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Abstract

Background: The gene desert on human chromosomal band 8g24 harbors multiple genetic variants associated
with common cancers, including breast cancer. The locus, including the gene desert and its flanking genes, MYC,
PVTT and FAMS84B, is also frequently amplified in human breast cancer. We generated a megadeletion (MD) mouse
model lacking 430-Kb of sequence orthologous to the breast cancer-associated region in the gene desert. The
goals were to examine the effect of the deletion on mammary cancer development and on transcript level
regulation of the candidate genes within the locus.

Methods: The MD allele was engineered using the MICER system in embryonic stem cells and bred onto 3 well-
characterized transgenic models for breast cancer, namely MMTV-PyVT, MMTV-neu and C3(1)-TAg. Mammary tumor
growth, latency, multiplicity and metastasis were compared between homozygous MD and wild type mice carrying
the transgenes. A reciprocal mammary gland transplantation assay was conducted to distinguish mammary cell-
autonomous from non-mammary cell-autonomous anti-cancer effects. Gene expression analysis was done using
quantitative real-time PCR. Chromatin interactions were evaluated by 3C. Gene-specific patient outcome data were
analysed using the METABRIC and TCGA data sets through the cBioPortal website.

Results: Mice homozygous for the MD allele are viable, fertile, lactate sufficiently to nourish their pups, but
maintain a 10% lower body weight mainly due to decreased adiposity. The deletion interferes with mammary
tumorigenesis in mouse models for luminal and basal breast cancer. In the MMTV-PyVT model the mammary
cancer-reducing effects of the allele are mammary cell-autonomous. We found organ-specific effects on transcript
level regulation, with Myc and Fam84b being downregulated in mammary gland, prostate and mammary tumor
samples. Through analysis using the METABRIC and TCGA datasets, we provide evidence that MYC and FAMS84B are
frequently co-amplified in breast cancer, but in contrast with MYC, FAM84B is frequently overexpressed in the
luminal subtype, whereas MYC activity affect basal breast cancer outcomes.

Conclusion: Deletion of a breast cancer-associated non-protein coding region affects mammary cancer

development in 3 transgenic mouse models. We propose Myc as a candidate susceptibility gene, regulated by the
gene desert locus, and a potential role for Fam84b in modifying breast cancer development.
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Background

Mammalian genomes harbor large sequence regions (>
500-Kb) devoid of known protein-coding genes [1, 2].
Such sequences are widely known as ‘gene deserts’. Gene
deserts encompass numerous gene regulatory elements,
such as enhancers, and non-protein coding transcripts.
Genome-Wide Association Studies (GWAS) over the
last decade showed that gene deserts frequently harbor
genetic variants associated with human complex traits, in-
cluding breast cancer susceptibility. The gene desert lo-
cated on human chromosomal band 8424 is exemplary in
that it contains multiple cancer-associated variants identi-
fied by GWAS, including 2 breast cancer-associated vari-
ants [3-5]. A recent fine-mapping study identified an
additional independent association signal within the gene
desert [6]. All 3 variants are common in the human popu-
lation with risk allele frequencies of 0.41, 0.58, and 0.56,
for rs13281615, rs1562430 (rs78152450), and rs35961416
respectively [3, 4, 6]. Variant rs13281615 is more strongly
associated with the development of estrogen receptor (ER)
positive (ER+) breast cancer as compared with ER nega-
tive (ER-) breast cancer [7, 8]. All polymorphisms strongly
correlated to the tag Single Nucleotide Polymorphisms
(SNPs) are located within non-protein coding sequences
(the gene desert), suggesting their involvement in
long-range gene regulation.

The genes located adjacent to the gene desert, MYC and
PVTI at one side and FAMS84B at the other side, are candi-
dates to play a role in 824 variant-mediated breast cancer
susceptibility. MYC is well-known as a proto-oncogene that
encodes a transcription factor involved in many cellular
processes such as cell growth, apoptosis, differentiation and
protein translation [9]. PVT1 is a long non-coding RNA
(IncRNA) gene, but also produces at least 4 distinct micro-
RNAs (miRNAs) [10]. The functions of these IncRNA tran-
scripts and miRNAs are unknown. FAM84B (also known
as BCMPI0I) has been implicated in breast cancer, as it
was found in a proteomic analysis of cell
membrane-associated proteins highly expressed in breast
cancer [11]. The gene desert region also sires multiple
IncRNAs, including PNRCRI1, CCAT1 and POUSFIB [12].
Although several of these IncRNAs have been shown to be
involved in prostate or colorectal cancer susceptibility [13—
15], none have been implicated in breast cancer thus far, re-
ducing their candidacy potential. Chromosome conform-
ation capture (3C)-based studies have identified
higher-order chromatin structures connecting MYC and
PVTI1 to the breast cancer-associated 824 gene desert
region [16, 17]. Association of MYC, PVTI1, or FAMS84B
transcript levels with any of the breast cancer risk alleles
has not been reported. Global eQTL analysis on the The
Cancer Genome Atlas (TCGA) data set for breast cancer
did reveal numerous other transcripts associated with the
rs418269 (in strong linkage disequilibrium  with
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rs13281615) risk allele [18]. These transcripts were
enriched with MYC binding motifs, suggesting that in
breast tumors the risk allele (partially) acts through MYC
regulation. In human primary colon, prostate and breast
tumor tissue MYC transcript levels do not associate with
the presence of the risk allele [19-22]. To show causal ef-
fects of this non-protein coding locus on gene expression
and specific aspects of breast cancer etiology, a mammalian
genetic model organism is essential.

The gene desert distal to MYC is considered ortholo-
gous between human and mouse, because (1) the flank-
ing genes MYC, PVT1 and FAMS84B are conserved, (2)
the total genomic range between Myc on one end of the
gene desert and FAM84B on the other end is similar
(1.2-Mb) in both species, (3) the non-coding region
shows strong evolutionary sequence conservation be-
tween the 2 species, and (4) the presence of DNAsel
Hypersensitivity (DNAsel HS) sites in the human ortho-
log and ORegAnno sites in the mouse ortholog is indica-
tive of putative gene regulatory sequences in both
species (Fig. 1).

