
Encoded Expansion: An Efficient Algorithm to Discover
Identical String Motifs
Aqil M. Azmi*, Abdulrakeeb Al-Ssulami

Department of Computer Science, College of Computer & Information Sciences, King Saud University, Riyadh, Saudi Arabia

Abstract

A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the
schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding
the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif
length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently
(Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications
36:7952–7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes §2 in
theoretical time complexity of O(n2LzL2), and a space complexity of O(nL2), where n is the length of the input sequence
and L is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci’s
original algorithm. The algorithm that we propose reports all identical string motifs of sizes §2 that occur at least t times.
Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol
throwing out those that occur less than t times in the entire input sequence. We use a simple array and data encoding to
achieve theoretical worst-case time complexity of O(nL), and a space complexity of O(n): Encoding of the substrings can
speed up the process of comparison between string motifs. Experimental results on random and real biological sequences
confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the
existing algorithms.

Citation: Azmi AM, Al-Ssulami A (2014) Encoded Expansion: An Efficient Algorithm to Discover Identical String Motifs. PLoS ONE 9(5): e95148. doi:10.1371/journal.
pone.0095148

Editor: Junwen Wang, The University of Hong Kong, Hong Kong

Received October 14, 2013; Accepted March 24, 2014; Published May 28, 2014

Copyright: � 2014 Azmi, Al-Ssulami. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a special fund of the Research Center of the College of Computer and Information Sciences (CCIS) at King Saud University.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: aqil@ksu.edu.sa

Introduction

There has been a considerable interest in motif discovery from

both computer scientists and computational biologists. Motifs or

binding sites are significant for understanding the mechanism

behind regulating gene expressions. From a biological sequence

analysis perspective, the significant pattern is the substring that is

either over-represented or under-represented in a biological

sequence. Therefore, the main problem is to identify the most or

the rarest recurring patterns. Some of the methods depend on

comparing the biological sequence with the background sequences

to discover exceptional motifs. Those methods require generating

specific length background sequences randomly. The problem of

deciding whether the generated sequences respect the motif

constraints, the number of motif occurrences, the length of motif,

is NP-Complete [1]; essentially meaning that it is computationally

hard for all practical purposes. To solve this problem we require

an exponential time complexity, though space complexity may not

be exponential.

Over the years, many algorithms were developed to discover

and report motifs; and most of these algorithms were either

stochastic or combinatorial in nature [2]. The stochastic

algorithms such as Expectation Maximization (EM) [3], take a

set of input sequences, the motif length, and an initial guess for the

motif. This guess is generated either randomly or supplied by the

user. The algorithm returns a probabilistic model of the consensus

pattern, or the motif. EM assumes that there is a single motif

occurring in each input sequence. It is possible that EM fails to

return the correct motif, that is if we were unfortunate in picking a

good starting point. Subsequently newer algorithms came into

existence that extended EM, e.g. Gibbs Sampling [4,5,6,7,8,9],

and Multiple EM for Motif Elicitation (MEME) algorithm

[10,11,12,13,14,15]. On the other hand, the combinatorial

approaches are very expensive because they exhaustively generate

and search for each possible permutation of a given length making

them impractical for motif sizes over 10 [16]. Some of the

algorithms that fall into this category includes: Weeder [17],

MotifEnumerator [18], Seeder [19], the algorithm by Marschall

and Rahmann [20], VINE [21], PairMotif [22], and PairMotif+
[23]. Few of these algorithms resort to smart pruning to reduce the

search space [17,19,23].

Most of the above algorithms rely on dynamic data structure to

process the data. When it comes to the insertion and deletion

operations, the dynamic data structures are very efficient.

