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Central retinal vein occlusion (CRVO) is a visually 
disabling condition resulting from impaired outflow of the 
central retinal vein, the major outflow vessel of the eye [1,2]. 
The visual outcome in CRVO can be devastating, and blind-
ness may be the ultimate result. Visual impairment in CRVO 
is predominantly caused by macular edema and visual acuity 
rarely improves above 20/40 if treatment is not initiated [3-6].

Macular edema in CRVO arises through a complex 
multifactorial mechanism. Occlusion of the central retinal 
vein increases the resistance to blood flow in retinal arte-
rioles with closure of retinal capillaries and small arteri-
oles, leading to retinal hypoxia. Retinal hypoxia results in 
increased production of vascular endothelial growth factor 
A (VEGF-A) and a complex inflammatory response medi-
ated by interleukin (IL)-6, IL-8, IL-18, S100A12, fibrinogen, 
fibronectin, galectin-3, and monocyte chemotactic protein-1 

[7-11], which increases vascular permeability and leads to 
the accumulation of fluid in the macula [8]. In retinal vein 
occlusion, intraocular complement factors have recently 
been found to correlate with visual acuity and the severity 
of macular edema, indicating involvement in pathological 
processes leading to visual loss [10,11].

Macular edema is effectively treated with intravitreal 
anti-VEGF injections as a first-line therapy, while dexa-
methasone intravitreal implants are considered second-line 
treatments [12-15]. Despite significant therapeutic advances, 
CRVO remains a burden to patients and continues to chal-
lenge clinicians, as well as the healthcare system in general. 
Macular edema is recurrent in most cases, and approximately 
50% of patients need anti-VEGF injections four years after 
being diagnosed with either CRVO or branch retinal vein 
occlusion (BRVO) [16].

Ranibizumab is a monoclonal antibody fragment (Fab) 
that neutralizes all isoforms of VEGF-A [17]. Studying 
protein changes downstream of VEGF-A neutralization by 
ranibizumab may elucidate novel mechanisms that mediate 
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Purpose: Ranibizumab is a frequently used inhibitor of vascular endothelial growth factor (VEGF) in the treatment of 
macular edema following central retinal vein occlusion (CRVO). Studying proteins that mediate the beneficial effects of 
ranibizumab in CRVO can potentially lead to the improved management of macular edema.
Methods: In 14 Danish Landrace pigs, experimental CRVO was induced in the right eyes and treated with either 
intravitreal ranibizumab (n = 6) or an intravitreal sodium chloride 9 mg/mL solution as a sham injection (n = 8). Suc-
cessful CRVO was confirmed by fluorescein angiography. Retinal samples were collected 15 days after induced CRVO 
and analyzed with label-free, quantification, nano-liquid chromatography–tandem mass spectrometry. Validation was 
performed with western blotting and immunohistochemistry.
Results: CRVO was successfully induced and confirmed by fluorescein angiography. A total of 28 proteins were upregu-
lated, and 31 proteins were downregulated following ranibizumab treatment. A high concentration of the ranibizumab 
component immunoglobulin kappa chain C region was observed in retinas treated with ranibizumab. Complement 
C3, the Ig lambda chain C region, and nucleobindin-2 were downregulated following ranibizumab intervention. The 
downregulation of complement C3 was confirmed by western blotting. Modest changes were observed in the remaining 
significantly regulated proteins.
Conclusions: Retinal complement C3 was downregulated following ranibizumab intervention in CRVO. The decrease 
in complement C3 may potentially downregulate the inflammatory response in CRVO. A high retinal concentration of 
ranibizumab was reached 15 days after injection of the compound.

Correspondence to: Lasse Jørgensen Cehofski, Department of 
Ophthalmology, Odense University Hospital Sdr. Boulevard 
29, 5000 Odense, Denmark; Phone +45 53558878; email: 
lassecehofski@hotmail.com

http://www.molvis.org/molvis/v30/268


269

Molecular Vision 2024; 30:268-277 <http://www.molvis.org/molvis/v30/268> © 2024 Molecular Vision 

the beneficial response to anti-VEGF treatment. The retinal 
proteome in CRVO following ranibizumab treatment has 
not previously been explored. Here, we report on retinal 
proteome changes following ranibizumab intervention in an 
experimental model of CRVO.

