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Abstract: In this review, we discuss the role of liver X receptors (LXRs) in glial cells (microglia,
oligodendrocytes and astrocytes) in the central nervous system (CNS). LXRs are oxysterol-activated
nuclear receptors that, in adults, regulate genes involved in cholesterol homeostasis, the modulation
of inflammatory responses and glutamate homeostasis. The study of LXR knockout mice has revealed
that LXRβ plays a key role in maintaining the health of dopaminergic neurons in the substantia
nigra, large motor neurons in the spinal cord and retinal ganglion cells in the eye. In the peripheral
nervous system (PNS), LXRβ is responsible for the health of the spiral ganglion neurons (SGNs) in
the cochlea. In addition, LXRs are essential for the homeostasis of the cerebrospinal fluid (CSF), and
in LXRαβ−/− mice, the lateral ventricles are empty and lined with lipid-laden cells. As LXRαβ−/−

mice age, lipid vacuoles accumulate in astrocytes surrounding blood vessels. By seven months of
age, motor coordination becomes impaired, and there is a loss of motor neurons in the spinal cord of
LXRβ−/− mice. During development, migration of neurons in the cortex and cerebellum is retarded
in LXRβ−/− mice. Since LXRs are not expressed in dopaminergic or motor neurons in adult mice,
the neuroprotective effects of LXRs appear to come from LXRs in glial cells where they are expressed.
However, despite the numerous neurological deficits in LXR−/− rodents, multiple sclerosis has the
clear distinction of being the only human neurodegenerative disease in which defective LXR signaling
has been identified. In this review, we summarize the regulation and functions of LXRs in glial cells
and analyze how targeting LXRs in glial cells might, in the future, be used to treat neurodegenerative
diseases and, perhaps, disorders caused by aberrant neuronal migration during development.

Keywords: liver X receptors; nuclear receptors; microglia; astrocytes; oligodendrocytes;
neurodegenerative diseases

1. Introduction

Liver X receptors (LXRs) are members of the nuclear receptor supergene family of
ligand-activated transcription factors [1]. The family comprises 48 members, and many of
these are involved in the physiology and pathology of the central nervous system (CNS).
This review focuses on the subfamily called LXRs. There are two members in this family,
LXRα (NR1H3) and LXRβ (NR1H2). The first member to be cloned was originally named
RLD1 and liver X receptor [2,3], and since then renamed LXRα. LXRβ was discovered in our
laboratory [4] and simultaneously and independently in different laboratories [5–7], and
it was renamed LXRβ due to homology with LXRα. LXRα is mainly expressed in organs
involved in lipid metabolism, such as the liver, intestine, adipose tissue, and macrophages.
LXRβ is not ubiquitously expressed as has been reported, but it does have a wider tissue
distribution being expressed in the immune system, glial cells in the CNS, gall bladder,
islets of the pancreas, and prostate epithelium [8–13].
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LXRs function as heterodimers with retinoid X receptor (RXR) and bind to DNA
at response elements called DR4s [1]. DR4s are direct repeats of the half-site sequence
5′-G/AGGTCA-3′, separated by four nucleotides, and are response elements used by
the thyroid hormone receptor. Thus, it is not surprising that there is a strong relationship
between thyroid hormone and LXR signaling [14–16]. Since LXRs regulate cholesterol home-
ostasis, it is perhaps not surprising that the natural ligands of LXRs are oxygenated forms
of cholesterol called oxysterols. These include 22(R)-hydroxycholesterol (22-OH), 24(S),25-
epoxycholesterol, 24(S)-hydroxycholesterol (24-OH), 27-hydroxycholesterol (27-OH) and
desmosterol, a precursor in the synthesis of cholesterol. The enzyme 24-dehydrocholesterol
reductase, which catalyzes the reduction of the delta-24 double bond in desmosterol to
cholesterol, is an LXR-regulated gene [17,18]. T0901317 and GW3965 are LXR synthetic
ligands that are widely used in research laboratories for in vivo and in vitro studies. Target
genes of LXRs, such as apolipoprotein E (ApoE), the ATP binding cassette ABCA1 and
ABCG1, are responsible for the modulation of cholesterol homeostasis, while the LXR
regulation of glutamine synthetase regulates glutamate at synapses, and the regulation of
aquaporins regulates water movement [19–23].