However, traversing dynamic data structures is less efficient than

doing so on the static data structures as the data might be scattered

all around [24,25]. Static data structures, e.g. arrays, are preferred

if the algorithm was properly crafted. Our goal is to devise an

efficient algorithm that discovers all the identical string motifs and

does not rely on dynamic data structure thus saving on the

memory requirements. The algorithm must be highly efficient and

PLOS ONE | www.plosone.org 1 May 2014 | Volume 9 | Issue 5 | e95148

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0095148&domain=pdf

fast enough to compete with others in the same class. Recently,

Karci [26] proposed a deterministic algorithm that reports all

identical string motifs of all possible sizes §2 if they occur at least

twice in the entire input sequence. The original algorithm by

Karci was highly inefficient, both in terms of time and space. Our

implementation of the algorithm in [26] has significant improve-

ments in terms of time and space complexities along with the

ability of the user to set a threshold t for the minimum number of

motifs. Karci’s algorithm lacks this feature always assuming a

constant t~2:
Since this work is inspired by Karci, it is reasonable for us to

cover his algorithm in more detail. The author introduced the

word CanMotifs (candidate motifs), a term we borrow and use in

this paper to refer to candidate string motifs. A substring of any

size is considered a CanMotif and if we can find at least one more

copy of the same identical substring then it is called motif. The

basic idea in [26] is to keep expanding CanMotifs one nucleotide

at a time, starting from the pair bases that occur in the input

sequence, and then continue with an exhaustive search. To

generate kz1–lets CanMotifs each of the k–lets CanMotifs is

augmented twice, once using the nucleotide to its immediate left

and the other time using the nucleotide to its immediate right. This

is followed by the process of eliminating duplicate entries. To

better illustrate Karci’s algorithm, consider for example the

sequence: AACTGCTACTT. It starts by generating the pair

bases: {(AA, 1), (AC, 2), (CT, 3), (TG, 4), …, (TT, 10)}, where the

tuple stands for (the substring, its starting position). Now to find

out all the 2–lets string motifs, the algorithm goes through the full

list looking for identical CanMotifs but with different starting

positions. Next, it generates 3–lets CanMotifs. These are generated

by augmenting each of the 2–lets CanMotifs twice, e.g. ACRAAC

and ACT (using left and right nucleotide respectively), similarly

CTRACT and CTG. The 3–lets CanMotifs are: {(AAC, 1),

(AAC, 1), (ACT, 2), (ACT, 2), (CTG, 3), …}. This expansion

results in duplicate entries which have to be eliminated. It is

followed by a search process to find all the 3–lets string motifs. The

procedure continues till no more string motifs are discovered. This

algorithm has a time complexity of O(n2LzL2) and a space

complexity of O(nL2) where n is the size of the input sequence and

L is the length of the longest possible string motif. Clearly, the

algorithm reports all the identical string motifs but there are plenty

of unnecessary steps.

We named our algorithm Encoded Expansion. The idea of

expansion comes from the original algorithm in [26] although it is

a much improved approach, and the encoding is from our quest of

finding a more efficient way to compare between CanMotifs. With

these improvements, we devise a very efficient algorithm to

discover all identical string motifs. Theoretically, our algorithm

has a worst-case time complexity of O(nL), and a space

complexity of O(n) where n is the size of the input sequence and

L is the length of the longest possible string motif that occurs at

least t times. We tested out the algorithm on random sequences as

well as some real biological sequences of different sizes and it

shows our scheme to be linear in time. In the subsequent

discussion, the term motif will always refer to string motif.

Similarly, CanMotif will refer to candidate string motif.

Proposed Algorithm

Let S denote the set of finite symbols (alphabet), we define

Sk~ w’w w’ [Sk{1 and
�� w [S

� �
where S0~e (empty string) to

be a set composed of elements each of length k: The S� denotes

the set of all strings formed using the symbols in S: In our case the

alphabet S~ A,C,G,Tf g contains the four bases for the DNA

biological sequence, so that any DNA sequence belongs to the

language S�: In this work we assume that all the indices start from

0. Let S be a string of length n, S~s0s1s2 . . . sn{1 [Sn: Substrings

of S which start at position p and are of length k are denoted

S(k)
p ~spspz1 . . . spzk{1 where 0ƒpƒn{k:

Our objective is: given the sequence S, find all the identical

string motifs of lengths up to L(2ƒLvn=t), where all motifs of

length Lz1 appears less than t times in S: A motif of length L is a

substring that is repeated at least t times in different positions in S.

Our algorithm proceeds as follows. We start by generating the

pair bases (2–lets CanMotifs) and their starting positions. For

example, if S = TATAC and t~2, then the list is {(TA, 0), (AT, 1),

(TA, 2), (AC, 3)} where the tuple stands for (CanMotif, starting

position). The algorithm encodes the 2–lets CanMotifs using the

codes in Table 1, resulting in {(12, 0), (3, 1), (12, 2), (1, 3)}. Next

the encoded sequence is sorted. Sorting is achieved by going over

the list sixteen times. For our example, the list after the sorting will

be {(1, 3), (3, 1), (12, 0), (12, 2)}. Then we delete all the entries

where the encoded CanMotif occured less than t times resulting in

{(12, 0), (12, 2)}. What remains is a list of all 2–lets motifs. The

algorithm will proceed to the next stage only if it was successful in

discovering motif(s) at the current stage.

We start the next stage by generating an encoded list of all 3–

lets CanMotifs. The list is generated by augmenting every

occurrence of 2–lets motifs (out of the previous stage) with one

nucleotide to its right in the input sequence S. Going back to our

previous example we have only one 2–lets motif, TA. The

generated 3–lets CanMotifs are TAT and TAC which will be

encoded (more on that later). Once the encoded list is sorted we

delete all CanMotifs that occur less than the threshold t: The

remainder is a list of all 3–lets motifs. The process continues

discovering larger motifs and stops when there are no more left, or

if they occur less than t times. There are three aspects of the

algorithm that will be covered in depth including the generation of

the CanMotifs, the encoding scheme; and finally sorting and

discovery of the motifs. For our ensuing discussion we would like to

denote W kð Þ for the set of k–lets CanMotifs.

Generating CanMotifs
In our algorithm we use k–lets motifs to generate the list of

kz1–lets CanMotifs. Since there are only sixteen 2–lets

CanMotifs, we generate them all and this scheme is applied for

k§2: This is done by augmenting each occurrence of the k–lets

motif with one right nucleotide. Figure 1 illustrates our scheme.

There are two issues that need to be addressed: (1) why did we

not use k–lets CanMotifs to generate the list of kz1–lets

CanMotifs; and (2) what difference (if any) does it make if we

augment the k–lets motifs with one left nucleotide instead of one

right nucleotide in our algorithm.

Theorem 1. It is redundant to use k–lets CanMotifs over k–lets

motifs to generate the kz1–lets CanMotifs.