METHODS

Animal preparation: The study was approved by the Danish 
Animal Experiments Inspectorate, permission no. 2019–
15–0201- 01651, and the experiments were conducted in 
accordance with the guidelines published by the Institute for 
Laboratory Animal Research. A total of 14 Danish Landrace 
pigs were used for the experiments and housed under a 12-h 
light/dark cycle. General anesthesia, topical anesthesia with 
eye drops, and dilation of the pupils were performed as previ-
ously described [18].

Experimental central retinal vein occlusion (CRVO): Experi-
mental CRVO was induced in proximity to the optic nerve 
head with a standard argon laser (532 nm), given by indirect 
ophthalmoscopy using a 20D lens. The laser energy was set to 
400 mW, with an exposure time of 550 ms. A total of 30–40 
laser applications were used per occlusion. By applying the 
laser directly to the retinal veins close to the optic nerve head, 
the thrombotic material was directed toward the optic nerve 
head and lamina cribrosa. Experimental CRVO was consid-
ered successful when stagnation of venous blood and the 
development of flame-shaped hemorrhages were observed by 
indirect ophthalmoscopy. In the intervention group, the right 
eye of the animal (n = 6) received an intravitreal injection of 
0.05 ml ranibizumab 10 mg/ml (Novartis A/S, Copenhagen, 
Denmark). In the control group, the right eye of each animal 
(n = 8) received a vehicle injection with 0.05 ml of sodium 
chloride 9 mg/ml (NaCl; B. Braun, Denmark).

Fifteen days after induced CRVO, the eyes were enucle-
ated and dissected on ice under a microscope. The animals 
were euthanized immediately after enucleation. The anterior 
segment was removed, and the vitreous body was removed 
by aspiration into a 5 ml syringe. In eyes used for proteomic 
analysis, the neurosensory retina was peeled from the retinal 
pigment epithelium/choroid complex with tweezers and 
stored at -80 °C. In eyes collected for immunohistochem-
istry, complexes consisting of the neurosensory retina, RPE/
choroid complex, and sclera were excised.

Sample preparation for mass spectrometry: Label-free, 
quantification, nano-liquid chromatography–tandem mass 
spectrometry (LFQ nLC-MS/MS) was performed to compare 
CRVO + ranibizumab (n = 5) and CRVO + NaCl (n = 7). 
Sample preparation was undertaken, as previously described 

[19]. Briefly, lysis with a buffer of 5% sodium deoxycholate 
and 20 mM triethyl ammonium bicarbonate was performed, 
as previously described [20]. The protein concentration was 
measured by infrared spectrometry with a Direct Detect 
Spectrometer (Merck KGaA, Darmstadt, Germany), and 
alkylation with iodoacetamide was performed, as previously 
described [19]. The resulting lysates were added to filter units 
(Microcon Centrifugal Filter Devices 30 K, MilliporeSigma, 
Sigma Aldrich, Søborg, Denmark), and digestion with trypsin 
was performed using S-Trap micro spin columns from Protifi 
(Hintington, NY), as described previously [10]. Finally, the 
samples were dried in a vacuum centrifuge and resuspended 
in 100 mM etraethylammonium bromide, followed by 
measurement of the peptide concentration by fluorescence, as 
previously described [20]. Peptides were dried and dissolved 
in 1% formic acid, and 1 µg was injected into the mass 
spectrometer.

Label-free, quantification, nano-liquid chromatography–
tandem mass spectrometry (LFQ nLC-MS/MS): LFQ 
nLC-MS/MS was performed on an Orbitrap Fusion Tribrid 
mass spectrometer equipped with an EasySpray ion source 
coupled to a Dionex UltimateTM 3000 RSLC nanosystem 
(Thermo Fisher Scientific Instruments, Waltham, MA) using 
the Universal Method for label-free quantification, as previ-
ously described [10,15]. Peptide separation was performed, as 
previously described [19]. Mass spectrometry was performed 
with the Universal Method for label-free quantification, 
and full scans in the Orbitrap were obtained, as previously 
described [19]. Isolation of precursor ions in the quadrupole, 
collision-induced dissociation, and detection of MS2 scans in 
the ion trap were performed, as previously described [19]. 
MaxQuant software version 1.6.6.0 [21] (Max Planck Institute 
of Biochemistry, Martinsried, Germany) was used to search 
raw data files against the Uniprot Sus scrofa and Homo 
sapiens databases.