Recently, Dave et al. published an analysis of a deletion
mouse model lacking a 538-Kb region extending from
the Myc gene promoter into the gene desert [23] (Fig. 1).
This mouse model shows 50-80% downregulation of
Myc expression and reduced development of several
forms of cancer, including carcinogen-induced mam-
mary tumorigenesis. While this study is of interest to
link Myc downregulation to reduced cancer develop-
ment, it does not specifically test the conserved breast
cancer-associated region located in the middle of the
gene desert proximal from MYC. We hypothesized that
deletion of the conserved non-protein coding breast
cancer-associated genomic region affects breast cancer
development through regulation of candidate causal
genes. We generated the MD allele resulting in deletion
of approximately 430-Kb of sequence that encompasses
all 3 regions orthologous to the breast cancer-associated
variants in the 8424 gene desert (Fig. 1). Our MD allele
is different from the 538-Kb deletion described by Dave
et al. in that it we deleted a gene desert region over
200-Kb proximal to the Myc gene promoter (Fig. 1).

The primary goal of the study was to test the effect of
the deletion on mammary cancer development, by intro-
ducing the allele into well-characterized murine trans-
genic models for luminal, HER2+ and basal human
breast cancer. The secondary goal was to identify candi-
date regulated genes, as the non-coding locus has been
implicated in gene regulation. We determined the tran-
script levels of human-mouse conserved genes directly
flanking the gene desert, namely Myc, Pvtl and Fam84b,
as well as two other genes, Tribl1 and Fam49b, located
on the same chromosomal band (8424 in human, 15g¢D1
in mouse) in RNA samples extracted from whole
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Fig. 1 UCSC Genome Browser view of the mouse 15gD1 gene desert (upper) and orthologous human 8g24 cancer-associated gene desert
(lower) proximal to the proto-oncogene, MYC, and distal to the gene, FAM84b. The mouse-human conserved protein-coding genes in the region
are Myc and Fam84b indicated in purple shading. The conserved long non-coding RNA (IncRNA) gene, Pvt], is also indicated in purple shading.
The mouse ATbg gene (in light yellow shading) is not conserved in human and it is not expressed in mouse mammary gland. The human
non-coding transcripts located in the gene desert (i.e. PCATI, PCAT2, PRNCRI1, POU5F1B, CCAT1, CCAT2, CASC8, CASCIT
have mouse orthologs, although non-coding transcripts are produced from the mouse gene desert as well (i.e. D030024E09Rik, Gm29904,
Gm38563, 4930402D18Rik). The breast cancer-associated variants rs13281615, rs1562430, and rs35961416, and their respective correlated variants
(level of r* correlation in CEU population shown on y-axis) are indicated on separate tracks. The Multi-Z alignment tracks indicate good
conservation from human to mouse, especially in the areas where the breast cancer variants with highest correlation level are located. The
ORegAnno track (mouse) and DNAsel Hypersensitivity track (human) indicate potential gene regulatory elements. The red bar represents the
mouse megadeletion (MD) interval (430-Kb). The deleted interval encompasses the region orthologous to the breast cancer-associated and
correlated variants. The deletion interval recently generated in an unrelated study by Dave et al. is indicated in dark yellow [23]
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mammary gland, mammary tumors, prostate (all lobes
combined), colon, bladder, spleen, and thymus tissue.
These tissues were chosen, because variants associated
with breast, prostate and colorectal cancer, as well as
Chronic Lymphoblastic Leukemia (CLL), are located
within the human ortholog of the deletion interval and
one variant associated with urothelial/bladder cancer is
located just outside of the deleted interval. The
gene-specific expression studies highlighted MYC and
FAMS84B as strong candidate genes to be involved. MYC
amplification has been previously implicated in breast
cancer [24]. FAM84B amplification is a frequent event in
esophageal squamous cell carcinoma [25]. How amplifi-
cation and overexpression of the 2 genes relate to each
other and to breast cancer outcomes is currently un-
known. Analysis of publically available Molecular Tax-
onomy of Breast Cancer International Consortium

(METABRIC) and TCGA data implies that FAM84B has
effects on breast cancer that may be independent of
MYC.

Methods

Mice

All mice are maintained in AAALAC-approved facilities
at UW-Madison and MUSC. The protocol was approved
by the Institutional Animal Care and Use Committee of
the University of Wisconsin-Madison and of the Medical
University of South Carolina. To minimize pain and
distress, analgesics, anaesthesia and euthanasia were ap-
plied where indicated. None of the procedures described
below resulted in unexpected death. Euthanasia was per-
formed using carbon dioxide asphyxiation and cervical
dislocation unless stated otherwise.
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Generation of the MD mouse model was done using
Mutagenic Insertion and Chromosome Engineering Re-
source (MICER) clone-assisted recombineering in em-
bryonic stem (ES)-cells (AB2.2 from strain 129/SvEv)
[26] as previously described [27]. Proper integration of
the 2 clones was verified by Southern blot analysis
(Additional file 1: Figure S1). Hypoxanthine/aminop-
terin/thymidine (HAT)-resistant, karyotypically normal
ES-cell clones were monodispersed and microinjected
into C57Bl/6 blastocysts to produce chimeric founders.
After germ line establishment, the MD allele was intro-
gressed onto the FVB/N genetic background for >10
generations. All experiments were done on the FVB gen-
etic background. MD carriers were intercrossed to gen-
erate homozygosity for the MD allele (MD-/-) or
wildtype allele (MD+/+). Females and males were sub-
jected to weight measurements. Organ weights were de-
termined at necropsy (12 wks) and normalized to total
bodyweight. Litter sizes were also recorded.

Tumor phenotyping

Three well-characterized mouse models for human breast
cancer were purchased (Jackson Labs), namely
MMTV-PyVT (Polyoma Virus Middle-T antigen) [28],
MMTV-neu (HER2neu oncogene) [29] and the C3(1)-TAg
(C3(1)-Simian Virus 40 T antigen) [30], all existing on the
FVB genetic background. MD-/- or MD+/+ mice were
intercrossed with MMTV-PyVT, MMTV-neu or C3(1)-TAg
to generate groups of carriers having no copies (Transge-
ne;MD+/+), 1 copy (Transgene;MD+/-) or 2 copies (Trans-
gene;MD—/-) of the MD allele. Latency to first palpable
tumor, tumor growth (using digital caliper), overall survival,
tumor multiplicity at necropsy and lung metastasis were re-
corded. For all models, the original FVB/NJ background
and our FVB (containing 129/AJ) background (MD+/+),
showed no difference in any tumor parameter measured
(Additional file 1: Figure S2). Therefore, these subgroups
were combined into one MMTV-PyVT;MD+/+,
MMTV-neusMD+/+ or C3(1)-TAg;MD+/+ group to com-
pare against their respective MD—/- groups. Tumor-bear-
ing mice were inspected twice weekly and measurements
were recorded. In addition to inspection during tumor
measurements, health monitoring was done at least once
weekly by the veterinary care staff of the Division of La-
boratory Animal Research at MUSC. Mice were euthanized
when a tumor reached 2 cm in diameter or at humane end-
point when the mice show severe signs of distress, indicated
by ulceration of a tumor, severe weight loss, abnormal re-
duced responsiveness to external stimuli, possibly in com-
bination with hunched posture.

