streptococcus and Lactococcus were significantly increased in prostatic fluid sam-
ples of prostate cancer patients compared to nonprostate cancer patients. Gao et al.
(51) reported that the abundance of gut Lactococcus was relatively higher in colorectal
cancer tissues compared to adjacent noncancerous tissues.

Chronic infection of HBV has been considered the dominant risk factor for HCC car-
cinogenesis. However, at least 20% of HCC does not attributable to HBV or HCV infec-
tion (52). An attractive question is, in the absence of a clear background of HBV or HCV
infection, what are the potential bacterial agents that may contribute to the pathologi-
cal process of HCC. We revealed that the Staphylococcus and Caulobacter branches
were selectively enriched in HBV-negative HCCs. Interestingly, a recent nation-wide
population-based study have demonstrated that the infection of S. aureus, an impor-
tant opportunistic human pathogen, increases the risk of not only liver cancer but also
other types of cancer (53). Noguchi et al. (54) revealed that a species of Staphylococcus
might be associated with colon carcinoma. Our findings suggest that exposure to
Staphylococcus infections, in addition to HBV, may increase the risk of liver cancer.

We analyzed the functional changes inferred from different liver microbiota. There
were 11 COGs changed between NM, PtM, and HccM, which may indicate that the host
nutrition and immune microhabitat may reshape microbial function, metabolism, and
composition during colonization. The functional profiles of PtM and HccM were similar,
which is consistent with the alpha diversity analyses, indicating that similar microhabi-
tats determine similar microbial communities. Palmitate biosynthetic pathways were
increased in PtM and HccM compared to NM. The ingestion of palmitate can activate
the NF-kB pathway in hepatocytes (55) and promotes the development of HCC by
increasing reactive oxygen species and subsequent glucose uptake (56). It should be
noted that the functional analysis was based on indirect inference from 16S rRNA gene
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sequencing of the microbiome. Further analysis, such as metaproteomics, may provide
insight into the function of the microbiota of the liver microenvironment since proteins
are considered the final players of physiological functions.

Intratumoral microbiota signature may represent a novel and rich resource for devel-
oping potential biomarkers for cancer diagnosis. We built a machine learning model
based on the class or OTU signature of HCC microbiota. The model displayed superior
performance and accuracy in both the training and validation cohorts, suggesting that
the intratumoral microbiota signature may have potential use in clinical settings.
However, the number of subjects enrolled in the current study was limited, and the RF
model should be evaluated using more samples in the future. The specific signature of
intratumoral microbiota may also be useful in tumor staging and prognosis prediction.

There are some limitations in the current study. First, for ethical reasons, it is impossi-
ble to obtain many normal liver tissues from healthy volunteers. The normal liver tissues
we used were derived from the normal part of the diseased liver. The normal liver tissues
were confirmed by the treating surgeons to be free of disease. Furthermore, our results
show that the microbiome of normal tissues differs significantly from that of paraneo-
plastic and HCCs. However, we cannot completely exclude the possibility that these nor-
mal tissues are affected by diseased liver tissues. Second, the paracancerous tissues of
HCC were resected 2 cm away from cancer tissue. The distance may be too close and
such paracancerous liver tissues were usually fibrotic or cirrhotic in nature. The similarity
between PtM and HccM reduces the chance of finding increased oncogenic risk by com-
paring the two microbiotas. We used two independent cohorts to validate the sequencing
results, while the heterogeneity of cancers may affect the congruence between different
cohorts, which was especially the case for tissue cultures.

Conclusion. In summary, our analysis provides novel insights into the microbial
characteristics of normal liver and HCC and reveals the association of specific taxa with
the clinical features of HCC. We also develop a high-performance machine learning
prediction model for accurate diagnosis of HCC.

MATERIALS ANDMETHODS
Clinical specimens and ethics. Three cohorts were used in this study. The 16S_rRNA cohort used

