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Obesity is a worldwide epidemic that predisposes individuals to metabolic complica-
tions, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease, all of which 
are related to an imbalance between food intake and energy expenditure. Identification 
of the pathogenic molecular mechanisms and effective therapeutic approaches are 
urgently needed. A well-accepted paradigm is that crosstalk between organs/tissues 
contributes to diseases. Endothelial dysfunction characterizes metabolic disorders and 
the related vascular complications. Over the past two decades, overwhelming studies 
have focused on mechanisms that lead to endothelial dysfunction. New investigations, 
however, have begun to appreciate the opposite direction of the crosstalk: endothelial 
regulation of metabolism, although the underlying mechanisms remain to be elucidated. 
This review summarizes the evidence that supports the concept of endothelial regulation 
of obesity and the associated insulin resistance in fat, liver, and skeletal muscles, the 
classic targets of insulin. Outstanding questions and future research directions are high-
lighted. Identification of the mechanisms of vascular endothelial regulation of metabolism 
may offer strategies for prevention and treatment of obesity and the related metabolic 
complications.
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iNTRODUCTiON

The triad of obesity, diabetes, and cardiovascular diseases (CVD) becomes a major public health 
threat because of the global shift toward an energy-rich and sedentary life style. The WHO predicts 
that overweight and obesity may soon become the most significant cause of poor health, in addition 
to malnutrition and infectious diseases (1). While half of the population in developed countries 
is overweight or obese, more than 15% of children in these countries are overweight or obese (1). 
Obesity and the associated metabolic complications, including metabolic syndrome and type 2 
diabetes, contribute to cardiovascular morbidities and present a great threat to global human health 
(2). These complications account for more than 300,000 deaths per year in the U.S. (3, 4). Obesity 
results from an imbalance between energy intake and expenditure, which increases adipose tissue 
mass and ectopic fat accumulation. As a consequence, obesity leads to various defects, such as insulin 
resistance in fat, skeletal muscle, and liver, hepatosteatosis, pancreatic lipotoxicity, and eventually 
type 2 diabetes and other cardiovascular complications, including accelerated atherosclerosis (5). 
Identification of the pathogenic molecular mechanisms and effective therapeutic approaches are 
needed.

http://www.frontiersin.org/Cardiovascular_Medicine
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2017.00051&domain=pdf&date_stamp=2017-08-09
http://www.frontiersin.org/Cardiovascular_Medicine/archive
http://www.frontiersin.org/Cardiovascular_Medicine/editorialboard
http://www.frontiersin.org/Cardiovascular_Medicine/editorialboard
https://doi.org/10.3389/fcvm.2017.00051
http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:jian-xu@ouhsc.edu
https://doi.org/10.3389/fcvm.2017.00051
http://www.frontiersin.org/Journal/10.3389/fcvm.2017.00051/abstract
http://www.frontiersin.org/Journal/10.3389/fcvm.2017.00051/abstract
http://www.frontiersin.org/Journal/10.3389/fcvm.2017.00051/abstract
http://loop.frontiersin.org/people/345053
http://10.13039/100000002
http://10.13039/100000968
http://10.13039/100000041
http://10.13039/100008569


2

Li et al. Endothelial Role in Obesity

Frontiers in Cardiovascular Medicine | www.frontiersin.org August 2017 | Volume 4 | Article 51

Despite decades of intense research, the major molecular 
pathogenesis behind complex metabolic diseases is unknown 
(6). A well-accepted paradigm is that cellular crosstalk in 
and between organs/tissues contributes to metabolic diseases 
(7–10). Endothelial dysfunction characterizes and contributes 
to the pathology of metabolic disorders and the related vascular 
complications (5, 11). Over the past two decades, overwhelming 
studies have focused on mechanisms that lead to endothelial 
dysfunction. The mechanisms include the reactive oxygen 
species-mediated eNOS uncoupling, loss of eNOS-derived NO 
bioavailability, hyperglycemia-promoted apoptosis of vascular 
endothelial cells (ECs) in diabetes, which ultimately leads to 
impaired endothelium-dependent vessel relaxation, a general bio-
marker of endothelial dysfunction (11–15). Emerging investiga-
tions, however, suggest that the opposite direction in the crosstalk, 
i.e., the endothelial regulation of metabolism, could be crucial, 
although the underlying mechanisms remain largely unknown. 
This review summarizes the emerging evidence that supports the 
concept of vascular endothelial regulation of obesity-associated 
insulin resistance in classic targets of insulin, including fat, liver, 
and skeletal muscles, and highlights the unanswered questions 
for future research directions. Advancement in understanding 
endothelial control of metabolism may provide novel approaches 
for intervention in obesity and obesity-related diseases.