Perfusion to assess lung metastasis
Tumor-bearing MMTV-PyVT and MMTV-neu mice
were anesthetized using isoflurane and subjected to
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intracardiac perfusion with saline to drain the blood and
blanch the lungs. Following euthanasia by thoractomy, a
round gavage needle was inserted into the trachea to inflate
the lungs with Amsterdam fixative. The lungs placed into
70% ethanol and visually inspected to quantify macroscopic
metastatic foci present on all lobes. For histological analysis,
lungs were removed from 70% ethanol, fixed in 4% parafor-
maldehyde for 48 h. Paraffin-embedded lung tissue was sec-
tioned and stained with Hematoxylin and Eosin to visualize
microscopic lung metastasis. Five sections taken at 50-um
intervals were quantified and averaged to calculate metasta-
sis for each animal.

Mammary gland transplantation assay

Under isoflurane anesthesia, the fat pads of MD+/+ and
MD-/- recipients (21-28 days) were cleared by remov-
ing the growing mammary tree of both inguinal glands.
Proper removal of host mammary tree was checked by
whole mount analysis. Premalignant inguinal mammary
glands from MMTV-PyVT;MD+/+ or MMTV-PyVT;MD
—/- donors (28-35 days) were harvested, finely minced
and grafted into both cleared recipient (MD+/+ or MD
—/-) fat pads. Analgesics were given post-surgery for 2
days. Palpation of the graft sites began 4 weeks after sur-
gery and occurred twice weekly. At humane end point,
tumor end point or at 40 weeks after surgery, the trans-
plant sites without tumors were whole mounted to
examine graft rejection. Graft rejection was not detected
in the MMTV-PyVT;MD+/+ donor groups, since whole
mounts for transplant sites without a palpable tumor
showed hyperplastic tissue and smaller tumor nodules.
For the MMTV-PyVT;MD-/- donor groups, 3 out of 14
(MD+/+ recipient) and 2 out of 14 (MD-/- recipient)
had at least 1 graft site rejected. Only mice without graft
rejection were included in the analysis. Latency and lung
metastasis were recorded as described above.

Mammary gland whole mount analysis

From MMTV-PyVT;MD+/+ and MMTV-PyVT;MD-/-
females at 4—5 weeks of age, and C3(1)-TAg;MD+/+ and
C3(1)-TAgMD-/- at 6 months of age, inguinal and thor-
acic mammary glands were removed, placed on slides
and manipulated using blunt tweezers to thinly spread
the fat pad. The whole mounted glands were then fixed
and stained using standard Carmine Alum staining.
Briefly, the slides were placed in 70% ethanol overnight,
followed by an hour fixation in a solution containing 1
part glacial acetic acid and 3 parts 100% ethanol. Subse-
quently, the slides were washed in 70% ethanol, 50%
ethanol and dH,O, for 15 min., 5min. and 5 min., re-
spectively. Then, the slides were stained in alum carmine
solution (2.5g alum potassium sulfate, 1.0g carmine
boiled in 500 ml dH,O) overnight, followed by washes in
70% ethanol, 95% ethanol and 100% ethanol, for 15 min.
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Each. Finally, the slides were de-stained in xylene until
the mammary ductal structures are clearly visible. The
stained whole mounts were photographed.

Quantitative real-time PCR (QPCR) analysis of gene
expression

Tissue samples were flash frozen in liquid nitrogen and
stored at — 80 °C until further use. Frozen tissue samples
were quickly homogenized in Tri-Reagent and total
RNA was extracted using a total RNA extraction kit
(Ambion) or chloroform-based extraction method. Fol-
lowing extraction, the RNA was DNAsel treated and
visually inspected for DNA contamination and RNA
degradation on an agarose gel. Total RNA (800 ng) was
used as input in the reverse transcriptase reaction using
the SSII system (Life technologies). QPCR was done
using TagMan assays (Life technologies), or using SYBR
green assays with pre-tested primer sets (Integrated
DNA Technologies; listed in Additional file 2: Table S1.
TagMan assay detection was done on a 9700 GeneAmp
PCR system (Applied Biosystems) and SYBR detection
was done on a Light Cycler 480 (Roche). The MD-/-
and MD+/+ samples to be compared were always
treated the same way and included in the same QPCR
plate. Each measurement was done in triplicate. Only
replicates within 1.0 Ct were retained and averaged to
represent the sample value. Gene specific transcript
levels were normalized by the 18S RNA level that served
as an internal control.

Chromosome conformation capture (3C) assay

Templates were prepared from isolated mammary epi-
thelial cells from 6 MD+/+ mice, as previously described
[31]. The restriction enzyme of choice was BglIl. The
fixed primer was chosen to be located in the Myc pro-
moter. The experimental primers were chosen to be lo-
cated within the deleted interval, biased towards regions
of evolutionary sequence conservation. The relative
interaction frequency for each experimental primer in
combination with the fixed primer was determined for
each sample as the average of at least 3 replicate mea-
surements divided by the average of a Bacterial Artificial
Chromosome (BAC)-based positive control template
[31]. Primers and BACs are listed in Additional file 2:
Table S1.

METABRIC and TCGA analysis

The cBioPortal for Cancer Genomics was used to
visualize and analyze the effect of MYC and FAMS84B
amplification and overexpression on breast cancer pa-
tient outcomes [32, 33]. Within the portal the METAB-
RIC (2509 cases) or TCGA provisional (1105 cases) were
selected. The data were queried using MYC and
FAMB84B as gene identifiers. Default settings were used
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to identify cases in which MYC or FAM84B were copy
number amplified. To identify cases in which MYC or
FAMS84B were overexpressed, data were queried using
an expression cutoff of greater than 2 standard devia-
tions above the mean.