In the adult mouse CNS, LXRs are expressed in microglia [24], astrocytes [25] and
oligodendrocytes [26]. LXRs are not detected in neurons of the adult mouse brain. However,
LXRs are expressed in cultured neurons and glial cells isolated from fetal brains [27]. Thus,
LXRs appear to have functions in neurons during fetal life that are lost in adults.

Several previous reviews have covered the role of LXRs in cholesterol metabolism and
lipid signaling, as well as the regulation of LXRs in the CNS and peripheral nervous system
(PNS) diseases [20,28–31]. In this review, we focus on the regulatory roles of LXRs in glial
cells and discuss glia–neuron interactions as novel mechanisms through which LXRs exert
neuroprotective effects.

2. LXRs and Microglia

Microglia, a major cell population in the CNS, are key regulators of inflammatory
responses. According to their function in immune responses, microglia have been desig-
nated as M1 and M2 types. M1 microglia contribute to the development of inflammation by
producing pro-inflammatory cytokines, while M2 microglia exert anti-inflammatory effects
by enhancing the expression of anti-inflammatory cytokines and also exhibit phagocytic
activity to promote the removal of cellular debris and misfolded proteins.

LXRs have potent anti-inflammatory activities in the CNS mediated by their effects
on microglia. The overactivation of microglia and astrocytes triggers the release of pro-
inflammatory mediators, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis
factor α (TNFα), nitric oxide (NO), cyclooxygenase-2 (COX-2), and expression of inducible
nitric oxide synthases (iNOS). These inflammatory responses of microglia contribute to
neuronal death in diseases such as Alzheimer′s disease (AD), Parkinson′s disease (PD),
amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and retinal degeneration [32,33]
(Figure 1).

LXRs are involved in the regulation of microglial functions and neuroinflammation [34–36]
and LXR agonists T0901317 and GW3965 inhibit the production of NO, IL-1β, IL-6 and
monocyte chemoattractant protein-1 (MCP-1) in microglia and astrocytes [37,38].



Biomedicines 2022, 10, 2165 3 of 11Biomedicines 2022, 10, x FOR PEER REVIEW 3 of 11 
 

 

Figure 1. Schematic diagram illustrating the role of LXRs in glial cells. In microglia and astrocytes, 

LXRs decrease the production of pro-inflammatory mediators such as IL-1β, IL-6, NO, iNOS and 

MCP-1. In addition, LXRs regulate the expression of ApoE and ABCA1, proteins that inhibit amy-

loid plaque deposition by promoting phagocytosis. In astrocytes, LXR ligands trigger post-transla-

tional modification by SUMO allowing LXRs to enter the transrepression pathway to suppress in-

flammatory gene expression. LXRs regulate the expression of AQP4 on the astrocytic end feet and 

participate in the regulation of water transport at the blood–brain barrier. In oligodendrocytes, LXRs 

regulate the expression of myelinating genes such as PLP, MBP and ABCA1, thereby participating 

in the regulation of myelination and remyelination. Abbreviations: ABCA1, ATP binding cassette 

subfamily A member 1; ABCG1, ATP binding cassette subfamily G member 1; ApoE, apolipoprotein 

E; AQP4, aquaporin 4; RXR, retinoid X receptor; IL-1β, interleukin-1β; IL-6, interleukin-6; iNOS, 

inducible nitric oxide synthases; LXRs, liver X receptors; MBP, myelin basic protein; MCP-1, mono-

cyte chemoattractant protein-1; NO, nitric oxide; PLP, proteolipid protein; SUMO, small ubiquitin-

like modifier. 

LXRs are involved in the regulation of microglial functions and neuroinflammation 

[34–36] and LXR agonists T0901317 and GW3965 inhibit the production of NO, IL-1β, IL-

6 and monocyte chemoattractant protein-1 (MCP-1) in microglia and astrocytes [37,38]. 