Proof 1. It suffices to show that a kz1–lets motif cannot be

derived from a non-motif substring of length k. Let S
(k)
i be a

substring of length k of the string S. Assume that S
(k)
i is not a motif.

Therefore there are no substrings S
(k)
j , j=i in S which equals S

(k)
i :

Now, in the best case, both substrings share at most k{1 symbols,

otherwise they will be equal and S
(k)
i is a motif. Augmenting S

(k)
i

and S
(k)
j with a single symbol each gives us at best a k–lets motif

which is not what we are looking for.

A consequence of the above is a faster algorithm since the set of

k–lets motifs is much smaller than the set of k–lets CanMotifs. For

Algorithm to Discover Identical String Motifs

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e95148

example, consider the sequence, AACTGCTACTT. There are 10

2–lets CanMotifs: AA, AC, CT, TG, GC, CT, TA, AC, CT and

TT, but only two 2–lets motifs: AC and CT. These 2–lets motifs

will be augmented by one right nucleotide to form the set of 3–lets

CanMotifs.

Theorem 2. Augmenting the k–lets motifs in either direction

(left or right) to generate the list of kz1–lets CanMotifs will yield

the same set of kz1–lets motifs.

Proof 2. Note that a CanMotif may or may not yield a motif,

and that two different CanMotifs cannot yield the same motif. It

does not matter if left and right augmentations result in a different

set of CanMotifs, the important thing is that they both result in

identical motifs. Suppose that we have two identical substrings of

length k, S
(k)
i ~S

(k)
j : Let Q represent this k–lets motif. Note that

si{1 is the left nucleotide of S
(k)
i and sizk is its right nucleotide, for

S
(k)
j is sj{1 and sjzk respectively. Augmenting the k–lets motif Q

with the left nucleotide results in the following kz1–lets

CanMotifs: fsi{1S
(k)
i ,sj{1S

(k)
j g~fS

(kz1)
i{1 ,S

(kz1)
j{1 g, while aug-

menting Q with the right nucleotide results in the kz1–lets

CanMotifs: fS(kz1)
i ,S

(kz1)
j g: Depending on whether the left and

the right nucleotides are the same or not, we have four different

cases:

Case si{1=sj{1 and sizk=sjzk: Here neither augmentation of

the k–lets motif Q will yield a kz1–lets motif.

Case si{1~sj{1 and sizk=sjzk (Figure 2). Since S
(k)
i{1~S

(k)
j{1

we have another k–lets motif, Q’: To shorten the argument we will

assume that si{2=sj{2 and sizkz1=sjzkz1: Now the left

augmentation of the k–lets motif Q will be the same as the right

augmentation of the k–lets motif, Q’: In other words both will yield

the same kz1–lets motif. Certainly, the right augmentation of Q
and the left augmentation of Q’ will yield a kz1–lets CanMotif,

one which will not result in a motif.

Case si{1=sj{1 and sizk~sjzk: Argument similar to above.

T
a

b
le

1
.

En
co

d
in

g
o

f
p

ai
r

b
as

e
s.

A
A

A
C

A
G

A
T

C
A

C
C

C
G

C
T

G
A

G
C

G
G

G
T

T
A

T
C

T
G

T
T

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

T
h

is
is

th
e

fu
ll

lis
t

o
f

al
l

2
–

le
ts

ca
n

d
id

at
e

m
o

ti
fs

(C
an

M
o

ti
fs

).
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

9
5

1
4

8
.t

0
0

1

Figure 1. Each occurrence of k–lets motif is augmented with
right nucleotide to form the k+1–lets CanMotif.
doi:10.1371/journal.pone.0095148.g001

Figure 2. Left augmentation of QQ and the right augmentation of
QQ’ yield the same k+1–lets motif.
doi:10.1371/journal.pone.0095148.g002

Algorithm to Discover Identical String Motifs

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e95148

Case si{1~sj{1 and sizk~sjzk: This is a combination of the

above two cases.

Therefore, it is possible to use either augmentation. Using the

left augmentation results in a different set of CanMotifs than using

the right augmentation, nonetheless both will yield the same set of

motifs.

CanMotifs encoding scheme
The basic idea is to map a k–lets CanMotif Q to a single integer.

Thus, a comparison of substrings will be just a comparison

between integers. Comparing two substrings of length k for exact

match requires (in the worst case) k comparisons versus a single

compare operation between integers. We want a one-one mapping

between the k–lets CanMotifs and N (the set of non-negative

integers),

encoding : k{lets CanMotifs?N:

That is CanMotifs Q~Q’uencoding(Q)~encoding(Q’): This

condition is necessary or else we will have erroneous results. Note

that there are sixteen 2–lets CanMotifs, sixty-four 3–lets

CanMotifs and in general the maximum number of k–lets

CanMotifs is 4k: Table 2 shows a simple encoding scheme which

guarantees that no two different CanMotifs have the same code.

For example, for 3–lets the range is between 16 to 79, so

encoding(AAA) = 16, encoding(AAC) = 17 and encoding

(TTT) = 79. And for 4–lets, encoding(AAAA) = 80 and enco-

ding(TTTT) = 335. We can even write a simple inverse function to

map back the encoding to the CanMotif itself.