Filtration of proteins and statistics: Unfiltered MaxQuant 
output files (Appendix 1) were uploaded to Perseus software 
version 1.6.2.3 [22] (Max Planck Institute of Biochemistry, 
Martinsried, Germany). Proteins were filtrated by removal 
of proteins only identified by the modification site, followed 
by removal of proteins identified from a peptide that was 
found to be part of a protein derived from the reversed part 
of the decoy database. Proteins identified as contaminants 
were also removed from the dataset. Quantitative values were 
log2 transformed, and technical replicates were averaged. 
Successful identification of a protein requires at least two 
unique peptides. Successful identification and quantification 
were required in 100% of the samples. A Student’s t-test was 
performed in Perseus to compare CRVO + ranibizumab (n 
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= 5) versus CRVO + NaCl (n = 7). Proteins were considered 
significantly regulated if p < 0.05 by Student t test.

Immunohistochemistry: Eyes from one animal were used 
to compare CRVO + ranibizumab (n = 1) versus CRVO + 
NaCl (n = 1). Complexes consisting of the retina, choroid, and 

sclera were fixated in formalin for 24 h, followed by removal 
of the formalin solution. The tissue was then stored in a PBS 
solution at 4°C until further use. Immunohistochemistry was 
performed as previously described [23] with a rabbit anti-pig 
complement component 3 antibody (MBS2028490, MyBio-
source, San Diego, CA), diluted 1:100.

Figure 1. Fluorescein angiography of experimental CRVO. A–B: Venous tortuosity and dilation, and flame-shaped hemorrhages appearing 
within 30 min after induced CRVO. Experimental CRVO was treated with either ranibizumab or NaCl (control). C–D: Flame-shaped 
hemorrhages in the peripheral retina following experimental CRVO.
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Western blotting: Western blotting was performed as previ-
ously described [23] using a polyclonal rabbit anti-pig 
complement component 3 antibody (MBS2028490, MyBio-
source, San Diego, CA), diluted 1:1,000. Western blotting was 
performed to compare CRVO + ranibizumab (n = 5) versus 
CRVO + NaCl (n = 7). Statistical analysis of densitometric 
data was performed with the Mann–Whitney U test.

RESULTS

Retinal proteome changes following ranibizumab intervention 
in experimental CRVO: Experimental CRVO was success-
fully induced in all eyes. Venous tortuosity and flame-shaped 
hemorrhages were observed in all animals within 30 min after 
CRVO was induced (Figure 1). Venous tortuosity, leakage, 
and areas with retinal capillary nonperfusion were observed 
on angiography in all quadrants, consistent with successfully 
induced CRVO (Figure 2).

In total, 2,342 proteins were successfully identified. All 
successfully identified proteins are provided in Appendix 
2. A total of 1,518 proteins were successfully identified and 
quantified in 100% of the samples (Appendix 3). Statistical 
analysis was performed on the proteins present in 100% of the 

samples. A total of 59 proteins were significantly regulated 
in the ranibizumab intervention in CRVO (Figure 3; Table 
1). A total of 28 proteins were upregulated, and 31 proteins 
were downregulated. The largest upregulation was observed 
in the Ig kappa chain C region, a component of ranibizumab. 
Other upregulated proteins included the tubulin beta-6 
chain (fold change = 2.2; p = 0.031) and the very-long-chain 
(3R)-3-hydroxyacyl-CoA dehydratase 3 (fold change = 1.66; 
p = 0.018; Table 1). The remaining upregulated proteins had 
fold changes between 1.07 and 1.36. Downregulated proteins 
included complement C3 (fold change = 0.44; p = 0.039), the 
Ig lambda chain C region (fold change = 0.47; p = 0.049), 
nucleobindin-2 (fold change = 0.64; p = 0.008), transthyretin 
(fold change = 0.67; p = 0.037), prolow-density lipoprotein 
receptor-related protein 1 (fold change = 0.68; p = 0.048), and 
14 kDa phosphohistidine phosphatase (fold change = 0.68; p 
= 0.020; Table 1). All other downregulated proteins had fold 
changes between 0.68 and 0.95; western blotting confirmed 
a decreased level of complement C3 following ranibizumab 
intervention (p = 0.048; Figure 4). Complement C3 was 
predominantly expressed in the retinal nerve fiber layer, inner 
plexiform layer, outer plexiform layer, and outer nuclear layer 
(Figure 5).