Statistical analyses

Means of continuous variables were compared using
two-sample t-tests or multifactorial ANOVA. Two-sided
alpha level of 0.05 was used for determining statistical
significance. Sample sizes are provided in figure cap-
tions. Survival curves on METABRIC and TCGA data
were created using the built-in Kaplan-Meier Estimator
and compared using the built-in log-rank tests.

Results

The megadeletion (MD) mouse model

The MICER clones for Cre-lox recombination in the ES
cells were chosen to be located such that the deletion
interval encompassed the mouse ortholog of the human
region containing the breast cancer-associated and cor-
related variants (Fig. 1). The end of the resulting deletion
interval is located approximately 200-Kb proximal to the
Myc gene (Fig. 1). The human ortholog of the deleted se-
quence (dashed lines in Fig. 1, as determined by the Lift-
over function built in the UCSC Genome Browser)
contains many DNAsel HS sites, indicative of putative
gene regulatory sequences (Fig. 1), including those in-
volved in the higher-order chromatin structures men-
tioned in the Introduction. In the mouse the deleted
interval also contains many putative gene regulatory ele-
ments marked by ORegAnno track (Fig. 1).

Mice homozygous for the MD allele are viable. Litter
sizes were not significantly different between breedings
with MD-/- and MD+/+, indicating that viability and
fertility were not affected (Additional file 1: Figure S1).
The weights of female and male pups before weaning
did not significantly differ between MD-/- and MD+/+
genotypes, indicating that lactation was not compro-
mised. After weaning, the weights of both sexes of the
MD-/- mice started to deviate from those of the MD
+/+ mice resulting in a ~10% difference at 12 weeks
(Fig. 2a, b). To trace the origin of this difference, we per-
formed gross dissection of males and females at 12
weeks and weighed various fat pads and organs. The
normalized (to total body weight) heart, liver and gastro-
cnemius muscle weight was not significantly different or
showed no more than 10% difference between MD-/-
and MD+/+ animals (Fig. 2¢, d). In contrast, the normal-
ized weights of the (inguinal) mammary and interscapu-
lar, fat pads were over 20% lower in MD-/- females
than in MD+/+ females. The normalized weights of the
abdominal, perirenal, and ovarian fat pads were lower,
but did not reach statistical significance, suggesting
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Fig. 2 Weight measurements. (a) Male total bodyweight by age (MD+/+ n =33, MD—/— n =56). (b) Female total bodyweight by age (MD+/+
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potential compensatory mechanisms controlling for the
sizes of those fat pads in the MD-/- female mice. In the
males, the normalized weights of the epidydimal, perire-
nal and interscapular fat pads were over 50% lower in
MD-/- than in MD+/+ mice (Fig. 2c, d). These data
demonstrate that the deletion results in lower total body
weight with adipose tissue disproportionally affected.

Effects on mammary cancer development in transgenic
mouse models for luminal, HER2+ and basal breast
cancer

We crossed the allele onto 3 transgenic mouse breast
cancer models, namely MMTV-PyVT, MMTV-neu and
C3(1)-TAg. These models were chosen to represent 3
major subtypes of human breast cancer. The majority of
MMTV-PyVT-induced tumors have been classified his-
tologically and by their global gene expression profiles as
luminal mammary tumors [34—36]. MMTV-neu-induced
tumors represent mammary tumors of the HER2+ lu-
minal subtype, and C3(1)-TAg-induced tumors represent

tumors of the basal subtype of human breast cancer [34,
36]. The MMTV-PyVT and MMTV-neu models are also
widely known as models for metastatic progression.

The mean latency to the first palpable tumor for
MMTV-PyVT;MD+/+  was  7-8weeks of age.
MMTV-PyVT;MD+/- and MMTV-PyVT;MD-/- mice
showed a significantly different disease-free survival
curve (Fig. 3a). In MMTV-PyVT;MD—-/- the mean la-
tency was shifted to 13weeks of age and in
MMTV-PyVT;MD+/- to 9-10 weeks of age (Fig. 3b).
MMTV-PyVT;MD-/- animals had a lower multiplicity
at necropsy when compared to MMTV-PyVT;MD+/-
and MMTV-PyVT;MD+/+ animals (Fig. 3c). The tumor
growth curves reveal a tumor growth-reducing effect of
MMTV-PyVT;MD-/-, but not MMTV-PyVT;MD+/-, as
compared with MMTV-PyVT;MD+/+ (Fig. 3d). In-
creased latency and reduced tumor growth rate in the
MMTV-PyVT;MD-/- animals resulted in increased
overall survival (Fig. 3e). Despite the fact that age at nec-
ropsy was higher in the MMTV-PyVT;MD-/- animals
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than in the MMTV-PyVT;MD+/- and MMTV-PyVT;MD
+/+ animals (allowing for more time to metastasize and
grow), MMTV-PyVT;MD-/- animals have a ~ 4-fold re-
duced multiplicity of macro-metastatic foci than
MMTV-PyVT;MD+/- and MMTV-PyVT;MD+/+ animals
(Fig. 3f). Micro-metastatic foci multiplicity was also re-
duced (Fig. 3f), but less pronounced.

The MMTV-neu carriers were palpated weekly starting
at 16 weeks of age. Disease-free survival curves showed
that MMTV-neu;MD-/- has a strong delay in tumori-
genesis (Fig. 4a). Almost half of the mice were still
tumor-free at 72 weeks of age. For the animals that did
develop a tumor, latency was increased from 40 weeks of
age for the MMTV-neusMD+/+ group to 53 weeks of
age for the MMTV-neusMD—-/- group (Fig. 4b). Since
most mice developed only 1 tumor, multiplicity was
not assessed. Tumor growth was not affected (Fig.
4c), which resulted in almost identical graphs for the
average age at endpoint as for age at first tumor (Fig.
4d). In accordance with the MMTV-PyVT model,
lung macro-metastatic foci multiplicity was also lower
in MMTV-neusMD-/- compared to MMTV-neu;MD
+/+ (p =0.06; Fig. 4e).