However, if we insist on a unique encoding for each different

CanMotif of every size then we will soon run out of range, which is

imposed by the 32-bit integer. A simple calculation shows that at

k~16 we will have an integer overflow. We want our algorithm to

handle motifs of any size as a result the above encoding is

inappropriate. Our proposed solution is to re-encode (re-number)

the discovered k–lets motifs so it always starts from 0. This way we

eliminate the risk of integer overflow. More on that later.

Algorithm 1. Algorithm to generate kz1–lets encoded

CanMotifs. This algorithm is for cases when k§2:

Input. Sequence S~s0s1 . . . sn{1 and list of encoded k–lets

motifs of the form (a,p) where the tuple stands for (encoded k–lets

motif, its starting position)

Output. List of encoded kz1–lets CanMotifs of the form

(a’,p’) which stands for (encoded kz1–lets CanMotif, starting

position)

Begin.
D/1zmax a //value of largest encoded motif

Loop over all encoded k–lets motifs

{
if p§n{k then continue //reached boundary

a’/Dz4azNucVal spzk

� �

p’/p

}
End.

The data is encoded using the tuple (encoded CanMotif,

starting position). The starting position helps in recovering the

CanMotif and in fetching the right nucleotide which the motif has

to be augmented with.

We use Table 1 for encoding 2–lets CanMotifs. For larger

CanMotifs, we use Algorithm 1 to generate and encode kz1–lets

CanMotifs out of encoded k–lets motifs.

We want to avoid a situation where the encoding of the

generated CanMotif is the same as that of the encoding of one of

the input motifs. The variable D is used to take care of this

problem. The test p§n{k allows us to reject the rightmost k–lets

motif because there is no right nucleotide it can be augmented

with. The function NucVal maps a nucleotide to a numerical value

(A, C, G, TR0, 1, 2, 3). It can be easily shown that no two

different CanMotifs have the same encoding.

As we mentioned earlier, one of our concerns was avoiding of

integer overflow while computing the encoding of CanMotifs. Our

solution is to re-number the motifs sequentially starting from 0.

The re-encoding scheme is straight forward (Algorithm 2). It goes

over the entire encoded motif assigning a new code to each unique

motif.

Algorithm 2. Algorithm to re-encode the k–lets motifs so it

always starts from 0.

Input. List of encoded k–lets motifs (a1,p1),(a2,p2), . . . ,(an,pn)
in increasing order, i.e. aiƒaj for all iƒj, where the tuple stands

for (encoded k–lets motif, its starting position)

Output. List of re-encoded k–lets motifs (a’1,p1),(a’2,p2),
. . . ,(a’n,pn)

Begin.
new_encoding r 0

old_encoding r a1

for i/1 . . . n do
{

if (ai=old_encoding)

{
old_encoding / ai

new_encoding r new_encoding+1

}
ai/new_encoding

}
End.
Back to our initial example S = TATAC, the encoded 2–lets

motifs were {(12, 0), (12, 2)} where 12 is the encoding of 2–lets

motif, TA (Table 1). The other number in the tuple, 0 and 2 in our

case, represents the starting position of the motif. The algorithm

returns the generated 3–lets encoded CanMotifs {(64, 0), (62, 2)}.

For this computation, the algorithm sets the value of D~13: So we

have two different 3–lets CanMotifs, one whose encoded value is

62 (CanMotif TAC), and the other is 64 (CanMotif TAT).

Although we can determine what actual CanMotifs these are

(using the starting position and the value of k), this is unnecessary

Table 2. Encoding of CanMotifs with different lengths (k).

k Max possible CanMotifs First value Last value

2 16 0 15

3 64 16 79

4 256 80 335

5 1024 336 1359

6 4096 1360 5455

7 16384 5456 21839

8 65536 21840 87375

9 262144 87376 349519

10 1048576 349520 1398095

doi:10.1371/journal.pone.0095148.t002

Algorithm to Discover Identical String Motifs

PLOS ONE | www.plosone.org 4 May 2014 | Volume 9 | Issue 5 | e95148

for our task. The important thing is whether we have other

CanMotifs of similar values?

Sorting and discovering motifs
Given a list of encoded kz1–lets CanMotifs the simplest way to

discover the motifs is by sorting this list. It is a better method than

doing an exhaustive search for each CanMotif. But the fastest

sorting algorithm has a time complexity O(n log n): We, however,

will use counting sort, a linear time sorting algorithm.

Using counting sort, we can sort the list of encoded 2–lets

CanMotifs using 2 passes only. In the first pass, we count the

number of occurrences of each distinct key value. That is, make a

histogram of all encoded 2-lets AA, AC, AG, … etc., and in the

second pass, we use arithmetic on this count to determine the

position of each key value. As counting sort uses key values as

indexes into the list, so it is linear in the size of the input list. Thus

the cost of this algorithm is O(n):
For 3–lets and beyond the situation is as follows. Given a sorted

list of encoded k–lets motifs (k§2) we generate a sorted list of

encoded kz1–lets CanMotifs. Initially we feed the encoded 2–lets

motifs (sorted using counting sort) to get a sorted list of encoded 3–

lets CanMotifs. For subsequent values of k the input is a subset of

the output of the previous stage. So if the output is sorted that

means the input to the next stage is sorted too. Algorithm 1

already generates the desired encoded CanMotifs; we only need to

modify it to output in a sorted form.

