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The SARS-CoV-2 infection [coronavirus disease 2019 (COVID-19)] is associated with
severe lymphopenia and impaired immune response, including expansion of myeloid cells
with regulatory functions, e.g., so-called low-density neutrophils, containing granulocytic
myeloid-derived suppressor cells (LDNs/PMN-MDSCs). These cells have been described
in both infections and cancer and are known for their immunosuppressive activity. In the
case of COVID-19, long-term complications have been frequently observed (long-COVID).
In this context, we aimed to investigate the immune response of COVID-19 convalescents
after a mild or asymptomatic course of disease. We enrolled 13 convalescents who
underwent a mild or asymptomatic infection with SARS-CoV-2, confirmed by a positive
result of the PCR test, and 13 healthy donors without SARS-CoV-2 infection in the past.
Whole blood was used for T-cell subpopulation and LDNs/PMN-MDSCs analysis. LDNs/
PMN-MDSCs and normal density neutrophils (NDNs) were sorted out by FACS and used
for T-cell proliferation assay with autologous T cells activated with anti-CD3 mAb. Serum
samples were used for the detection of anti-SARS-CoV-2 neutralizing IgG and GM-CSF
concentration. Our results showed that in convalescents, even 3months after infection, an
elevated level of LDNs/PMN-MDSCs is still maintained in the blood, which correlates
negatively with the level of CD8+ and double-negative T cells. Moreover, LDNs/PMN-
MDSCs and NDNs showed a tendency for affecting the production of anti-SARS-CoV-2
S1 neutralizing antibodies. Surprisingly, our data showed that in addition to LDNs/PMN-
MDSCs, NDNs from convalescents also inhibit proliferation of autologous T cells.
Additionally, in the convalescent sera, we detected significantly higher concentrations of
GM-CSF, indicating the role of emergency granulopoiesis. We conclude that in mild or
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Siemińska et al. Immunosuppression in COVID-19 Convalescents

Frontiers in Immunology | www.frontiersin.
asymptomatic COVID-19 convalescents, the neutrophil dysfunction, including
propagation of PD-L1-positive LDNs/PMN-MDSCs and NDNs, is responsible for long-
term endotype of immunosuppression.
Keywords: COVID-19 convalescents, normal density neutrophils, immunosuppression, granulocyte-macrophage
colony stimulating factor (GM-CSF), low-density neutrophils (LDNs), granulocytic myeloid-derived suppressor cells
(PMN-MDSCs)
INTRODUCTION

Since the beginning of 2020, the COVID-19 pandemic has affected
more than 200 million people worldwide, causing over 4.5 million
deaths so far. The causative agent of COVID-19 is severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), airborne
transmitted between the humans (1). Many comorbidities, such
as hypertension, obesity, diabetes, and other pathologies affecting
the immune system are the risk factors of the severe course of
COVID-19 (2). The clinical manifestations of COVID-19 are
diverse and range from asymptomatic, through mild to severe
disease with lung injury and respiratory distress, often followed
bymultiorgan failure and death (3, 4). Blood lymphopenia is one of
the hallmarks of COVID-19 and its severity correlates with worse
prognosis (5, 6). However, the mechanisms underlying
lymphopenia, and particularly reduction of T-cell number during
COVID-19, remain unclear. The lymphocytes due to a relatively
low surface expression of angiotensin converting enzyme2 (ACE2),
the entry receptor for the virus (7), seem not to be its direct target
(8). Lymphopenia is not subset-specific within T cells and the
numbers of bothCD4+ andCD8+T cells are rapidly reduced during
the virus infection. This may be caused by the cytokine storm and
rapid release of IL-6, TNF-a, and IL-1 (9), subsequent thymic
involution, and/or T-cell sequestration in the specific organs due to
the hyperinflammation (9, 10). However, lymphopenia has been
reported concurrently with onset of the clinical symptoms (6). In
this context, an alternative hypothesis claims the collapse of thehost
protective immunity (“immunologic collapse”), leading to failure in
control of viral replication and dissemination (11–14). In this
scenario, an increased production of prostaglandin D2 by the
respiratory epithelium (15) causes inhibition of the dendritic cell
response viaDP1 receptor signaling and/orupregulationofmyeloid
cells with regulatory functions, including myeloid-derived
suppressor cells (MDSCs), which may be one of the mechanisms
attenuating inflammatory response (16, 17). From the other side,
the early expansion of MDSCs may inhibit SARS-CoV-2 antigen-
specific T-cell response and predict fatal outcome (18), suggesting
these cells as important players during COVID-19.