endothelium and endothelial Function
Endothelial cells form the lining of all blood and lymphatic ves-
sels within the vascular network. The adult human body contains 
more than one trillion ECs, which weigh more than 100 g and 
cover a surface area of more than 1,000 square meters (16). As 
such, ECs can be regarded as an organ with endothelium form-
ing a dynamic interface with all other organs in the body (17). 
Normal ECs line capillaries and establish specialized vascular 
niches or tissue-specific endothelium. On receiving cues from a 
wide variety of cells and tissues, this “organ” maintains vascular 
homeostasis by regulating each component of the endothelial 
function (18, 19). The most important endothelial function is to 
control vasomotor tone. The healthy ECs constitutively generate 
eNOS-derived NO to modulate vascular smooth muscle relaxa-
tion, which properly regulates both nutrient trafficking and blood 
fluidity. A well-controlled EC-derived NO is also essential to 
other aspects of the endothelial function, such as the capability 
of maintaining an anticoagulant, antiplatelet, and fibrinolytic 
phenotype of the endothelium (5). It has been well established 
that loss of endothelial function facilitates the development 
of atherosclerosis (20). Therefore, endothelium operates as a 
complex organ to maintain whole-body homeostasis by fulfill-
ing proper endothelial function, which can be impaired under 
disease conditions, such as diabetes and obesity.

endothelial Dysfunction in Obesity and 
insulin Resistance
Obesity contributes significantly to the development and 
progression of cardiovascular disease (21), which is believed to 
be mediated by oxidative stress, inflammation and endothelial 
dysfunction (22). Recent studies have highlighted the importance 

of metabolic pathways in ECs and suggested the therapeutic 
potential of targeting EC metabolism, since microcirculation 
is a key player in obesity-associated cardiovascular disease. 
Obesity elevates circulating free fatty acids and alters adipokines 
and inflammatory cytokines that are released from visceral and 
perivascular fat, which leads to structural and functional changes 
in microvasculature (23). Given the recognized differences in the 
metabolism of healthy ECs vs. diabetes-associated dysfunctional 
ECs, EC metabolism could be targeted for therapeutic benefit (24). 
For instance, by restoring diabetes-impaired glycolytic-influx and 
angiogenic response of the ECs, diabetic vasculopathies can be 
improved (24). Endothelial insulin resistance is associated with 
diabetic cardiovascular complications, including atherosclerosis 
(25). The role of endothelial insulin resistance in the develop-
ment of obesity and systemic insulin resistance is not as straight-
forward. Common treatments for obesity involving strategies to 
increase insulin sensitivity (26) have often been associated with 
improvement of endothelial function and/or endothelial insulin 
sensitivity (5). For instance, administration of metformin, which 
is known to enhance whole-body insulin sensitivity, improved 
endothelium-dependent vessel relaxation (27). Another excellent 
example is that physical activity has been found to modulate EC 
phenotype by overcoming obesity-induced endothelial dysfunc-
tion (28). However, emerging evidence support the concept of 
endothelial regulation of metabolism, e.g., through endothelial 
interactions with the insulin targets in obesity. Advancement in 
this research area may provide new strategies to prevent and treat 
obesity and obesity-related diseases.

eNDOTHeLiAL ReGULATiON OF 
OBeSiTY-ASSOCiATeD iNSULiN 
ReSiSTANCe iN ADiPOSe TiSSUeS

Obesity results from accumulation of white adipose tissue (29, 
30). Adipose tissue is a central component for whole-body energy 
homeostasis. Insulin resistance in adipose tissue is presented as 
impaired insulin-stimulated glucose transport and blunted inhi-
bition of lipolysis. However, adipocytes present a selective insulin 
resistance: while the insulin-promoted glucose transporter-4 
trafficking is impaired, its impact on Forkhead box O-1 nuclear 
exclusion is preserved (31).

Responding to caloric intake, adipose tissue expands. People 
who are prone to deposit visceral but not subcutaneous adipose 
tissue have a higher risk of metabolic disease (32). Although 
normal subcutaneous adipose tissue expands with more capil-
lary network than visceral tissue, this capability reduced with 
obesity and insulin resistance, suggesting that lack of angiogen-
esis in subcutaneous adipose tissue links to metabolic disease 
(33). The inability of peripheral adipose tissue to store excess 
energy has been reported in general population with insulin 
resistance (34, 35).