Figure 2. Fluorescein angiography was performed four days after CRVO was induced. A and B: Venous tortuosity and leakage of fluorescein 
were observed in all four quadrants, consistent with successfully induced CRVO. Fluorescein angiography was shown for one eye treated 
with ranibizumab and one eye treated with NaCl. 
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DISCUSSION

Our study reported on proteome changes in an experimental 
model of CRVO. As the majority of CRVO cases are nonisch-
emic [2], a CRVO model corresponding to nonischemic 
CRVO was chosen for the study. Leakage of fluorescein along 
retinal veins, as well as areas with retinal capillary nonperfu-
sion, were observed on fluorescein angiography consistent 
with angiographic findings following CRVO in humans. 
Alternatively, an ischemic CRVO can be created by occluding 
four branch retinal veins in the porcine eye, but stages with 
severe ischemia may be more resistant to anti-VEGF therapy 
[24]. The experimental CRVO model was discussed in detail 
in a recent paper [25]. The model has several advantages 
that make it suitable for proteome studies of retinal vascular 
diseases. The porcine retina is fully vascularized and similar 
to the human retina in size and photoreceptor distribution 
[25,26]. Significant drawbacks associated with the use of 
porcine eyes include the high expenses related to acquisition 
and housing, which generally make it necessary to conduct 
experiments with small sample sizes.

Proteomic analysis identified downregulation of retinal 
complement C3 in eyes treated with ranibizumab. The 
quantitative validation of the mass spectrometry data was 
performed by western blotting. Complement C3 was found 
to be increased in aqueous humor samples from patients with 
CRVO [11] and BRVO [10]. In aqueous humor from patients 
with BRVO, a correlation between complement C3 and the 
severity of macular edema has previously been identified [10]. 
At the retinal level, complement C3 is increased in experi-
mental CRVO, where it increases with the level of retinal 
ischemia [9,23]. Interestingly, our study observed a reversal 
of complement C3 in retinas treated with ranibizumab.

The complement system is part of the innate immune 
response, the fast, unspecific arm of the immune system, and 
it is involved in the early response against pathogens [27,28]. 
The complement system can be activated through three 
different pathways: the classical pathway, the lectin pathway, 
and the alternative pathway [27].

The alternative pathway is constitutively active at low 
levels due to the spontaneous hydrolysis of complement 

Figure 3. Volcano plot. The log2-transformed abundance ratio (ranibizumab/NaCl) for each protein is plotted on the x-axis. Negative log10 
transformed p values from the Student t-test are plotted on the y-axis. Statistically significantly regulated proteins are located above the 
horizontal line, which denotes a significance level of 0.05. The components of ranibizumab are not included in the volcano plot. 
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component C3 to C3(H2O). In the alternative pathway, factor 
B can bind C3(H20) and is cleaved by factor D to form a 
distinct C3 convertase termed C3(H20), which produces C3b 
and provides an amplification loop for the activation of the 
complement system [28]. There is mounting evidence that the 
complement system plays an important role in the pathogen-
esis of age-related macular degeneration [29]. Interestingly, 
a bispecific fusion protein that neutralizes VEGF along with 

complement C3b and complement C4b has shown promising 
results in animal models of neovascular age related macular 
degeneration and has been reported to be well tolerated in 
a phase 1 trial [29]. Genotyping of patients with neovas-
cular AMD has identified an association between these 
complements.

Furthermore, the C3 gene has been associated with favor-
able outcomes of anti-VEGF therapy. There is still limited 

Figure 4. Western blotting. A: Western blotting comparing complement C3 in CRVO + ranibizumab (lanes 1–5) versus CRVO + NaCl (lanes 
6–12). B: Densitometric data corresponding to (A) confirmed downregulation of complement C3 (p = 0.048). 