The C3(1)-TAg carriers were palpated weekly starting
at 12 weeks of age. Disease-free survival curves indicated
that C3(1)-TAg;MD-/- mice show increased latency for
C3(1)-TAg-induced  tumorigenesis compared  with
C3(1)-TAgMD+/+ mice (Fig. 5a). C3(1)-TAgMD+/-
mice were not different in disease-free survival from
C3(1)-TAgMD+/+ mice, but showed a strong
non-significant trend (p =0.06) to having decreased la-
tency when compared with C3(1)-TAg;MD-/- (Fig. 5b).
We did not observe an effect on tumor multiplicity in
the C3(1)-TAg model (Fig. 5¢). The tumor growth rate
was affected by the MD allele in both heterozygous and
homozygous state (Fig. 5d), which increased overall sur-
vival, as compared with C3(1)-TAg;MD+/+ (Fig. 5e). Me-
tastasis incidence in this model is too low to be assessed.

We examined premalignant mammary glands by
whole mount analysis in the AMMTV-PyVT and
C3(1)-TAg models at 4—6 weeks and 6 months of age, re-
spectively. The protective effect of the MD allele on
MMTV-PyVT -induced tumorigenesis is well visible at
46 days of age, since the MMTV-PyVT;MD+/+ glands
show multifocal, dense hyperplasia, whereas the
MMTV-PyVT;MD-/- glands show less advanced, more
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localized hyperplasia at that age (Additional file 1: Figure
S3). A significantly lower amount of macroscopic hyper-
plastic nodules is observed in MMTV-PyVT;MD-/-
mice as compared with MMTV-PyVT;MD+/+ mice
(Additional file 1: Figure S3). These results indicate that
the MD allele also affects early stages of tumor forma-
tion in the MMTV-PyVT model. In C3(1)-TAg, no sig-
nificant difference in early lesions between MD+/+ and
MD-/- at 6 months of age were found (Additional file 1:
Figure S3), suggesting that the difference in latency in
this model is mainly due to an effect on tumor
progression.

Taken together, the MD allele intervenes with tumori-
genesis at multiple stages, but in a transgene-specific
manner, namely most prominently in the MMTV-PyVT
mouse model for human luminal breast cancer and
MMTV-neu mouse model for human HER2+ luminal
breast cancer, but less prominently in the C3(1)-TAg
mouse model for human basal breast cancer. This is in
accordance with the human genetic epidemiological data
where the 824 breast cancer-associated variant is
strongly associated with ER+/luminal breast cancer and
weaker with ER-/basal breast cancer [7].

Mammary cell autonomy

As we had observed a difference in mammary fat pad
weight, we asked if the tumorigenesis phenotypes were
autonomous to the mammary epithelium or if
non-autonomous (host/micro-environment) factors were
involved. Using a reciprocal transplantation assay, four
transplant groups were generated, namely MMTV
-PyVT;:MD+/+ into MD+/+, MMTV-PyVT;MD+/+ into
MD-/-, MMTV-PyVT;MD-/- into MD+/+ and
MMTV-PyVT;MD-/- into MD-/-. Tumor-free survival
curves showed a strong increase in latency between the
MMTV-PyVT;MD+/+ and MMTV-PyVT;MD-/- donor
groups (Fig. 6a). This finding indicates a strong mammary
cell-autonomous (donor) effect of the MD allele on
tumorigenesis. The log-rank test did not indicate a differ-
ence in the distribution of times to first tumor between
the recipient genotypes, which means that the effect of the
deletion on MMTV-PyVT-induced tumorigenesis is
strictly mammary cell-autonomous.

While the effect of the MD allele on mammary tumor
growth is autonomous, the effect on lung metastasis
could show a recipient component. To determine this,
lung macro-metastatic foci were quantified in recipients
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with palpable mammary tumors, small nodules and/or
hyperplasia. Using two-way ANOVA analysis, we tested
the null hypothesis that either donor and recipient geno-
types or the interaction between donor and recipient
have no effect on lung metastasis. We found that the
donor x recipient interaction term was not significant
(P =0.28; Additional file 2: Table S2). The analysis sug-
gests that there is a stronger donor effect (P = 0.07) than
recipient effect (P = 0.49; Fig. 6b; Additional file 2: Table
S2), suggesting that the difference in metastasis between
MMTV-PyVT;MD+/+ and MMTV-PyVT;MD-/- mice
likely has a mammary cell-autonomous component, but
that a non-mammary cell-autonomous component can-
not be completely ruled out.

Expression regulation of mouse-human conserved
candidate causal genes

We measured the transcript levels of mouse-human con-
served candidate causal genes, Myc, Fam84b, Pvtl, Tribl,
and Fam49b. The non-conserved non-coding mouse tran-
scripts (D030024E09Rik, EU234017, AK015045, 993001
4A18Rik; Fig. 1) were not included in the analysis. Also
not included was the non-conserved Albg gene, as a
poorly conserved human homolog is located on a different
chromosome (chr19) in human and its expression cannot
be detected in the mouse mammary gland. Myc transcript
levels were reduced in MD—/- samples as compared with
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MD+/+ samples of all tissues examined, except the blad-
der (Fig. 7a). Most notably, Myc showed a reduction of ap-
proximately 40, 50 and 60% in the mammary gland, in
MMTV-PyVT-induced and C3(1)-TAg-induced mammary
tumors, respectively. Pvtl transcript levels showed a
non-significant reduction in the mammary gland and
mammary tumor samples. Pvt] in the prostate and thy-
mus reached significance for a reduction of approximately
40%. In the colon, bladder and spleen, PvtI was not differ-
entially expressed. Similar to Myc, Fam84b showed a re-
duction of transcript level in the mammary gland and
mammary tumor samples. Fam84b reduction was also ob-
served in the prostate, but not in the colon or bladder. In
contrast to the other genes, the transcript level of Fam84b
was increased in the MD-/- versus MD+/+ samples in
thymus and spleen. The transcript levels of Tribl and
Fam49b were mostly equal between MD+/+ and MD—-/-,
except for a reduction of T7ibI in the colon and a reduc-
tion of Fam49b in MMTV-PyVT-induced mammary tu-
mors (Fig. 7b). The transcript levels of Actb were equal in
all tissues measured (Additional file 1: Figure S4).

We checked if downregulation of transgene expression
level could underlie the anti-cancer phenotypes. The
MMTV-PyVT;MD-/- tumor samples showed an in-
creased transgene level compared with MMTV-PyVT;MD
+/+ tumor samples. In the C3(1)-TAg tumor samples the
transgene expression level showed a non-significant
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increase in the MD-/- versus the MD+/+ samples (Add-
itional file 1: Figure S5). These results suggest that the
MD allele does not result in an anti-cancer effect through
downregulation of the transgene itself.