Suppose that f(a1,p1),(a1,p2),(a1,p3),(a2,p4),(a2,p5), . . .g is the

sorted list of encoded k–lets motifs, where a1va2 � � � are the

encoded motifs and p1,p2, � � � their starting positions. In generating

the encoded kz1–lets CanMotifs, we note that the largest value

a1 goes to is Dz4a1z3 while the smallest value a2 goes to is

Dz4a2: We can easily see that the relation Dz4a1z3vDz4a2

is true for any integer values of a1va2: This suggests a naı̈ve

sorting algorithm where we do 4 passes (a pass for each nucleotide)

through each group. All entries having a1 (as input) are a group,

and those having a2 form another group and so on. Figure 3

illustrates the algorithm. The cost of sorting is,

X‘

i~1

4gi~4
X‘

i~1

gi~4n,

where ‘ is the number of groups (different motifs) and gi is the size

of group i: It is possible to slightly save on the cost of sorting if we

use counting sort, however, complexity wise it will remain the

same. So the cost to sort the generated list of encoded kz1–lets

CanMotifs is O(n):
Now discovering the motifs is a trivial task. It is a matter of

going through the sorted list of encoded kz1–lets CanMotifs,

deleting any entry which occurs less than t times. What is left is a

sorted list of encoded kz1–lets motifs.

The algorithm
The complete algorithm is shown as Algorithm 3. All the

calculations are done in the array B, where at iteration k the

B[j].value holds the encoding of the k–lets which starts at position

B[j].pos.

Algorithm 3. The full listing of the identical string motif

discovery algorithm. The algorithm automatically keeps discover-

ing larger and larger motifs and stops when there are no more

motifs to be found.

Input. Seq[].Nucleotide the input sequence of size SeqLength, and

threshold t
Output. Display the full list of identical string motifs

Begin.
1 Initialize Seq[].NucVal with the corresponding nucleotide

value (A, C, G, TR0, 1, 2, 3)

2
3 Fill Seq[].value with the encoding of the pair bases (see

Table 1), where Seq[i].value is the encoding for the pair at

Seq[i..i+1].Nucleotide

4
5 Count sort Seq[] on .value field in ascending order saving

B[j].valuerSeq[i].value and B[j].posri

6
7 kr2

8 nrSeqLength – 1

9 while (n.0) do
10 {
11 //remove all motifs that occur less than the threshold t
12 i/0
13 while (ivn) do
14 {
15 Let j~number of entries that has the same .value as

B[i].value

16 if (jvt)
17 {
18 Mark B[i], B[i+1], …, B[izj] for deletion

19 }
20 i/izj
21 }

22 Discard all marked entries in array B by shifting the

contents

23
24 crnew size of the array B //number of occurrences of

all k-lets motifs

25
26 for i/0 . . . c{1 do renumber the different motifs

starting from 0

27 Lastr1+largest motif number

28 nrc

29 Output k-lets motifs and their starting positions

30
31 q/0

32 k/k+1

33 loop over each group in array B //each group has the

same .value

34 {
35 a/index of the first element in the group

36 b/index of the last element in the group

37 for i/0 . . . 3 do
38 {
39 for j/a . . . b do
40 {
41 xrB[j].pos+k21

42 if (x,SeqLength && Seq[x].NucVal = = i)

43 {
44 tmp[q].valuerLast+4*B[j].value+i

45 tmp[q++].posrB[j].pos

46 }
47 }
48 }
49 }
50 Brtmp

51 }
52 End.

The code should be simple to follow. The while-loop at lines

13–21 expect a list of all CanMotifs sorted on their encoding value.

Algorithm to Discover Identical String Motifs

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e95148

Since the list is sorted, we can determine the occurrence of each

motif easily and remove those which occur fewer than the

threshold t: We re-encode (re-number) the encodings of motifs so

that it always start from 0. The idea is to prevent an integer

overflow, see the discussion in (Section CanMotifs encoding

scheme.) This is achieved by the loop at line 26 (see Algorithm 2

for the details). Lines 31–49 code the algorithm in Figure 3, which

generates a sorted list of encoded k–lets CanMotifs from a sorted

list of k{1–lets motifs.

When applying the algorithm on the sample sequence below,

ATAGACAGTGTATATACGCTGACATTGCAG

using the threshold t~2, the algorithm discovers 9 different 2–lets

motifs, 5 different 3–lets motifs and two different 4–lets motifs.

Figure 4 marks all the 3–lets and 4–lets motifs in the example

sequence.

The algorithm discovers and reports all motifs including those

that overlap, e.g. TATA (Figure 4). Surely, overlapped motifs may

not make sense biologically, but the algorithm does report them.

These motifs can be easily discarded through a simple conditional

statement that ensures the starting positions of any two k–lets

motifs is at least k symbols apart.

Complexity analysis of the algorithm
For the complexity analysis of the algorithm, we assume the size

of the input sequence is n: Starting with computational complex-

ity. Line 1 requires n operations. We can use a hash table to

initialize the Seq[].value with the encoding of pair bases (line 3)

which costs n operations. In (Section Sorting and discovering

motifs) we have shown that sorting 2–lets CanMotifs (line 5) costs

2n operations. The while-loop (lines 13–21) is used to mark all

CanMotifs if they happen to occur less than the threshold t times.