Figure 5. Immunohistochemistry. A and B: Complement C3 was predominantly expressed in the retinal nerve fiber layer, inner plexiform 
layer, outer plexiform layer, and outer nuclear layer (Scale bar = 100 μm). Reaction color: Brown. Abbreviations: NFL: nerve fiber layer; 
GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; PS: 
photoreceptor segments. 
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Table 1. Significantly regulated proteins ordered according to fold change.

Protein ID Protein name Gene P-value Fold change
P01834 Ig kappa chain C region IGKC 2 x 10-7 12.2
Q9BUF5 Tubulin beta-6 chain TUBB6 0.031 2.12
Q9P035 Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 HACD3 0.018 1.66
Q16518 Retinoid isomerohydrolase RPE65 0.045 1.36
Q9H2P0 Activity-dependent neuroprotector homeobox protein ADNP 0.007 1.36

Q9BTT0-3 Acidic leucine-rich nuclear phosphoprotein 32 family 
member E ANP32E 0.049 1.36

O14639-2 Actin-binding LIM protein 1 ABLIM1 0.009 1.33
Q92530 Proteasome inhibitor PI31 subunit PSMF1 0.046 1.32
O02772 Fatty acid-binding protein. heart FABP3 0.045 1.29
Q9TUI8 Fatty-acid amide hydrolase 1 FAAH 0.043 1.28
P25685 DnaJ homolog subfamily B member 1 DNAJB1 0.037 1.25
Q8ND76-3 Cyclin-Y CCNY 0.013 1.21
P41223 Protein BUD31 homolog BUD31 0.015 1.21
Q92598-2 Heat shock protein 105 kDa HSPH1 0.043 1.2
Q04917 14-3-3 protein eta YWHAH 0.036 1.19
P11137-3 Microtubule-associated protein 2 MAP2 0.045 1.19
O14787-2 Transportin-2 TNPO2 0.018 1.18
Q12931-2 Heat shock protein 75 kDa, mitochondrial TRAP1 0.029 1.16
Q5JPE7-2 Nodal modulator 2 NOMO2 0.026 1.16
Q14847 LIM and SH3 domain protein 1 LASP1 0.042 1.15
Q14498-3 RNA-binding protein 39 RBM39 7 x 10-4 1.15
Q12756 Kinesin-like protein KIF1A KIF1A 0.007 1.14
Q16543 Hsp90 co-chaperone Cdc37 CDC37 0.017 1.14
F1SPM8 AP2-associated protein kinase 1 AAK1 0.044 1.13
Q92990-2 Glomulin GLMN 0.034 1.13
Q99497 Protein deglycase DJ-1 PARK7 0.016 1.12
P78371 T-complex protein 1 subunit beta CCT2 0.044 1.08
Q93009 Ubiquitin carboxyl-terminal hydrolase 7 USP7 0.037 1.07
Q16531 DNA damage-binding protein 1 DDB1 0.047 0.95
Q9BPX5 Actin-related protein 2/3 complex subunit 5-like protein ARPC5L 0.045 0.91
P43367 Calpain-2 catalytic subunit CAPN2 0.046 0.91
Q99816 Tumor susceptibility gene 101 protein TSG101 0.047 0.91
O43264 Centromere/kinetochore protein zw10 homolog ZW10 0.045 0.9
Q2YGT9 60S ribosomal protein L6 RPL6 0.016 0.89
O00629 Importin subunit alpha-3 KPNA4 0.034 0.89
P60983 Glia maturation factor beta GMFB 0.037 0.85
O75436 Vacuolar protein sorting-associated protein 26A VPS26A 0.026 0.85
P61313 60S ribosomal protein L15 RPL15 0.029 0.84
P41227-2 N-alpha-acetyltransferase 10 NAA10 0.008 0.84
Q6QAP7 40S ribosomal protein S17 RPS17 0.045 0.83
P27708 CAD protein CAD 0.002 0.82
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Protein ID Protein name Gene P-value Fold change
P62495-2 Eukaryotic peptide chain release factor subunit 1 ETF1 0.032 0.82