for 16S rRNA sequencing contained168 clinical tissue specimens from 100 individuals, including 68
paired primary HCC and peritumor HCC tissues (2 cm away from cancerous tissue), 3 additional peritu-
mor tissues, and 29 cases of normal liver tissue. Of the HCC cases, 49 were HBV positive, while 21 HCCs
were HBV negative, based on an immunoassay of surface antigen of HBV (HBsAg). These HCC patients
were diagnosed according to multiple diagnostic results, including computerized tomography, B-mode
ultrasonic diagnosis, magnetic resonance imaging, histological examination during surgery, and serolog-
ical diagnosis like increased levels of serum AFP. Of the 71 HCC subjects, 40 cases of HCC were devel-
oped from liver cirrhosis (39 were S4 and one was cirrhosis, but GS was missing), and the others had no
cirrhosis. The inclusion criteria were: (i) to ensure the yield of 16S rRNA sequencing, we collected fresh
tissues isolated during the recent surgery (June 2019 to December 2019); (ii) Chinese patients; (iii)
patients were diagnosed as HCC for the first time; and 4) patients were at least 18 years old. The exclu-
sion criteria were: (i) HCC diagnosed 1 year before the time of the project; (ii) HCC patients with cancers
diagnosed at other body sites. The clinical parameters of these patients were measured and recorded,
including sex, age, grade (II, III, II–III), tumor count, tumor size of each tumor, inflammation grading (G1,
G2, G3), cirrhosis fibrosis staging (S1, S2, S3, S4, S4e), tumor capsule (capsule present or not), nodule
type (single nodule or multiple nodules), microvascular invasion (m0, m1, or m2), immunostaining for
HBsAg antibody, immunostaining for HbcAb antibody, immunostaining for HCV antibody, and AFP con-
centration. The 29 normal liver tissues were isolated during surgery, including 18 liver metastases from co-
lon adenocarcinoma, 4 angiomyolipomas, 2 focal nodular hyperplasias of the liver, one fibrous tissue
hyperplasia, one liver metastasis from renal clear cell carcinoma, one liver metastasis from breast cancer,
one cavernous hemangioma and one intraductal papillary neoplasm (Table S1). The normal liver tissues
were resected at least 5 cm away from the tumorous tissue. The normal liver tissues were confirmed by
clinical experts for their normal histological states. Due to ethical reasons, normal liver tissues cannot be
obtained from healthy volunteers without any liver disease. In a previous study of single-cell sequencing
of HCC, Aizarani et al. (57) also used nondiseased liver tissues as normal controls that had been resected
from colorectal cancer metastases or cholangiocarcinoma.

An independent cohort of 12 tissue samples (qPCR_cohort) was used in quantitative PCR validation.
The qPCR_cohort contained 6 HCC cancerous and 6 pericarcinoma specimens, isolated from 7 male and
3 female patients during clinical surgery (Table S1). The culturing cohort contained 12 paired pericarcinoma
and HCC tissues from 11 males and one female patient (Table S1). One pair of tissues, 9P and 9T, was also
used for H&E staining, Gram staining, and FISH analyses.
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The third cohort (culturing cohort) contained12 paired pericarcinoma and cancerous tissue (HCC)
samples that were used in tissue culture.

These specimens were collected at the Zhongshan Hospital, Fudan University, Shanghai, China.
Written informed consent was obtained from all patients. The study was approved by the Research
Ethics Committee of Zhongshan Hospital, Fudan University, Shanghai, China, and followed strictly the
principles of the Declaration of Helsinki during the project.

Tissue DNA extraction. DNA of all tissues was extracted using the same protocol. Tissues (30
;50 mg) were ground in disposable grinding tubes (2 mL in volume) with a steel ball (diameter 0.6 cm)
in each tube. The grinding tube was prechilled with liquid nitrogen, and the tissues were ground for
10 s at a frequency of 50 Hz using a tissue grinder (WB2017075, Shanghai WonBio Biotechnology Co.,
Ltd.). DNA extraction was performed with the FastDNA spin kit for soil (MP Biomedicals, USA) according
to the manufacturer’s instructions. DNA concentration and purity were measured using a NanoDrop
2000 UV-Vis spectrophotometer (Thermo Scientific, Wilmington, USA) according to the manufacturer’s
instructions. The OD260/OD280 ratios of all DNA samples were greater than 1.9, indicating the good
quality of the DNA samples. The average DNA concentration of all samples was 160.39 6 84.87 ng/mL.
The quality of the DNA samples was further evaluated using 1% agarose gel electrophoresis.

16S rRNA gene sequencing of negative controls. To evaluate and exclude potential contaminant
results, we sequenced negative-control samples collected during the DNA extraction and PCR amplifica-
tion steps. The DNA extraction controls were extractions with blank extraction reagents without adding tis-
sue samples. The extracted products were determined using agarose electrophoresis and the DNA concen-
trations of the DNA extraction controls were measured in the same way as the actual samples. A total 2mL
of DNA was used in the PCR experiments. The concentration of the PCR products was also measured.