3. LXRs and Oligodendrocytes 

Oligodendrocytes are responsible for myelinating neuronal axons, and cholesterol 

synthesis and transportation in oligodendrocytes are essential for normal myelination and 

are key for remyelination in demyelinating diseases such as MS. 

Several nuclear receptors regulate oligodendrocyte differentiation and myelination 

[39]. LXRs differentially affect the mRNA amounts of myelin genes in myelin-rich tissues, 

such as spinal cord, corpus callosum, optic nerve and cerebellum [40]. Ligands of LXRs 

affect the mRNA level of myelin-related genes, proteolipid protein (PLP) and myelin basic 

protein (MBP) [41]. Activation of LXRs also promotes oligodendrocyte maturation [41]. In 

the adult rodent CNS, oligodendrocyte progenitor cells proliferate, migrate, and differen-

tiate into myelinating oligodendrocytes [42]. Oligodendrocyte precursor cells express 

both the platelet-derived growth factor receptor α (PDGFRα) and the chondroitin sulfate 

proteoglycan NG2 [43]. PDGFRα is an LXR-regulated gene and its regulation by LXRs 

may be one mechanism through which LXRs regulate the number of oligodendrocytes in 

the CNS. 

Figure 1. Schematic diagram illustrating the role of LXRs in glial cells. In microglia and astrocytes,
LXRs decrease the production of pro-inflammatory mediators such as IL-1β, IL-6, NO, iNOS and
MCP-1. In addition, LXRs regulate the expression of ApoE and ABCA1, proteins that inhibit amyloid
plaque deposition by promoting phagocytosis. In astrocytes, LXR ligands trigger post-translational
modification by SUMO allowing LXRs to enter the transrepression pathway to suppress inflammatory
gene expression. LXRs regulate the expression of AQP4 on the astrocytic end feet and participate in
the regulation of water transport at the blood–brain barrier. In oligodendrocytes, LXRs regulate the
expression of myelinating genes such as PLP, MBP and ABCA1, thereby participating in the regulation
of myelination and remyelination. Abbreviations: ABCA1, ATP binding cassette subfamily A member
1; ABCG1, ATP binding cassette subfamily G member 1; ApoE, apolipoprotein E; AQP4, aquaporin
4; RXR, retinoid X receptor; IL-1β, interleukin-1β; IL-6, interleukin-6; iNOS, inducible nitric oxide
synthases; LXRs, liver X receptors; MBP, myelin basic protein; MCP-1, monocyte chemoattractant
protein-1; NO, nitric oxide; PLP, proteolipid protein; SUMO, small ubiquitin-like modifier.

3. LXRs and Oligodendrocytes

Oligodendrocytes are responsible for myelinating neuronal axons, and cholesterol
synthesis and transportation in oligodendrocytes are essential for normal myelination and
are key for remyelination in demyelinating diseases such as MS.

Several nuclear receptors regulate oligodendrocyte differentiation and myelination [39].
LXRs differentially affect the mRNA amounts of myelin genes in myelin-rich tissues, such
as spinal cord, corpus callosum, optic nerve and cerebellum [40]. Ligands of LXRs affect the
mRNA level of myelin-related genes, proteolipid protein (PLP) and myelin basic protein
(MBP) [41]. Activation of LXRs also promotes oligodendrocyte maturation [41]. In the
adult rodent CNS, oligodendrocyte progenitor cells proliferate, migrate, and differentiate
into myelinating oligodendrocytes [42]. Oligodendrocyte precursor cells express both the
platelet-derived growth factor receptor α (PDGFRα) and the chondroitin sulfate proteogly-
can NG2 [43]. PDGFRα is an LXR-regulated gene and its regulation by LXRs may be one
mechanism through which LXRs regulate the number of oligodendrocytes in the CNS.