The population of MDSCs has been defined as innate bone-
marrow-derived myeloid cells suppressing effector T-cell
response (19), and are considered as key cellular components
connecting innate and adaptive T-cell response. They are
detected mainly in cancer, where their blood level correlates
with disease progression (20). Increased MDSC level was also
shown in viral infections (21, 22), including COVID–19 (18, 23).
By phenotype and morphology assessment, three populations
of MDSCs, differing in their origin, have been distinguished
org 2
so far: granulocytic (PMN–MDSCs)—Lin–HLA–DRlow/–

CD11b+CD14–CD15+, monocytic (Mo–MDSCs)—Lin–HLA–
DRlow/–CD11b+CD14+CD15–, and early stage (e–MDSCs)—
Lin–HLA–DRlow/–CD11b+CD14–CD15–, all classified as
immature myeloid cells with strong immunosuppressive
properties (24). The MDSC subsets differ in the mechanism of
action—PMN–MDSCs are mainly responsible for reactive
oxygen species (ROS) production, while Mo–MDSCs possess
higher expression of inducible nitric oxide synthase (iNOS), and
capacity to release large amounts of nitric oxide (NO), although
some common pathways, including arginase–1 (Arg1) activity
and PD–L1 expression, are also relevant (25). Their function
relies mainly on suppression of T–cell response, including T–cell
proliferation, IFNg production (26), and/or induction of
regulatory T cells (27). The PMN–MDSCs have lower density
in contrast to normal granulocytes, which typically sediment on
top of erythrocytes after density gradient centrifugation, hence,
they are also called immunosuppressive low–density neutrophils
(LDNs) (28) or LDNs/PMN–MDSCs, due to the lack of specific
markers distinguishing neutrophil subsets within LDNs (29).

The major differences between MDSC populations and
corresponding mature neutrophils and monocytes had been
described (30), however, recently due to the progress in
resolution techniques, including high–dimensional single–cell
assays and reporter–fate mapping, concerns regarding the
development and activation state of MDSCs were raised,
questioning previously accepted nomenclature (31).

The role of myeloid cells with regulatory activity has been
indicated in SARS–CoV–2 infection, discriminating between
patients with mild and severe disease (23, 32–34). In particular,
LDNs were shown to emerge in severe COVID–19 patients (32),
and expansion of PMN–MDSCs with Arg1 activity was associated
with an increase of the disease severity (33). The role of Mo–
MDSCs, although less frequent, was also documented as related to
the course of SARS–CoV–2 infection (34). All of them correlated
with poor T–cell response in severe COVID–19 patients (35–37).
Here,we askedwhether amild or asymptomatic course ofCOVID–
19 may also lead to consequences in the form of systemic
immunosuppression and long–COVID.
MATERIALS AND METHODS

Study Group
The study group consisted of convalescents who recovered from a
mild or asymptomatic infection with SARS–CoV–2, confirmed by
the positive PCR test for SARS–CoV–2 mRNA. There were 13
September 2021 | Volume 12 | Article 748097
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individuals (7 women and 6 men) in this group aged from 29 to 58
years, with no persistent symptoms or post–COVID
complications, who at the time of COVID–19 diagnosis had no
symptoms (n = 3) or had symptoms of fever, chills, fatigue, new
loss of taste or smell, cough, congestion or runny nose, headache,
muscle or body aches, especially orbital region pain, and sore
throat (n = 10), related to SARS–CoV–2 infection (convalescent
characterization is presented in Supplementary Table S1). On the
day of blood sampling, all convalescents were approximately 35
(20–60) days after the first manifestations of the disease or positive
result of the RT–PCR test. The control group consisted of 13
healthy subjects without SARS–CoV–2 infection in the past, with
ages from 18 to 65 years. All participants were non–vaccinated
against SARS–CoV–2 before blood donation. The Bioethical
Committee of the Jagiellonian University approved the study
(Approval no. 1072.6120.83.2020), and all subjects gave written
informed consent to participate in the study.