The PCR negative controls were PCR experiments performed using distilled water as a template. The
PCR products were checked using agarose electrophoresis and the DNA concentrations were deter-
mined. The extraction and PCR controls were subjected to MiSeq sequencing along with other samples.

We sequenced 6 extraction controls and 8 PCR controls, with one PCR control failing to yield
sequencing results. The 16S rRNA gene sequencing results of the liver tissues were filtered by the R pro-
gram decontam against the negative sequencing data using a frequency-based contaminant identifi-
cation strategy (16). This strategy assumes that sequences from contaminating taxa have a higher
prevalence in negative-control samples than in actual samples. After this step, s__Ralstonia_pickettii
and s__unclassified_g__Sphingomonas were further removed from the actual sample results, since
both taxa have more than 1,000 reads in the negative-control sequencing results.

16S rRNA gene PCR amplification. The hypervariable V3-V4 region of bacterial 16S rRNA gene
was amplified using primer pairs 341F (59-CCTACGGGNGGCWGCAG-39) and 805R (59-GACTACH
VGGGTATCTAATCC-39) using TransStart Fastpfu DNA polymerase (TransGen AP221-02, TransGen
Biotech Co.) in a GeneAmp PCR System 9700 Thermal Cycler (Applied Biosystems Inc., CA, USA). To
ensure the accuracy and reliability of subsequent data analysis, we used low cycle number amplifica-
tion whenever possible and used the same number of cycles for each sample. The reaction system
consisted of 4 mL 5� FastPfu buffer, 2 mL dNTPs (2.5 mM), 0.8 mL forward primer (5 mM), 0.8 mL
reverse primer (5 mM), 0.4 mL FastPfu polymerase, 0.2 mL BSA, and 10 ng template DNA. The volume
was adjusted with water to 20 mL. The first-round PCR consisted of the following steps: 95°C for
3 min; 23 cycles (95°C for 30 s, 55°C for 30 s, and 72°C for 45 s); 72°C for 10 min; 10°C until halted by
the user. The second-round PCR was performed to add index using the procedure: 95°C for 3 min; 8
cycles (95°C for 30 s, 55°C for 30 s, and 72°C for 45 s); 72°C for 10 min; 10°C, until halted by the user.

The amplification parameters were optimized in preliminary experiments. PCR products were ana-
lyzed using 2% agarose gel electrophoresis. PCR products were scored as A (strong), B (moderate), and C
(weak or invisible) based on their size and concentration. Samples A and B were considered qualified
samples and subjected to sequencing. For samples with a score of C, DNA extraction and PCR amplifica-
tion were repeated using residual tissues of the same specimen. If PCR fails again, the sample was
excluded from further analysis.

For subsequent sequencing, three PCR experiments were performed in parallel for each sample. PCR
products of each sample were combined and subjected to 2% agarose gel electrophoresis. PCR fragments
were recovered from the gels using the AxyPrep DNA gel extraction kit (AXYGEN Biosciences, Union City,
CA, USA) according to the manufacturer’s instructions. DNA was eluted using Tris-HCl buffer, and its recov-
ery rate and quality were evaluated by 2% agarose gel electrophoresis. DNA concentration was measured
using the QuantiFluor-ST handheld fluorometer (Promega Corporation, Madison, WI, USA).

16S rRNA gene sequencing of normal liver, peritumor, and HCC samples. To build a Miseq library
for sequencing, Illumina adaptors were added to the termini of the target DNA by PCR using the TruSeq
DNA sample prep kit according to the manufacturer’s instructions. PCR products were recovered from aga-
rose gels using the AxyPrep DNA gel extraction kit. DNA was eluted using Tris-HCl buffer and the recovery
rate and quality were evaluated using 2% agarose gel electrophoresis. Double-strand DNA was denatured
using NaOH to generate single-strand DNA. Purified amplicons were pooled in equimolar and sequenced in
paired-end mode on an Illumina MiSeq PE300 platform/NovaSeq PE250 platform (Illumina, San Diego, USA)
according to the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).