Linage tracing experiments demonstrated that the vascular 
endothelium of the adipose tissue gives rise to both white and 
brown fat cells (36), presumably through a Zfp423 (a multi zinc-
finger transcription factor)-dependent pathway (37), suggesting 
a potential clinical use of EC-derived pre-adipocytes. In line with 
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this, the capillary-derived beige adipocytes, when implanted in 
mice, improved metabolic homeostasis (38). Clearly, these data 
suggest that the plasticity and function of adipose tissue can 
both be regulated by proliferation/differentiation of stem cells 
and transformation of mature adipocytes by proper stimuli (39). 
It remains unknown, however, whether EC-derived factors are 
among these stimuli.

Modulation via Angiogenesis
Adipose tissue angiogenesis and vascular functions have long 
been associated with obesity, adipose metabolism, and insulin 
sensitivity (40–42). Angiogenesis and adipogenesis are tightly 
coupled during development (43) and postnatal fat expansion 
(44). In vitro studies have shown that vascular-derived signals, 
e.g., endothelial-VEGF, directly affect the proliferation and dif-
ferentiation of the surrounding pre-adipocytes, suggesting that 
angiogenesis can be a therapeutic target for obesity and metabolic 
diseases (45). Pharmacological inhibition of angiogenesis has 
been reported in vivo for the first time to reduce fat mass in distinct 
obesity models, likely through different vasculature-dependent 
mechanisms (46). However, the physiological consequences of 
modulating angiogenic activity seem to be context-dependent: 
gain of function studies show that overexpression of VEGF-A 
improves metabolic profiles, which maintains tissue function 
during the early phase of diet-induced obesity (44). In contrast, 
reducing vascularization promotes dysfunctional adipose cell 
death which may reverse obesity by improving metabolic out-
comes in established obesity (47). Similar beneficial results were 
reported in nanoparticles-targeting adipose tissue transforma-
tion and angiogenesis, which prevented obesity in HFD-fed mice 
(48). It is unclear whether any EC-derived factors are involved in 
these studies.

Modulation via Other eC-Derived Factors
Adipose stromal cells (ASCs) are therapeutically potent pro-
genitor cells because they possess properties of pericytes. ASCs 
in combination with EC establish functional multilayer vessels. 
Transforming growth factor (TGF)-β is secreted by EC (49) and 
is able to induce αSMA expression in ASC, a marker of smooth 
muscle cell differentiation. A recent study found that ECs initiate 
this differentiation program in co-cultured ASC and propagate 
the program in distant ASC by induction of Activin A but not 
TGF-β (50, 51). Activin A is a secreted protein and a member 
of the TGF-β family that has pleiotropic effects on regulating 
apoptosis, proliferation, and cell differentiation (52). How ECs 
induce Activin A in ASC is yet to be determined (53).

Endocrine fibroblast growth factors (FGFs), such as FGF21, 
FGF15/19, and FGF23, are critical for maintaining whole-body 
homeostasis, because they operates in inter-organ endocrine 
signaling pathways that govern glucose, bile acid, and lipid 
metabolism (54, 55). FGF21 has gained much attention because 
of its favorable pharmacological properties in glucose and lipid 
metabolism (56). FGF21 is expressed in the liver, pancreas, 
adipose, and skeletal muscle, which can be altered by differ-
ent stimuli, such as starvation or overfeeding (57). The role of 
endogenous FGF21 has just emerged (58). A recent study in 
HFD-fed mice (59) implicated that endothelial-derived FGF21 

may contribute to improved metabolic profiles in mice lacking 
the autophagic protein LC3, although confirmative evidence is 
needed (e.g., demonstration of FGF21-dependency using FGF21-
blocking antibodies (60) or endothelial FGF21 knockout mice). 
The role of autophagic proteins in the regulation of adipose tissue 
is not fully understood (61). If the role of LC3 is supported, it 
would be interesting and important to determine whether this 
feature also applies to other EC-derived FGFs.