4. LXRs and Astrocytes

Astrocytes are the most abundant glial cell type in the CNS and are involved in many
aspects of brain physiology and pathology. As shown in Table 1, loss of LXRβ leads to
the activation of astrocytes in the spinal cord, substantia nigra, retina, optic and cochlear
nerves [44–50]. The water channel aquaporin 4 (AQP4) is an LXR-regulated gene [23]. It is
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expressed in the astrocytic end feet and ependymal cells, where it regulates the homeostasis
of the cerebrospinal fluid (CSF). Astroglial water transport supports CSF flux into the
parenchyma and facilitates bulk interstitial fluid solute clearance from the parenchyma [51].
In LXRαβ−/− mice, there is a severe defect in the maintenance of CSF resulting in occlusion
of the lateral ventricles and degeneration of the choroid plexus [23,30].

Table 1. Summary of neurological phenotypes resulting from LXR deletion.

Knockout Phenotype Related Diseases Changes in Glial Cell Function Refs.

LXRβ−/− Loss of motor neurons in the
spinal cord.

Amyotrophic lateral
sclerosis

Activation of astrocytes, accumulate
cholesterol and progressive
inflammation.

[44–46]

Loss of either LXRα or β in
APP/PS1 mice results in increased
amyloid plaque load.

Alzheimer′s disease
GW3965 regulates inflammatory
responses and phagocytic ability of
Aβ fibrils.

[44–46,52]

Late-generated neocortical
neurons do not migrate.

Psychiatric
disorders

Delayed oligodendrocyte
differentiation and maturation. [43,53–55]

In a MPTP model, loss of
dopaminergic neurons in the
substantia nigra.

Parkinson′s disease
Increased activation of microglia
and astrocytes in the
substantia nigra.

[47]

Loss of retinal ganglion cells. Optic neuritis
Loss of AQP4 in astrocytes and
increased activation of microglia in
the optic nerve.

[44–46,48]

Loss of spiral ganglion neurons
(peripheral nervous system).

Age-related
hearing loss

Increased activation of microglia in
the cochlear nerve, activation of
macrophages.

[49]

LXRαβ−/−
Occlusion of the lateral ventricles
and degeneration of the cells of the
choroid plexus.

Cytotoxic brain
edema

AQP4 expression was increased
in astrocytes. [23,30]

Loss of dopaminergic
neurogenesis in the ventral
midbrain of all LXR-null mice.

Parkinson′s disease [56]

Reduced thickness of myelin
sheaths, enhanced anion
superoxide production and lipid
oxidization in the sciatic nerves
(peripheral nervous system).

Demyelinating
diseases

Involvement of Schwann
cell function. [57–59]

Retinal vascular injury and
formation of acellular capillaries.

Diabetic
retinopathy

Activated glial cells and
inflammatory monocytes were
reduced in retinas from
GW3965-treated animals.

[50]

Altered motor coordination and
spatial learning, thinner
myelin sheaths.

Demyelinating
diseases

LXR agonists promote
oligodendrocytes maturation and
remyelination.

[41]

LXR agonists inhibited the expression of NO, IL-1β, IL-6 and MCP1 from LPS-treated
astrocytes [37]. Previous studies have suggested that LXR agonists inhibit astrocyte and
microglia activation, thereby inhibiting neuroinflammation and exerting a protective effect
in several different animal models of AD and PD [47,60–64]. Cholesterol synthesis and
clearance by astrocytes are tightly regulated to maintain homeostasis within the brain, and
regulation by LXRs of ApoE expression, secretion and cholesterol homeostasis is essential
for the beneficial effects of astrocytes [61,65,66].

LXRs suppress the expression of inflammatory genes in a context-specific manner.
Previous studies have shown that in macrophages and hepatocytes, LXR ligands trigger
post-translational modification by small ubiquitin-like modifier (SUMO), allowing LXRs



Biomedicines 2022, 10, 2165 5 of 11

to enter the transrepression pathway [67,68]. Additionally, SUMOylation is required for
the suppression of signal transducer and activator of transcription 1 (STAT1)-dependent
inflammatory responses from LXRs in interferon-γ (IFN-γ)-stimulated brain astrocytes [69].
It has been suggested that a small heterodimer partner mediates the anti-inflammatory
actions of LXRs through differential regulation of receptor SUMOylation specifically in
astrocytes [25], thereby revealing potential avenues for therapeutic development in diseases
associated with brain inflammation (Figure 1).