This can be efficiently implemented using 2n operations. In the

first pass, we just mark those CanMotifs destined for removal with

an invalid encoding, say 21, then deleting them (line 22) in the

second pass by shifting the contents. A single pass is sufficient to re-

number the motifs. The loop to generate the sorted list of encoded

Figure 3. A linear algorithm to generate a sorted list of encoded k+1–lets CanMotifs from a sorted list of encoded k–lets motifs.
Each group is sorted individually.
doi:10.1371/journal.pone.0095148.g003

Figure 4. All the 3 and 4–lets identical string motifs in the sample sequence.
doi:10.1371/journal.pone.0095148.g004

Algorithm to Discover Identical String Motifs

PLOS ONE | www.plosone.org 6 May 2014 | Volume 9 | Issue 5 | e95148

CanMotifs (lines 33–49) costs 4n operations as shown in (Section

Sorting and discovering motifs). The copying in line 50 costs 2n

operations. Note that the main while-loop (lines 9–51) is repeated

L{1 times, where L is the length of the longest motif that occurs

not less than the threshold t: The theoretical worst-case time

complexity is 4nz9n(L{1)~O(nL): In reality, the time com-

Table 3. Experimental results of running our algorithm on selected sets from the data sets [27,28] using t~2:

No. string motifs(a)

Sequences k-lets Overlapping Examples with starting positions(b)

No Yes

dm02r 11 2 15 ATCCCAATCCCR748, 760; ATCCCAATCCCR748, 760

10 9 25 TTCTGCGGGCR670, 1164

9 25 44 CTGCGGGCGR672, 1534

yst09r 23 2 2 GAAAAAAAAAAAAAAAAAAAAAAR11659, 13120

17 3 3

16 5 5 TGAAAAAAAAAAAAAAR861, 11658

15 13 13 GGTTTAAGCGTGAGGR324, 1319

hm20r 42 1 4 ACTCGGGAGGCTGAGGCAGGAGAATCACTTGAACCCGGGAGGR24338, 64502

41 3 7 GAGACCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACTAR4490, 58687

dm01g 14 2 2 CAGCGGCAGCAGCAR1372, 1393

TGCCTATCGATAGTR3658, 5289

13 5 6 TTATTATATATTTR32, 55

12 11 13

11 28 32

mus03g 12 2 2 TCTCCAAATCTAR755, 1103; CTCTTGGGAGCTR1575, 2400

11 4 5

10 13 15

yst01g 14 1 2 GATCTCAAAACAAAR4985, 6920

13 3 5 GAACCAAAGATGGR506, 2239

12 12 16 CTAAAAGAGTAAR2611, 4585

11 37 44 ACCAAAGATGGR508, 2241

hm20m 18 1 1 TGCGCCAGGGCTGGGCTGR34498, 69949

17 3 3 GCCCAGGGCTCCGCCGGR25468, 47769

16 7 7 CCTGCAGCCCCCTCCCR5487, 69910

15 17 19 AATGCTCCCCACGCCR35282, 59636

14 47 52 GCCCTCAGCCGCGCR2385, 26115

(a)Count the number of different motifs. For non-overlapping motifs we only consider motifs if their starting position is further apart than their length.
(b)The starting position is based on index starting at 0. We followed [26] in treating each of the sequences as a single string. For example, yst09r.fasta is composed of 16
substrings each having 1000 nucleotides. These are merged into a single string with 16000 nucleotides.
This set includes real (sequences suffixed ‘r’), generic (sequences suffixed ‘g’), and markov (sequences suffixed ‘m’) data sets. Only larger sized identical string motifs are
reported.
doi:10.1371/journal.pone.0095148.t003

Table 4. Execution time (in seconds) to find identical string motifs of all sizes on an Intel core i5 based PC running at 2.67 GHz
with 4 GB RAM.

Sequence Size (# nucleotides) Karci algorithm Our algorithm

mus06r 1500 0.57 0.33

dm06r 3000 1.77 0.40

yst04r 7000 9.49 0.57

hm26r 9000 18.56 0.83

yst09r 16000 53.43 1.21

hm01r 36000 596.43 1.70

hm20r 70000 2225.15 2.45

doi:10.1371/journal.pone.0095148.t004

Algorithm to Discover Identical String Motifs

PLOS ONE | www.plosone.org 7 May 2014 | Volume 9 | Issue 5 | e95148

plexity is much lower. Note that n is the initial size of the input

sequence, and this n actually shrinks at each iteration since we are

removing all CanMotifs that occur below the threshold.

For space complexity, we have three arrays all of size n: The

array Seq has three components (Nucleotide, NucVal and value), while

arrays B and tmp both have two components each (pos and value).

The total space requirement is 7n~O(n):

Experimental Results and Discussion

For testing purposes, we will conduct experiments using three

different data sets. A data set which is extracted from real data set

from TRANSFAC [27]; randomly generated sequences of

different sizes; and real biological sequences. The first data set is

the same set that is used by Karci [26]. This data set is made up of

two different sets: real, and synthetic. The real data set is from

TRANSFAC; while the synthetic data set (generic and markov), is

created out of extracted data from TRANSFAC using two

different schemes to randomly place the binding site [28]. The full

data set can be downloaded from the site, http://bio.cs.

washington.edu/assessment/download.html. The Result of run-

ning the algorithm on the first data set is in Table 3. This table will

help readers verify the accuracy of our algorithm and at the same

time compare it with the results in [26].