Modulation via MicroRNA (miRNA)
MicroRNAs recently link ECs to adipocyte function in diabe-
tes and CVD (62, 63). One example is miR-181b, which was 
downregulated in adipose ECs from mice fed an HFD (64). 
Downregulation of miR-181b induced insulin resistance and low-
grade inflammation in adipose tissue, which can be reversed by 
genetic delivery of miR-181b. Mechanistically, miR-181b targets 
the PH domain and leucine-rich repeat protein phosphatase-2 in 
ECs and, thus, improves eNOS-NO signaling. As such, adipose 
tissue ECs promote glucose uptake in adipocytes in a paracrine 
manner (64). miR-181b also decreased protein levels of vascular 
cell adhesion molecule and intercellular adhesion molecule, con-
sistent with previous studies on systemic delivery of miR-181b 
(65, 66). Other miRNAs, such as miR-126, have been shown 
to preserve normal endothelial function, likely via blocking 
unwanted endothelial activation (67). These findings highlight 
the role of adipose ECs in the development of obesity-induced 
insulin resistance and the potential of using miRNAs as a tool to 
modulate EC function (68).

eNDOTHeLiAL ReGULATiON OF 
OBeSiTY-ASSOCiATeD iNSULiN 
ReSiSTANCe iN SKeLeTAL MUSCLeS

The skeletal muscle is one of the major target organs of insulin, 
essential for insulin-induced glucose uptake (69). Insulin resist-
ance in skeletal muscle is manifested as a decrease in glucose 
transport and a decline in muscle glycogen synthesis in response 
to circulating insulin. Insulin sensitivity is decreased in myocytes 
obtained from obese individuals, or cultured myocytes in the 
presence of adipocyte-derived lipids (70), supporting the concept 
that accumulation of excess lipids or their metabolic derivatives 
causes decreased insulin signaling in skeletal muscle (71, 72). 
Insulin promotes the glucose uptake by increasing blood flow 
and recruiting perfused capillaries in skeletal muscle. Insulin 
signaling in vascular endothelium may control its own delivery 
to skeletal muscle and other tissues (73), although it remains to 
be determined whether this mechanism is central to systemic 
insulin sensitivity (74).

Modulation via vasodilation
Endothelial nitric oxide synthase (eNOS)-derived NO, the 
major endothelial-derived vasodilator, is central to endothelial 
regulation of insulin sensitivity in skeletal muscle, by stimulat-
ing blood vessel relaxation (in vascular smooth muscle cells) 
and perfusion (in skeletal muscles) (75). In addition, eNOS-
derived NO regulates Akt signaling in skeletal muscle, through 
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a cGMP-PI3K-dependent pathway (76). Interestingly, rapid 
formation of capillary ECs occurred in rat skeletal muscle after 
exposure to insulin (77), supporting the notion that insulin is a 
vascular hormone (78). However, the normal response of skeletal 
muscle capillary to NO is impaired in obesity-induced insulin 
resistance (79). Physical training appears to be able to improve it, 
likely because both endurance training and high intensity train-
ing with intervals increased eNOS protein contents specifically in 
the endothelium of capillaries and arterioles of skeletal muscle in 
previously sedentary lean and obese young men (80).

Modulation via Barrier Function
There is evidence indicating that insulin delivery to skeletal muscle 
interstitium through the ECs is rate-limiting in insulin-stimulated 
glucose uptake in mice (74, 81) and humans (82). This process 
seems to be impaired by insulin resistance in type 2 diabetes and 
obesity (83). Mechanistically, damage to the endothelial glycocalyx 
barrier in skeletal muscle is believed to be an early event, as shown 
in mice fed an HFD (84). A recent study showed that endothelial 
insulin resistance also plays a pivotal role in the regulation of 
glucose uptake by the skeletal muscle (83). Mechanistically, HFD-
impaired insulin signaling in EC downregulated insulin-induced 
eNOS phosphorylation and attenuated capillary recruitment and 
insulin delivery, which, in turn, reduced glucose uptake by the 
skeletal muscle (83). Conversely, restoration of the insulin-induced 
eNOS phosphorylation in ECs normalized capillary recruitment 
and insulin delivery, which restored glucose uptake by the skeletal 
muscle (81).

Fatty acids represent a key energy source that is used by a num-
ber of tissues, which must be tightly controlled to avoid lipotoxic-
ity induced by an excess of unoxidized fatty acids (85). Obesity 
often causes over-accumulation of lipids in non-adipose tissues 
(e.g., skeletal muscle), which can trigger a toxic reaction and 
impair the function of the tissues, contributing to insulin resist-
ance (86). Previous studies have identified endothelium as a key 
regulator of fatty acid transport, mediated by a complex signaling 
pathway including VEGF-B, PPARγ, and Apelin (87). In a recent 
study, endothelial Fcγ receptor IIB activation was shown to blunt 
insulin delivery to skeletal muscle, causing insulin resistance in 
mice (88). A study found that the capillary endothelial fatty acid 
binding proteins 4 and 5 (FABP4/5) are required for fatty acid 
uptake in heart and skeletal muscle, organs that possess muscle-
type continuous capillary (89). In contrast, the function of an 
EC-derive mitogen activated protein kinase kinase kinase kinase 
4 (MAP4K4) has opposing functions in blood and lymphatic ECs: 
while MAP4K4 is required for lymphatic vascular integrity, blood 
EC-MAP4K4 induces insulin resistance by impairing vascular 
function in obesity (90).