Higher-order chromatin interactions connecting MYC
to putative gene regulatory elements in the 8424 gene
desert have been identified in multiple studies [16, 37—
39]. Using publically available global chromatin inter-
action data, generated through the Hi-C assay [40], we
visualized the chromatin interaction heat map of the
8424 gene desert locus along with the immediate neigh-
boring genes for the human mammary epithelial cell
line, HMEC (Additional file 1: Figure S5). The most
prominent long-range interactions in the region involve
MYC, including those previously found to bring the
breast cancer-associated variants in proximity with MYC
[39]. We then used the 3C assay to survey putative inter-
actions between the Myc promoter and the MD interval
in the mouse mammary gland. We found multiple sites
within the interval interacting with Myc over a genomic
distance of ~ 250-450-Kb. The Myc-promoter chromatin
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interaction profile for the human HMEC cell line and
the mouse mammary gland appeared to be evolutionary
conserved (Additional file 1: Figure S5).

MYC and FAM84B gene copy number, expression, and
association with clinical outcomes in 1105 primary breast
tumors

We sought to investigate if mRNA expression levels of
candidate genes MYC and FAMS84B are associated with
clinical outcomes in human breast cancer. The METAB-
RIC and TCGA studies have generated comprehensive
genomic portraits for invasive breast carcinomas [41,
42]. METABRIC is currently the most elaborate set with
2509 available cases, followed by TCGA that reported
results for 1105 primary breast tumors. Querying the
TCGA data through the cancer bioportal (http://
www.cbioportal.org/) revealed that MYC and FAMS84B
are commonly amplified in multiple cancer types, in-
cluding > 20% of all breast cancers (Fig. 8a). As METAB-
RIC holds the most invasive breast cancer cases, we
chose that data set for initial analysis. As expected, MYC
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and FAM84B are almost always co-amplified in the same
breast tumors (Fig. 8b). However, examination of mRNA
expression levels showed that FAM84B and MYC are only
rarely overexpressed in the same breast tumor (Fig. 8c).
Examination of clinical outcomes showed that
FAMS84B overexpression was associated with a signifi-
cant decrease in breast cancer patient overall survival
(104.3 months vs 159.7 months; P =6.037 x 10~ %; Fig.
8d), whereas MYC overexpression was not significantly
correlated with decreased survival with decreased sur-
vival (210.9 months vs 152.3 months; P =504; Fig. 8e).
The TCGA data set shows a highly similar pattern,
namely FAMS84B overexpression was associated with a
significant decrease in breast cancer patient overall sur-
vival (83.8 months vs. 129.6 months; P = 0.01; Additional
file 1: Figure S6), whereas MYC overexpression was not
significantly correlated (114.06 months vs. 122.8 months;
P =0.266; Additional file 1: Figure S6). This same pat-
tern is also observed at the 1.5 SD cut-off in the TCGA
data (Additional file 1: Figure S7). FAM84B is more
commonly overexpressed than MYC in breast cancer,
namely 9% of samples versus 4% of samples at 2 stand-
ard deviations (SD) above the mean for the METABRIC
data (Fig. 8c) and 23% versus 7% of samples for the
TCGA data set (Additional file 1: Figure S6). We
checked if MYC might be more commonly overex-
pressed at a lower threshold (1.5 SD above the mean),
but that was not found (Additional file 1: Figure S7).
Interestingly, disease-free survival was not affected by
FAMS84B overexpression (Additional file 1: Figure S7).
These results suggest that FAM84B may not affect la-
tency to recurrence of the disease, but results in faster
disease progression once recurrent disease is present.

Discussion

The gene desert region proximal to MYC shows several
key similarities between human and mouse, including
similar organization of the genomic span, location of
conserved genes (Myc, Fam84b, PvtI), sequence conser-
vation, and presence of putative gene regulatory ele-
ments. All non-coding transcripts and a coding gene
(A1bg) located within the gene desert are not conserved
between human and mouse. The Albg gene is located
distal to Fam84b in the mouse gene desert, but it aligns
(by poor alignment scores) to a different human
chromosome than the rest of the gene desert. In contrast
to Myc, Fam84b, and Pvtl, Albg is not detectable in
mouse mammary gland samples and can therefore not
be considered as a candidate.

In this study we characterized a novel mouse deletion
allele that models the strong association of the human
8424 locus with breast cancer susceptibility. The dele-
tion spans the mouse ortholog of the human gene desert
region associated with breast cancer risk. Even though
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430-Kb of sequence was removed, the deletion does not
result in reduced fertility, viability or lactation. The pro-
found anti-tumorigenic effect of the deletion manifests
at early and late stages of mammary cancer development
in three transgenic mouse breast cancer models. The re-
sults indicate that in the MMTV-PyVT model the MD
allele causes a reduction in mammary neoplastic nodules
at 4-5 weeks of age, a strong delay in mammary tumor
formation, a reduction in tumor progression and lower
amount of metastatic foci in the lungs. In the
MMTV-neu model the MD allele results in a strong
delay in tumor formation, with some MMTV-neu;MD
—/- not showing a tumor at all at 72 wks of age, as well
as a reduction in metastatic foci in the lungs. In the
C3(1)-TAg model a strong effect on tumor growth is ob-
served, but the effect on latency is modest. These
anti-cancer effects may be mouse model or
transgene-specific, potentially due to an interaction of
the deletion-regulated genes with transgene-specific
oncogenic processes. The deletion is unlikely to act
through downregulating expression of the transgene it-
self as in both the MMTV-PyVT and C3(1)-TAg models,
the MD-/- samples showed higher transgene expression
than the MD+/+ tumor samples. These observations
suggest that higher transgene levels in the transgene;MD
—/- tumors are needed to be transformative. Notably,
the strongest effects on early tumorigenesis and latency
are observed in the MMTV-PyVT and MMTV-neu
models for luminal breast cancer progression and metas-
tasis. This result is in accordance with the human epi-
demiological data showing a stronger association of one
of the 8424 variants with ER+/luminal breast cancer
than with TNBC [7].