Next, we do a performance comparison to compare the

execution time of our algorithm against the time needed by the

algorithm in [26]. As stated earlier, this work is a significant

improvement of the work in [26], which claimed a time

complexity of O(n2L): For the sake of fair comparison we

implemented Karci’s algorithm in MS Visual C#, which is the

same environment that we used for our algorithm. Table 4

summarizes the execution time of both algorithms running on the

same platform, an Intel core i5 processor based PC running at

2.67 GHz with 4 GB of RAM.

For further testing, we generated random sequences over the

alphabet {A, C, G, T} of various lengths. For each length, we

generated ten different random sequences and calculated the

Figure 5. The average execution time (seconds) to discover all the identical string motifs of all sizes in 10 randomly generated
sequences of each length. The algorithm clearly exhibits a linear behavior.
doi:10.1371/journal.pone.0095148.g005

Table 5. Execution time (in seconds) to discover all the identical string motifs of lengths not exceeding 40 nucleotides in real
biological sequences.

Organism NCBI RefSeq Size Time

Vaccinia virus NC_006998.1 0.19 M 1.83

Mycoplasma penetrans HF-2 NC_004432.1 1.36 M 10.38

Lactobacillus acidophilus NCFM NC_006814.3 1.99 M 12.93

Methanocella paludicola SANAE NC_013665.1 2.96 M 19.24

Acidiphilium multivorum AIU301 NC_015186.1 3.75 M 27.51

Mycobacterium tuberculosis H37Rv NC_000962.2 4.41 M 28.81

Pectobacterium wasabiae WPP163 NC_013421.1 5.06 M 31.13

Mesorhizobium opportunistum WSM2075 chromosome NC_015675.1 6.88 M 42.14

Saccharopolyspora erythraea NRRL 2338 chromosome NC_009142.1 8.21 M 55.85

Caenorhabditis elegans Bristol N2 chromosome III NC_003281.10 13.78 M 105.54

Caenorhabditis elegans Bristol N2 chromosome II NC_003280.10 15.28 M 119.63

The size of the sequences is expressed in M (for millions).
doi:10.1371/journal.pone.0095148.t005

Algorithm to Discover Identical String Motifs

PLOS ONE | www.plosone.org 8 May 2014 | Volume 9 | Issue 5 | e95148

http://bio.cs.washington.edu/assessment/download.html
http://bio.cs.washington.edu/assessment/download.html

average time to discover all the identical string motifs of all

possible sizes. Figure 5 plots the average time (in seconds) that our

algorithm required for finding all the identical motifs. Using MS

Excel, the time t (in seconds) is given by t~8:533:10{6n{0:962,
where n is the length of the sequence. The linear-in-time behavior

of the algorithm is apparent.

The final test is on real biological sequences. Our algorithm was

able to discover and report all the identical string motifs including

some of impractical sizes. These huge motifs may not make sense

biologically, but from a string point of view, they are valid identical

motifs. For example, for Mesorhizobium opportunistum

WSM2075 (NC_015675.1), a chromosome of length 6.88 million

nucleotides, our algorithm found two identical string motifs of size

6357 nucleotides. Table 5 shows the time to discover all identical

string motifs of lengths up to 40. We believe this is reasonable,

since in reality motifs rarely exceed 40 nucleotides. Let n be the

length of the sequence, then using MS Excel we can calculate the

time (in seconds) which is t~7:776:10{6n{3:8:
Given that, the time function for finding all identical string

motifs for random sequences as well as real biological sequences is

close, this allows us to claim that our algorithm has indeed a

complexity that is linear in time.

Conclusion and Future Work

In this paper we presented an algorithm that discovers

automatically all the identical string motifs in a given sequence.

The idea of the algorithm is rooted in [26]; which had a

complexity of O(n2LzL2) in time, and O(nL2) in space, where n
is the length of the input sequence and L is the length of the

longest possible motif. Our enhancement improved the complexity

to O(nL) in time and linear in space. We were able to achieve this

due to three factors: an encoding scheme for the motifs by which

we have eliminated string comparison operation; relying on motifs

only to generate a list of candidate motifs of larger size, which

helps in placing a cap on the number of motifs to check among;

and the usage of a linear algorithm to sort the encoded motifs

thereby simplifying the task of identifying motifs. A further

enhancement is the introduction of a threshold for the minimum

number of occurrences of a motif. Experimental results on

random, synthetic, and real biological sequences demonstrate that

our algorithm has a time complexity that is linear.

For future work, we seek to enhance the algorithm so that it can

discover the planted (‘,d) motifs, and the degenerate motifs.

Implementation and Availability

The program is implemented in MS Visual C# running under

Windows operating system. The executable is available for

academic use only. It is obtainable through email request.

Acknowledgments

We thank one of the reviewers for suggesting a threshold for the minimum

number of motifs. All three anonymous reviewers deserve our appreciation

for their constructive comments which helped improve this paper.