eNDOTHeLiAL ReGULATiON OF 
OBeSiTY-ASSOCiATeD iNSULiN 
ReSiSTANCe iN THe LiveR

The liver is responsible for maintaining fasting glucose levels. 
Excessive accumulation of lipids in the liver impairs hepatic 
responsiveness to insulin, leading to elevated levels of glucose and 

insulin in the circulation, eventually chronic hyperinsulinemia 
(91). Insulin resistance in the liver is selective in that insulin 
fails to suppress gluconeogenesis but continues to boost fatty 
acid synthesis (92). This uncoupling of insulin-mediated glucose 
and lipid metabolism will ultimately lead to hyperglycemia and 
hypertriglyceridemia, likely due to the unique activities of the 
mechanistic target of rapamycin complex (93) and the serine–
threonine protein kinase (94) in hepatic lipogenesis. The role of 
endothelial regulation of insulin resistance in the liver has just 
begun to emerge.

Liver Sinusoidal endothelial Cells (LSeCs) 
and the Pathology of Non-Alcoholic Fatty 
Liver Disease (NAFLD)
Obesity and insulin resistance can cause NAFLD, which is charac-
terized by liver metabolic dysregulation, such as hyperlipidemia 
(95). Recent epidemiology of NAFLD and its connection with 
CVD suggest that blocking endothelial dysfunction would be 
beneficial (96), since endothelial function is impaired in patients 
with NAFLD (97).

Liver sinusoidal endothelial cells are highly specialized ECs, 
which form the wall of liver sinusoids and represent up to 20% 
of liver cells (98). LSECs are well known for their crucial roles in 
liver regeneration (99–101) and chronic liver diseases associated 
with obesity (e.g., fibrosis) (102). LSECs maintain hepatic stellate 
cells and hepatocytes in quiescence at basal condition but induce 
hepatocyte proliferation and angiogenesis during regeneration 
and undergo morphological and functional changes during fibro-
sis (103). It is believed that LSECs accomplish these by interacting 
with other hepatic cell types to maintain liver homeostasis. Since 
healthy LSECs facilitate the rapid transfer of fatty acids formed 
from cholesteryl esters to parenchymal cells, LSECs injury con-
tributes to NAFLD (104). LSECs injury has been associated with 
NAFLD progression, where NAFLD may alter LSECs-mediated 
transport of nutrients, lipids, and lipoproteins. A recent study 
in choline-deficient, l-amino acid-defined, and high-fat diet 
models that mimic human NAFLD indicated that LSEC injury 
functions as “gatekeeper” in the progression from simple steatosis 
to the early non-alcoholic steatohepatitis stage, and LSEC injury 
may activate Kupffer cells and hepatic stellate cells, which in 
turn results in chronic liver injuries (105). In this regard, LSECs 
operate as a traffic-director at the crossroad of regeneration and 
fibrosis (106). It is yet to be determined whether LSEC-derived 
factors are required for this function.

intrahepatic Molecular interactions
Iron overload often accompanies NAFLD. However, the key mol-
ecules involved in NAFLD-associated iron dysregulation have not 
been fully elucidated. A recent study found that LSEC secreted a 
bone morphogenetic protein-binding endothelial regulator that 
inhibited BMP-SMAD signaling in hepatocytes and reduced hep-
cidin protein expression (107). Fatty liver is the hepatic compo-
nent of insulin resistance before developing NAFLD (108). In an 
attempt to identify physiological consequences of mice missing 
mucin-type O-glycans that are highly expressed in vascular ECs, 
a recent study found that the pups developed fatty liver disease, 
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due to disconnected portal vein and intestinal lymphatic systems, 
leading to chylomicron deposition (109).