Sequencing data processing and OTU clustering. The raw 16S rRNA gene sequencing reads were
demultiplexed, quality-filtered using Fastp version 0.20.0 (58) (https://github.com/OpenGene/fastp), and
merged using FLASH version 1.2.11 (59) (https://ccb.jhu.edu/software/FLASH/index.shtml). First, the low-quality
tails of each sequence with an average quality score of,20 over a 50-bp sliding window were truncated. After
tail truncation, reads containing ambiguous characters or ,50 bp in length were discarded. Cleaned reads
with at least 10 bp of overlapping sequences were then assembled. The maximum mismatch ratio for the
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overlap region is 0.2. Singleton reads that could not be assembled were discarded. The assembled sequences
were distinguished based on barcode sequences and primers. No mismatches of barcodes were allowed. Two
mismatched nucleotides were allowed for primers. Finally, the sequence direction was adjusted.

OTUs with 97% similarity were clustered using UPARSE version 7.1 (60) (http://www.drive5.com/
uparse/), and chimeric sequences were identified and removed. The OTU table was used in all down-
stream analyses. The taxonomy of each OTU representative sequence was analyzed by RDP Classifier ver-
sion 2.11 (https://sourceforge.net/projects/rdp-classifier/) against the 16S rRNA database Silva 138
(https://www.arb-silva.de/) using a confidence threshold of 0.7 (61). The taxonomic composition was an-
alyzed at the level of domain, kingdom, p, class, order, family, genus, and species.

Analyzing 16S rRNA sequencing data. Data were analyzed on the online Majorbio Cloud platform
(www.majorbio.com), which has integrated all downstream tools for microbiota analysis. First, we
removed the order level chloroplast sequences (o_Chloroplast) from the original OTU table. We flattened
the OTU table according to the minimum number of sample sequences (11,807 reads). Flattening is the
random selection of sequences of all samples as a uniform amount of data according to a certain num-
ber or the minimum number of sequences in each sample. The rank-abundance curve indicating the di-
versity and evenness of microbiota was generated using R scripts. Alpha diversity was calculated using
Mothur v1.30.2 (https://www.mothur.org/wiki/Download_mothur). The alpha diversity indices include
community richness (Sobs, Chao, Ace), community evenness (Simpsoneven, Heip), and community di-
versity (Shannon, Simpson). The significance of the alpha diversity difference between different clinic
groups was calculated using the Wilcoxon rank-sum test. The rarefaction curve is used to determine
whether the amount of sequencing data are sufficient according to whether the curve is flat. Curves
based on alpha diversity values were generated using R scripts.

Beta diversity was measured using the binary Jaccard distance calculated by Qiime 1.9.1 (http://qiime.org/
install/index.html). The distances were visualized using PCoA. Differences between groups were tested using
the Adonis algorithm with a replacement number of 999. PLS-DA was conducted using the mixOmics package
of the R program to reveal the most predictive/discriminative taxa for classifying each group.

Differences in taxonomic abundance between $3 groups of microhabitats or clinical features were
calculated using the Kruskal-Wallis H test and the P-value was adjusted using the false-discovery rate
(FDR) method. The 0.95% confidence intervals were calculated using the Tukey-Kramer method. For
taxonomic differences between the two groups, two-tailed P-values were calculated using Wilcoxon
sum-rank test, and P-values were adjusted using the FDR method. The 0.95% confidence intervals
were calculated using the bootstrap method.

LEfSe was performed on the Majorbio Cloud platform. P-values were calculated using the nonpara-
metric factorial Kruskal-Wallis sum-rank test, and the threshold for the logarithmic LDA score of discrimi-
native features was set to 3.0. The strategy for multiclass analysis was all-against-all. The result table was
downloaded as a lefse_internal_res file, which was further edited and subjected for LEfSe visualization
on the online Galaxy server (http://huttenhower.sph.harvard.edu/galaxy/). The histogram and cladogram
figures were generated by the LEfSe visualization modules. The alpha values of the factorial Kruskal-
Wallis test among classes and the pairwise Wilcoxon test between subclasses were set to 0.05.

COG, KEGG, MetaCyc pathway, and enzyme category function analyses were performed using
PICRUSt 2.0 (http://picrust.github.io/picrust/). The significance of the pairwise comparison between
groups was evaluated with the two-sided Welch’s t-test, and 95% confidence intervals for differences in
mean proportion were calculated using the Welch’s inverted method. Comparisons of function catego-
ries between normal, peritumor, and HCC groups were evaluated with the Kruskal-Wallis test followed
by the post hoc Tukey-Kramer test (threshold = 0.95) using STAMP 2.1.3 (https://beikolab.cs.dal.ca/
software/STAMP).

Data availability. The data set supporting the conclusions of this article is available in the GenBank
Sequence Read Archive under BioProject ID PRJNA714196.
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