P36404 ADP-ribosylation factor-like protein 2 ARL2 0.046 0.8

P61586 Transforming protein RhoA RHOA 0.036 0.8
P36887 cAMP-dependent protein kinase catalytic subunit alpha PRKACA 0.012 0.8
P52294 Importin subunit alpha-5 KPNA1 0.014 0.79
O15240 Neurosecretory protein VGF VGF 0.035 0.78
P61964 WD repeat-containing protein 5 WDR5 0.02 0.78
P12026 Acyl-CoA-binding protein DBI 0.029 0.76
P52209-2 6-phosphogluconate dehydrogenase. decarboxylating PGD 0.039 0.75
O60502 Protein O-GlcNAcase MGEA5 0.025 0.74
P15145 Aminopeptidase N ANPEP 0.003 0.69
P59083 14 kDa phosphohistidine phosphatase PHPT1 0.02 0.68
Q07954 Prolow-density lipoprotein receptor-related protein 1 LRP1 0.047 0.68
P80895 Protein-L-isoaspartate(D-aspartate) O-methyltransferase PCMT1 0.031 0.68
P50390 Transthyretin TTR 0.037 0.67
P80303-2 Nucleobindin-2 NUCB2 0.008 0.64
P01846 Ig lambda chain C region n/a 0.049 0.47
P01025 Complement C3 C3 0.039 0.44
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knowledge of the role of complement activation in CRVO, 
but our data suggest that ranibizumab may downregulate the 
inflammatory response in CRVO by decreasing the expres-
sion of complement C3.

Ranibizumab intervention was associated with a 
decreased level of nucleobindin-2, a protein with two Ca2+ 
binding EF-hand domains separated by an acidic amino 
acid-rich region and a leucine zipper [30]. The heterogenic 
structure of nucleobindin-2 is consistent with its multitude of 
functions. In a variety of cancers, nucleobindin-2 promotes 
cell proliferation, migration, and invasion, with high nucleo-
bindin-2 levels associated with poor outcomes [30,31], but its 
retinal function remains to be elucidated. A downregulation 
of transthyretin was observed following ranibizumab inter-
vention. Ocular transthyretin is synthesized by RPE cells and 
has a wide distribution within the retinal layers [32,33], but 
the role of transthyretin in the RPE remains to be elucidated 
[31]. The immunoglobulin kappa chain C region of ranibi-
zumab was identified in samples treated with ranibizumab, 
reflecting high retinal concentrations of the compound 15 
days after the intervention. The porcine protein Ig lambda 
chain C region was downregulated following ranibizumab 
intervention. The downregulation of the porcine Ig lambda 
chain C region is likely to result from a restored blood–retinal 
barrier after anti-VEGF therapy [26].

While proteomics allows for the identification and quan-
tification of a large set of proteins, the approach has several 
limitations. In particular, the quantification of low-abundance 
proteins is a significant challenge in proteomics. VEGF, a 
well-known, low-abundance protein, was not identified in the 
proteomic analysis in our study. Several factors contribute 
to difficulties in detecting low-abundance proteins [10,11]. 
These include sample complexity, technical variation, and 
fragmentation efficiency. Furthermore, the complexity of the 
retina, with its multilayered structure and multiple cell types, 
contributes to the complexity of the tissue, which can make it 
difficult to detect VEGF [24].

Conclusion: Our study identified downregulation of comple-
ment C3 in CRVO treated with ranibizumab. Ranibizumab 
intervention may potentially contribute to downregulation 
of the inflammatory response in CRVO by decreasing the 
retinal level of complement C3. Ranibizumab intervention 
was also associated with downregulation of the Ig lambda 
chain C region, which may reflect the reestablishment of 
the blood–retinal barrier with decreased leakage of plasma 
proteins. A high concentration of the ranibizumab component 
Ig kappa chain C region was detected, reflecting high levels 
of ranibizumab reached in the retina 15 days after injection.

APPENDIX 1. SUPPLEMENTARY TABLE 1.

To access the data, click or select the words “Appendix 1.”
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APPENDIX 2. SUPPLEMENTARY TABLE 2.

To access the data, click or select the words “Appendix 2.”

APPENDIX 3. SUPPLEMENTARY TABLE 3.

To access the data, click or select the words “Appendix 3.”
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