Author Contributions

Conceived and designed the experiments: AAS AMA. Performed the

experiments: AAS. Analyzed the data: AAS AMA. Contributed reagents/

materials/analysis tools: AAS. Wrote the paper: AMA.

References

1. Rivière R, Barth D, Cohen J, Denise A (2008) Shuffling biological sequences

with motif constraints. Journal of Discrete Algorithms 6:192–204.
2. Vaneta A, Marsan L, Sagot MF (1999) Promoter sequences and algorithmical

methods for identifying them. Research in Microbiology 150:779–799.

3. Lawrence CE, Reilly AA (1990) An expectation maximization (EM) algorithm
for the identification and characterization of common sites in unaligned

biopolymer sequences. Proteins: Structure, Function, and Bioinformatics 7:41–
51.

4. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, et al (1993)
Detecting subtle sequence signals: A Gibbs sampling strategy for multiple

alignment. Science 262:208–214.

5. Liu JS, Neuwald AF, Lawrence CE (1995) Bayesian models for multiple local
sequence alignment and Gibbs sampling strategies. Journal of the American

Statistical Association 90:1156–1170.
6. Thijs G, Marchal K, Lescot M, et al (2002) A Gibbs sampling method to detect

overrepresented motifs in the upstream regions of coexpressed genes. Journal of

Computational Biology 9:447–464.
7. Siddharthan R, Siggia ED, van Nimwegen E (2005) PhyloGibbs: A Gibbs

sampling motif finder that incorporates phylogeny. PLOS Computational
Biology 7:e67.

8. Shida K (2006) GibbsST: a Gibbs sampling method for motif discovery with
enhanced resistance to local optima. BMC Bioinformatics 7:486.

9. Defrance M, van Helden J (2009) info-gibbs: a motif discovery algorithm that

directly optimizes information content during sampling. Bioinformatics
25:2715–2722.

10. Bailey TL, Elkan C (1995) Unsupervised learning of multiple motifs in
biopolymers using expectation maximization. Machine Learning 21:51–80.

11. Grundy WN, Bailey TL, EIkan CP (1996) ParaMEME: a parallel implemen-

tation and a web interface for a DNA and protein motif discovery tool.
Computer Applications in the Biosciences 12:303–310.

12. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and
analyzing DNA and protein sequence motifs. Nucleic Acids Research 34:W369–

W373.
13. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al (2009) MEME

SUITE: tools for motif discovery and searching. Nucleic Acids Research

37:W202–W208.

14. Bailey TL, Bodén M, Whitington T, Machanick P (2010) The value of position-

specific priors in motif discovery using MEME. BMC Bioinformatics 11 (1):179.
15. Brown P, Baxter L, Hickman R, Beynon J, Moore JD, et al (2013) MEME-LaB:

motif analysis in clusters. Bioinformatics 29:1696–1697.

16. GuhaThakurta D (2006) Computational identification of transcriptional
regulatory elements in DNA sequence. Nucleic Acids Research 34:3585–3598.

17. Pavesi G, Mereghetti P, Mauri G, Pesole G (2004) Weeder Web: discovery of
transcription factor binding sites in a set of sequences from co-regulated genes.

Nucleic Acids Research 32:W199–W203.
18. Sze SH, Zhao X (2006) Improved pattern-driven algorithms for motif finding in

DNA sequences. Joint Annual RECOMB 2005 Satellite Workshops on Systems

Biology and on Regulatory Genomics San Diego, CA, USA, December 2–4,
2005, Lecture Notes in Bioinformatics 4023:198–211.

19. Fauteux F, Blanchette M, Strömvik MV (2008) Seeder: discriminative seeding
DNA motif discovery. Bioinformatics 24:2303–2307.

20. Marschall T, Rahmann S (2009) Efficient exact motif discovery. Bioinformatics

25:i356–i364.
21. Huang CW, Lee WS, Hsieh SY (2011) An improved heuristic algorithm for

finding motif signals in DNA sequences. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 8:959–975.

22. Yu Q, Huo H, Zhang Y, Guo H (2012) PairMotif: A New Pattern-Driven
Algorithm for Planted (l, d) DNA Motif Search. PLOS ONE 7(10):e48442.

23. Yu Q, Huo H, Zhang Y, Guo H, Guo H (2013) PairMotif+: a fast and effective

algorithm for de novo motif discovery in DNA sequences. International Journal
of Biological Sciences 9:412–424.

24. Crochemore M, Rytter W (1994) Text algorithms. Oxford University Press.
25. Gusfield D (1997) Algorithms on Strings Trees and Sequences Computer

Science and Computational Biology. Cambridge University Press.

26. Karci A (2009) Efficient automatic exact motif discovery algorithms for
biological sequences. Expert Systems with Applications 36:7952–7963.

27. Wingender E, Dietze P, Karas H, Knuppel R (1996). TRANSFAC: A database
on transcription factors and their DNA binding sites. Nucleic Acids Research

24:238–241.
28. Tompa M, Li N, Baily TL, Church GM, De Moor B, et al (2005) Assessing

Computational Tools for the Discovery of Transcription Factor Binding Sites.

Nature Biotechnology 23 (1):137–144.

Algorithm to Discover Identical String Motifs

PLOS ONE | www.plosone.org 9 May 2014 | Volume 9 | Issue 5 | e95148