5. LXRs in Multiple Sclerosis

MS is an inflammatory demyelinating disease whose precise etiology is not clear,
although several factors, including genetic and environmental factors, have been impli-
cated [70]. In the active phase of the disease, pro-inflammatory microglia phagocytize
myelin debris, but prolonged inflammation causes damage, and, in order for lesions to
heal, microglia have to switch from a pro-inflammatory state (M1) to a repair mode (M2).
LXRs play two key roles in MS. They modulate inflammation, and they stimulate oligo-
dendrocyte repair [71,72]. Mailleux et al. have shown that the processing of myelin by
phagocytes releases LXR ligands and that LXRs are upregulated in phagocytic microglia in
MS lesions [73]. In addition, phagocytic microglia synthesize desmosterol, which is an LXR
agonist [74]. Thus, LXRs are involved in inflammation in MS, and LXR ligands may, in the
future, be used to dampen inflammation in MS.

6. LXRs in Alzheimer′s Disease

AD is an age-related neurodegenerative disease characterized by extracellular plaques
composed of amyloid beta (Aβ). Both increased synthesis and inefficient clearance of Aβ

contribute to plaque buildup, and inhibiting Aβ formation or promoting its clearance is a
target for the treatment of this disease [75]. There are several mouse models and cell lines
that are used extensively to study AD. Some overexpress APP and some express the human
APOE4 variant, which is associated with AD [76]. In the APP/PS1 transgenic mouse, a
mouse model in which there is of buildup Aβ in the brain, loss of LXRα or LXRβ results
in increased amyloid plaque burden [52]. In BV2 cells (immortalized mouse microglial
cells), GW3965 regulates inflammatory responses and increases the ability to phagocytize
Aβ fibrils. In APP23 mice, LXR-agonist treatment attenuates Aβ deposition and facilitates
its clearance [77]. The inhibition of microglia and astrocyte activation is one of the main
mechanisms by which LXR agonists exert protection in different AD models [62,63].

Another beneficial function of LXR activation is the induction of the release of ApoE,
which is critical for the ability of glial cells to remove Aβ [60,61]. ApoE carries lipids in
the brain in the form of lipoproteins and promotes the proteolytic degradation of Aβ [78].
TREM2 (triggering receptor expressed on myeloid cells 2) is expressed in microglia where
it upregulates ApoE and other damage-associated microglia genes. Loss of either TREM2
or ApoE leads to dysregulated cholesterol transportation and metabolism in microglia [79].

One interesting LXR-regulated gene is cytochrome P450 46A1 (CYP46A1). It is the
enzyme responsible for the synthesis of 24-OH, which is the main excretory pathway of
cholesterol in the CNS and is a pharmacological target for AD due to its important role in
cholesterol homeostasis [80]. In support of an important role of cholesterol homeostasis in
AD, Combarros et al. have shown in a case–control study that an intron 2 CYP46 T/C gene
polymorphism is associated with increased brain Aβ load and a higher risk of AD [81].

We have found that there is spontaneous build-up of Aβ around the ventricles in
LXRβ−/− mice. This was not accompanied by an activation of microglia or astrogliosis or
an increase in neuronal apoptosis. Astroglial-mediated interstitial fluid bulk flow, facilitated
by astroglial AQP4 channels and named the glymphatic system, contributes to a larger
portion of extracellular Aβ clearance [75,82]. Loss of perivascular AQP4 localization impairs
glymphatic exchange and promotes Aβ plaque formation in mice [38]. The regulation of
LXRs in Aβ accumulation and clearance systems in the brain (e.g., interstitial fluid bulk
clearance, perivascular glymphatic and lymphatic systems) remains largely unknown.
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7. LXRs in Parkinson′s Disease