The transplantation assay indicated that despite an al-
tered micro-environment (lower adiposity), the anti-cancer
effects on tumor development elicited by the deletion allele
are strictly intrinsic to the mammary cells. The transplant-
ation assay was conducted essentially as described by Jack-
son et al. [43], but in contrast to our autonomous effect,
their findings showed a non-autonomous effect of the gen-
etic lesion on PyVT-induced mammary tumorigenesis, in-
dicating that the assay can detect both autonomous and
non-autonomous effects. We found the MD allele to be as-
sociated with a reduction of metastatic events in the
MMTV-PyVT and MMTV-neu mouse models. The metas-
tasis phenotype likely has a mammary cell-autonomous
component in the MMTV-PyVT model, and may also have
a non-mammary cell-autonomous component. There is
ample evidence in the literature of micro-environment/host
components affecting metastasis in the MMTV-PyVT
model, most notably the involvement of T-cells, stroma,
and macrophages [43—45].

We hypothesize that the non-coding deletion regulates
gene expression in the mammary epithelium to control
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growth of the transformed cells arising in the mammary
cancer-prone transgenic background. Our analysis re-
vealed Myc and Fam84b as prominent candidate causal
genes, as these were found to be differentially expressed
between MD+/+ and MD-/- mammary gland and tu-
mors samples, as well as various other tissue types. The
proto-oncogene MYC encodes a transcription factor that
together with its binding partner MAX is known to bind
to E-box sequences to regulate gene expression involved
in many cancer-related processes, including cell growth,
proliferation, apoptosis, as well as general cellular pro-
cesses, including transcription and translation [9].
Therefore, MYC is widely regarded as a target for regu-
lation by the 8424 variants. Chromatin looping from the
8424 cancer risk-associated region to the MYC gene and
MYC allelic imbalance have previously been implicated
in the breast cancer-modulatory mechanism underlying
the 824 locus [16-18, 39, 46]. However, MYC expres-
sion levels have not been found to be associated with
any of the risk alleles. Our study shows that deletion of
the murine ortholog of the human breast
cancer-associated region within the gene desert locus,
located approximately 200-Kb proximal to the Myc gene,
results in a measurable reduction of Myc transcript level
in the mammary gland and tumors. In accordance with
this finding and the previously discussed genomic simi-
larities and sequence conservation between the 2 spe-
cies, we found mouse-human-conserved chromatin
looping from the Myc promoter to the region ortholo-
gous to the human breast cancer-associated 8424 region,
suggesting that this gene desert region in both human
and mouse contains regulatory elements affecting Myc
expression in the mammary gland.

We found Fam84b to be downregulated to the same
extent as Myc, suggesting that the deletion interval may
contain regulatory elements for both Myc and Fam84b.
FAMS84B has also been identified to physically interact
with the 8424 gene desert locus through long-range
chromatin looping, albeit in prostate cancer cells [47].
Because such higher-order chromatin structures have
not been found in breast cells, we cannot conclude that
FAMS84B is a direct target for regulation by the deletion
interval and could also be a secondary target resulting
from Myc downregulation. FAM84B has been implicated
in breast cancer development, since it was found in a
screen to identify proteins associated with the cell mem-
brane in breast cancer and was further shown to associ-
ate with adherens junctions [11]. The involvement of the
IncRNA gene Pvtl in 8g24-mediated breast cancer sus-
ceptibility has previously been suggested, although asso-
ciation of its expression level has been found to manifest
with the risk allele of a breast cancer-associated SNP lo-
cated within the Pvt locus [6], not within the 8724 gene
desert under study. We found a non-significant trend
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towards downregulation of Pvzl in the mammary glands
and tumors of MD-/- mice, suggesting that the deletion
interval may also contain Pvtl regulatory elements.
Since, Pvtl downregulation was weaker than Myc and
Fam84b, we hypothesize that Pvtl downregulation in
the mammary gland is an indirect effect of Myc down-
regulation, as previously suggested [48].

Outside of the mammary gland and tumors, we show
tissue-specific regulatory effects of the deletion on tran-
script levels of the genes surrounding the locus. Most
notably, Myc transcript levels were reduced in the MD
—/- samples in all tissues analyzed, except for bladder,
suggesting the presence of AMyc-enhancer elements
within the deleted interval that act in tissues relevant to
the human cancer associations with variants in the 824
gene desert.

Recently, Dave et al. published analysis of a 538-Kb
deletion mouse model, lacking portion of our deletion
interval, extending all the way to the Myc gene promoter
[23]. Our MD allele is different because we deleted a
genomic region over 200-Kb away from the Myc gene.
Even though the deletions overlap only partially, our
findings are mostly in accordance with the findings by
Dave et al. Both studies find that a large deletion of the
gene desert regulatory region is well tolerated by the or-
ganism, as no deleterious effects have been noticed. We
found a ~10% reduction in total body weight in the
homozygous MD mice, which was not reported by Dave
et al. Strikingly, in both studies a strong, tissue-specific
downregulation of Myc was observed along with
anti-cancer properties against Apc””-induced polyp for-
mation, carcinogen-induced mammary cancer [23], as
well as transgene-induced luminal and basal mammary
cancer (this study). No downregulation of Myc in the
bladder was observed in both studies, and no effect on
carcinogen-induced bladder cancer was found by Dave et
al,, suggesting that only in tissues with deletion-induced
transcriptional silencing of Myc, tumorigenesis is dis-
rupted. Given the striking overlap in phenotypes between
the two deletion alleles, a genomic region controlling Myc
regulation and anti-cancer properties can be assigned,
namely the 333-Kb interval deleted in both mouse models
(chr15:61445326-61,778,521 in mm10 built; Fig. 1). Dave
et al. found that targeting individual conserved enhancer
elements has limited effect on tumor development. There-
fore, interrogating additional deletion mouse models gen-
etically dissecting this gene desert further will result in a
more detailed map of anti-cancer activity mediated by this
locus.