OUTSTANDiNG QUeSTiONS AND FUTURe 
DiReCTiONS

Our understanding of the endothelial layer has progressed 
significantly since its historical view as an inert layer of cells that 
serve as the inner lining of the circulatory system (110, 111). 
Now more than ever, the endothelium is demonstrated to regu-
late physiologic and pathologic processes by cross-talking with 
its residing organs. Over the past two decades, most research 
has focused on cellular and molecular mechanisms of endothe-
lial dysfunction in disease conditions, such as diabetes (14, 112). 
Recent studies have looked into differences in the metabolism 
of healthy vs. diabetes in ECs, aiming at targeting endothelial 
metabolism for therapeutic benefit (24, 113). This review 
focuses on recent studies regarding the endothelial regulation of 
obesity-associated insulin resistance (Figure 1). The reviewed 
evidence supports an essential role for ECs in regulating the 
metabolic function of adipose tissues, skeletal muscle, and liver. 
However, except for the proposed regulation by EC-derived fac-
tors, other modes of regulation appear to be tissue-dependent. 
For instance, angiogenesis seems to be prominent in adipose 
tissue, consistent with its role in adipogenesis (21, 114). In con-
trast, blood vessel barrier function favors targeting the skeletal 
muscle, while LSEC intrahepatic interaction dominates in the 
liver (Figure 1). The difference may be ascribed to the distinct 
role of each organ/tissue in whole-body metabolism and the 
heterogeneity of the tissue-residing ECs. This concept may well 
apply to endothelial interaction with other type of cells not 
discussed here, such as inflammatory cells [e.g., macrophages 

(115)] and hypothalamic cells [e.g., hypothalamic-adipocyte 
axis (116) and brain (117)], which eventually affect insulin 
targets. The integrative conclusions of these studies present 
a picture of ECs interacting directly with cells of the classic 
insulin targets, through differential mechanisms, implicating 
organ- and pathway-specific imbalanced insulin actions (118). 
However, there are considerable unanswered questions that 
merit future investigations.

(1) While tissue- or organ-specific gene expression [e.g., tissue- 
specific promoters (119)] has been identified and widely 
used in pre-clinical studies, only global endothelial mak-
ers are currently available. To date, there are few reports 
on markers that may be unique to a tissue type [e.g., gene 
expression profile of microvascular ECs specific to the liver 
(120)] or to a vascular bed [e.g., a transcriptional factor 
restricted to arterial-ECs (121)]. Given the recognized phe-
notypic and functional heterogeneity in the endothelium, 
can we identify endothelial factors specific to their sites 
(e.g., tissues/organs or vascular beds) so that site-specific 
ECs could be manipulated for proof-of-concept studies and 
drug development?

(2) Phenotypic heterogeneity is a central feature of the endothe-
lium, referring to differences in the location of the conduit 
vessels (e.g., arteries vs. veins) and their functions in serving 
specific organs (e.g., adipose tissue and skeletal muscle) (110, 
111). In microvasculature, the diversity of the endothelium 
contributes to their specialized functions in regulating 
permeability, leukocyte trafficking, and hemostasis, the key 
features of endothelial function (122). How is this heteroge-
neity linked to the interactions between ECs and the classic 
targets of insulin discussed here?

(3) Endothelial cell-derived factors can be essential in maintain-
ing organ homeostasis and regeneration. Could endothelium 
itself also operate as a rate-limiting apparatus [e.g., through 
its barrier function (123)] that regulates other hormones 
(e.g., IGFs and FGFs) in the same fashion as insulin for their 
delivery to targeted tissues or relevant locations?

(4) Severe impairment of endothelial function eventually pro-
motes CVD. Non-invasive assessment of conduit vascular 
endothelial function is possible both in adults (124) and 
children (125) with metabolic disorders [e.g., using reactive 
hyperthermia and flow-mediated dilatation (126)]. In the 
same token, can endothelial regulation of metabolism be 
assessed in vivo? Or can specific parameters in this regard be 
identified by global assessment of gene expression profiles, 
epigenetic markers, and transcriptional factors?

(5) Over the past two decades, many experimental or thera-
peutic drugs that improve CVD risk factors also improved 
endothelial functions (127). Do these drugs modulate the 
crosstalk between ECs and the cells in their residing tissues? 
Or is this crosstalk an unrecognized mode of action, which 
should be considered in designing new and better drugs in 
the future?

In conclusion, the mechanisms underlying the endothelial-
specific effects discussed here remain to be fully determined. 
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Further translational studies to determine the clinical relevance 
of endothelial regulation of metabolism will provide greater 
insights that may ultimately lead to therapeutic advances against 
the increasing burden of the obesity pandemic and the associated 
metabolic disorders.
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