Although in LXRβ knockout mice, there is a loss of dopaminergic neurons, there
is so far no association between LXRs and PD in humans. MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine), a chemical originally found as a contaminant in street drugs,
causes the loss of dopaminergic neurons. In rodents, the ablation of LXRβ aggravates the
MPTP-induced loss of dopaminergic neurons and activation of microglia and astrocytes
in the substantia nigra. The LXR agonists GW3965 and T0901317 reduce the activation
of glial cells [47], suppress inflammatory responses, attenuate the activation of microglia
and protect dopaminergic neurons from MPTP-induced impairment [64]. T0901317 and
GW4965 also exert protective effects by inhibiting microglial activation and neuroinflam-
mation in experimental autoimmune encephalomyelitis (EAE), experimental intracerebral
hemorrhage and sleep-deprived cognitive impairment models [83–85].

8. LXRs in Ocular Neurodegenerative Diseases

Aged mice lacking LXRs develop isoform-dependent ocular pathologies. Loss of LXRs
leads to retinal vascular injury and the formation of acellular capillaries similar to diabetic
retinopathy [50]. We have reported that, in LXRβ knockout mice, there is inflammation
of the optic nerve and a loss of ganglion cells from the retina. This is accompanied by
increased activation of microglia, loss of AQP4 in astrocytes, and a decrease in oligoden-
drocytes and glutamine synthetase in the optic nerve [48]. Loss of LXRα in mouse eyes
results in a pathobiology resembling age-related macular degeneration (AMD) [86]. In-
activation of CYP46A1 causes microglia/macrophage activation and a retinal phenotype
typical of diabetic retinopathy [87], strongly supporting the idea that defective cholesterol
metabolism is involved in retinal dysfunction. LXRs have great potential in the treatment of
retinal degeneration such as AMD by regulating microglial activation and the inflammatory
response [88]. N, N-dimethyl-3β-hydroxy-cholenamide, a selective LXR agonist, corrected
retinal dysfunction in type 2 diabetes [89]. GW3965 treatment reduced activated microglia
and inflammatory monocytes in the retina of streptozotocin-diabetic DBA/2J high-fat West-
ern diet mice [50]. T0901317 treatment decreased the activation of microglia and gliosis of
Müller cells, and decreased the expression levels of IL-6, iNOS and COX-2 [90]. In addition,
the activation of LXRs restores reverse cholesterol transportation, prevents inflammation
and reduces pro-inflammatory macrophage activity in several retinal degeneration mod-
els [91–94]. A clinical trial on “LXR as a novel therapeutic target in diabetic retinopathy”
(NCT03403686) is ongoing, and there is hope that novel pharmaceuticals will soon be
available for clinical use in the treatment of retinal disorders.

9. Concluding Remarks

LXRs regulate glial cell functions and play an important role in neurodegenerative
diseases.

The synthetic LXR ligands available today are associated with side effects such as
hypertriglyceridemia and hepatic steatosis that limit their clinical application. Some new
drug delivery systems, such as the DMHCA (a LXR partial agonist) polymer therapeutic
approach [95], and phytosterols, such as sargassum fusiforme [96], which work without
increasing cholesterol/triglyceride levels, are very promising in the treatment of neurode-
generative diseases.

The establishment of a glial cell (microglia, astrocytes, oligodendrocytes)-specific
LXR knockout model will facilitate the identification of the glial cells in the CNS whose
functions are changed by the loss of LXRs, as well as an understanding of how LXRs exert
a neuroprotective effect. Studies of cell-type-specific LXR knockouts are already underway,
and we have made some exciting findings: loss of LXRβ in astrocytes leads to anxiety-like
behaviors [97], and LXRβ deficiency affects the inflammatory features of microglia in vitro.
However, these changes do not underlie the reduced EAE disease severity in whole-body
LXRβ knockout mice [24]. We look forward to more experimental findings in this regard.
Additionally, although a large number of studies have shown that LXRs play multiple
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important roles in rodents, so far in clinical neurodegenerative diseases, only in multiple
sclerosis has an association been made with LXRs. The different genomic and physiological
functions of LXRs in humans and rodents cannot be ignored [98]. Therefore, more studies
on LXR signaling in humans or nonhuman primates are needed.
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