MYC amplification has been known as a frequent gen-
etic alteration in breast cancer for several decades [24].
Through the analysis of the TCGA data, it became clear
that an increase in MYC activity and/or expression sig-
nature forms a subclass of TNBC (basal) breast cancer
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associated with poor outcome [49, 50]. We show here
that, while the 824 amplicon is frequently observed in
all breast cancers, an increased MYC transcript level is
relatively uncommon and mostly occurring in the TNBC
(basal) subtype. On the other hand, FAM84B transcript
level increase occurs most frequently in the luminal and
HER2+ subtypes and is associated with decreased overall
survival in TCGA and METABRIC datasets, but not
progression-free survival in TCGA (which is not avail-
able for METABRIC). These observations suggest that
FAMS84B has cancer-promoting properties contributing
to poor outcome after recurrence, and that MYC is not
the only oncogene located in this frequently amplified
genomic region, supporting a role for the nearby
FAMS84B gene as a novel potential driver oncogene in
human breast cancer. Myc and Fam84b may contribute
synergistically and/or independently to the observed
mammary cancer reduction phenotypes in the MD
mouse model. This analysis will form the basis for add-
itional mouse genetic model approaches in which more
specific non-protein coding gene regulatory elements as-
sociated with breast cancer risk could be assessed for
their effect on Myc and Fam84b regulation and breast
cancer development. Other future work will be focused
on deciphering the relationship between Mpyc and
Fam84b overexpression in the development of specific
breast cancer subtypes.

Conclusions

Breast cancer risk variants identified by GWAS are
mostly located to non-protein coding genomic regions.
The gene desert on human chromosomal band 8424 is a
prototype example of a breast cancer-associated
non-coding region. The cancer risk-associated interval
contains multiple previously identified enhancer ele-
ments regulating nearby genes, most notably the
proto-oncogene MYC. Upon deletion of the sequence in
the mouse genome orthologous to the 8724 gene desert
region associated with breast cancer risk, we found that
the deletion is well tolerated, as no deleterious effects
were found in homozygous MD mice. The MD allele in
homozygous state has anti-cancer effects in 3 transgenic
mouse models for breast cancer. The results from a re-
ciprocal transplantation assay suggest that the
anti-cancer effects are initiated through activity of the
deletion in cells of the mammary epithelium. We further
show that deletion of the gene desert interval results in
lower expression level of Myc and Fam84b, which are
genes located adjacent to the gene desert, but over
200-Kb and 500-Kb away from the deletion interval, re-
spectively. The expression study highlights these genes
as strong candidates to be mediating the anti-cancer
properties exhibited by the deletion. Our analysis of the
METABRIC and TCGA datasets support the hypothesis
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that in human breast cancer, amplification and over-
expression of MYC or FAMS84B specifically contrib-
utes to development of the basal or luminal subtype,
respectively.

Additional files

Additional file 1: Figure S1: A) The Southern blots of the correctly
inserted clones are shown in the panel. B) The MD allele in the mouse is
viable in homozygous state and MD-/- mothers produce normal litter
size, as compared with MD+/+ mothers. Figure S2: Comparison of tumor
parameters for the PyVT (A-D), C3(1)-TAg (E-G) and neu transgenes on
the FVB/N genetic background (Jackson Labs) and our MD+/+ genetic
background. No differences between the genetic backgrounds were
detected. Hence, we added the data for the animals with the FVB/N
genetic background to the MD+/+ groups for further analysis. Figure S3:
Effect of MD allele on premalignant mammary glands in the PyVT and
C3(1)-TAg models. A, B) Representative images of whole mounted
mammary glands from PyWT MD+/+ (A) and PyVT MD-/- (B) mice at 46
days of age. The PyVT-induced hyperplastic expansion of the mammary
epithelium is clearly visible in the MD+/+ glands, but strongly reduced in
the MD-/- gland. C, D) Images of whole mounted mammary glands from
C3(1)-TAg MD+/+ (A) and C3(1)-TAg MD-/- (B) mice at 5 months of age.
Premalignant and malignant lesions are visible in both glands. E, F)
Quantification of premalignant nodules and lesions on whole mounted
mammary glands from PyVT MD+/+ (n = 9) and PYWT MD-/- (n = 4) mice
(E), or C3(1)-TAg MD+/+ (n = 3) and C3(1)-TAg MD-/- (n = 4) mice (F), re-
spectively. Graphed are averages +/- sem. Figure S4: Additional gene ex-
pression analysis. A) Comparison of housekeeping gene ActB transcript
levels (normalized to 18S) between MD+/+ and MD-/- tissue samples. B)
Comparison of PyVT or C3(1)-TAg transgene expression (normalized to
185) between MD+/+ and MD-/- tumor tissue samples. Averages are
shown, error bars are s.e.m. Significance (p < 0.05) is indicated by an as-
terisk. Figure S5: Higher-order chromatin interactions in the cancer-
associated human and mouse gene desert. A) Higher-order chromatin
interaction heat map of the 8qg24 locus in human mammary epithelial
cell line HMEC generated using the Jukebox tool. The positions of genes
FAMB84B, MYC and PVT1 are indicated. B) Chromatin interactions in the
MD interval with the MYC promoter. The human interactions are shown
in purple, the mouse in pink. The human interactions are derived from
the vertical blue line in the heat map in panel A. The mouse interactions
were determined experimentally, using the 3C assay on formaldehyde-
fixed, restriction/ligation-treated MEC chromatin isolated from the mam-
mary gland (MG) from MD+/+ mice. Figure S6: The association of MYC
and FAM84B gene copy number increase and overexpression with clinical
outcomes in 1105 primary breast cancers of the TCGA data set. (A) Fre-
quency of MYC and FAM84B copy number amplification in 35 cancer
types from the TCGA bioportal database. (B, C) Oncoprint showing cases
from the TCGA database with MYC or FAM84B gene amplification (B) or
gene expression greater than 2 standard deviations (SD) above the mean
(O). (D, E) Overall survival plots from the TCGA bioportal for breast cancer
patients with (red plot) or without (blue plot) FAM84B (D) or MYC (E)
gene overexpression (> 2 SD). Figure S7: A, B) Overall survival plots from
the TCGA cancer bioportal for breast cancer patients (n = 1105), with (red
plot) or without (blue plot) FAM84B (A) or MYC (B) gene overexpression
at > 1.5 SD. C) Disease-free survival plots from the TCGA bioportal for
breast cancer patients with (red plot) or without (blue plot) FAM84B gene
overexpression at > 2 SD. (DOCX 9763 kb)

Additional file 2: Table S1. List of primers, QPCR assays and BACs
Table S2. 2-Way ANOVA for lung metastatic foci in PyVT mammary
transplantation assay. Table S3. Total number of breast tumors in the

TCGA database based on subtype. (DOCX 1631 kb)
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