Peripheral blood was drawn to citrate–containing tubes
(10 ml) and tubes with clot activator (3 ml). The blood count
was assessed by routine procedure using a hematology analyzer
(Sysmex XN–350, Sysmex, Norderstedt, Germany).

Flow Cytometry Analysis
Whole blood (100 μl) was used for T–cell subset analysis after the
staining with cocktail of the following monoclonal antibodies
(mAbs): anti–CD3–FITC + anti–CD8–PE + anti–CD45–PerCP
+ anti–CD4–APC (BD Multitest™, BD Biosciences, Franklin
Lakes, NJ, USA) and anti–PD–1–BV605 mAb (BD Biosciences).
The subsets of T cells were identified after the lysis of red blood
cells (RBC Lysis Buffer, eBioscience™, Invitrogen, Carlsbad, CA,
USA) on FACS CantoII flow cytometer (BD Biosciences,
Immunocytometry Systems, San Jose, CA, USA). Populations
of CD45+CD3+CD4+, CD45+CD3+CD8+, and CD45+CD3+CD4–

CD8–, corresponding to CD4+, CD8+, and double–negative T
cells (DNTs), respectively, were identified using FACS Diva v.
8.0.1 software (BD Biosciences).

From the remaining blood volume, mononuclear cells
(PBMC) were isolated by standard Pancoll (PAN BIOTECH,
Aidenbach, Germany) density gradient centrifugation. For
analysis of MDSCs, PBMCs (approximately 1 × 106 cells) were
stained with the following mAbs: anti–CD33–PE (clone P67.6),
anti–LIN–AF700 (CD3, CD19, CD56, clones UCHT1, HIB19,
and B159), anti–HLA–DR–PerCP (clone L243), anti–CD11b–
BV510 (clone ICR F44), anti–CD14–FITC (clone MjP9), anti–
CD15–PE–Cy7 (clone HI98), anti–PD–L1–APC (clone
10F.9G2), anti–CD64–AF700 (clone 10.1), anti–CD16–PE
(clone 3G8), and anti–CD66b–FITC (clone G10F5) (all from
BioLegend, San Diego, CA, USA) for 20 min at 4°C. After
incubation, cells were washed twice in PBS and suspended in
0.2 ml of PBS. To determine the level of non–specific staining
and cell autofluorescence, the respective isotype controls and
fluorescence minus one (FMO) control samples were incubated
in parallel. The samples were analyzed on FACS CantoII flow
cytometer (BD Biosciences) using FACS Diva v. 8.0.1 software
(BD Biosciences) and FlowJo v.10 software (BD Biosciences).
The Mo–MDSCs were characterized as LIN–HLA–DRlow/–
Frontiers in Immunology | www.frontiersin.org 3
CD11b+CD14+CD15– cells, whereas LDNs/PMN–MDSCs were
characterized as LIN–HLA–DRlow/-CD11b+CD14–CD15+ cells.
The e–MDSCs were gated as LIN–HLA–DR–CD11b+CD14–
CD15– cells. The level of MDSC subsets was presented as the
percentage of nucleated cells (NC) (positive for SYTO™ 9,
Invitrogen, Eugene, OR, USA). Detailed gating strategy is
presented in Supplementary Figure S1.
Assessment of Cell Suppressive Activity
Suppressive activity of the myeloid cell subsets was analyzed in
cultures with autologous T cells activated with anti–CD3 mAb
(clone HIT3, 1 mg/ml) by H3–thymidine incorporation assay.
Briefly, the FACS–purified T cells (CD3+) with 10% of
autologous monocytes (FACS sorted CD14+HLA–DR+) were
co–cultured with LDNs/PMN–MDSCs (FACS sorted HLA–
DRlow/–CD33+CD66b+CD14–) or NDNs, used as control
(FACS–sorted CD66b+ from the bottom fraction after Pancoll
separation and RBC lysis) at the T cells to MDSCs/NDNs ratio
2:1 (established experimentally), and activated with anti–CD3
mAb (clone HIT3, 1mg/ml, BD Pharmingen™, Franklin Lakes,
NJ, USA). After 3 days of culture, T cells were pulsed with H3–
thymidine (1 mCi/well, GE Healthcare, Marlborough, CT, USA)
for an additional 6 h and thymidine uptake was measured as
counts per minute (cpm) in a liquid scintillation counter LS1801
(Beckman Coulter, Indianapolis, IN, USA). The results are
presented as mitotic index:

mitotic index =
anti − CD3 stimulated test culture ½cpm�

non − stimulated culture ½cpm�

Testing for Anti–SARS–CoV–2 S1 IgG
Anti–SARS–CoV–2 S1 IgG antibodies were quantified in fresh
serum samples. The level of antibodies was determined by
SARS–CoV–2 S1 IgG II Quant chemiluminescent microparticle
immunoassay (Abbott Laboratories, Lake Bluff, IL, USA), using
“Aliniti i” immune analyzer (Abbott), following the
manufacturer’s instructions.
Evaluation of GM–CSF Concentration
Concentration of GM–CSF was assessed in serum samples stored
at −20°C in one batch measurement. All samples were thawed,
and the concentration of GM–CSF was evaluated by ELISA
immunoassay (R&D Systems, Minneapolis, MN, USA),
according to the manufacturer’s recommendations.

Statistical Analysis
Statistical analysis was performed using the PRISM GraphPad 8
package (GraphPad Software Inc., San Diego, CA, USA). Data
were analyzed using t–test or one–way analysis of variance
(ANOVA) with Tukey Multiple Comparison Test, as a
post–hoc test. The magnitude of the relationship between two
quantitative features was evaluated using Pearson’s correlation
coefficient. All data are expressed as median with interquartile
range. p < 0.05 was considered statistically significant.
September 2021 | Volume 12 | Article 748097
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RESULTS

PBMCs From COVID–19 Convalescents
Contain High Frequency of
LDNs/PMN–MDSCs
The group of convalescents was examined, on average, after 35
days (20–60 days) from the first symptoms or, in the case of
asymptomatic course, from the day of positive result of the RT–
PCR test for SARS–CoV–2 mRNA. The MDSCs were identified
as Lin–HLA–DRlow/–CD11b+ cells and further divided into Mo–
MDSCs, LDNs/PMN–MDSCs, and e–MDSCs, based on the
expression of CD14 and CD15. Their frequency was evaluated
in PBMCs of convalescents and compared with the age–matched
healthy controls (CTR). Level of e–MDSCs was negligible (data
not shown), whereas the frequency (percent value of NC) of Mo–
MDSCs in the study group did not differ from healthy controls
(Figure 1B). In contrast, frequency of LDNs/PMN–MDSCs was
significantly higher in PBMCs of convalescents in comparison to
healthy controls (p < 0.0001) (Figure 1A).

Therefore, in the follow–up, we focused on LDNs/PMN–
MDSCs only. An elevated level of these cells had reduced
individually with various rates, in three cases with the highest
frequency, it reached the level of healthy donors after ca. 3
months from infection (Figure 1C).
Composition of the Main Subsets of
T Cells Is Altered in Peripheral Blood of
COVID–19 Convalescents and Includes
High Level of CD8+ T Cells With Phenotype
of Exhaustion
At first, we analyzed the count of white blood cells (WBCs) and
specific leukocyte populations, including neutrophils,
monocytes, lymphocytes, T cells, and their main subsets,
namely, CD8+, CD4+, and DNTs in peripheral blood of
COVID–19 convalescents. This analysis revealed that WBC
counts already normalized in all individuals at the time of the
study. Similarly, blood counts of neutrophils, monocytes (except
one case), lymphocytes, T cells, and their subsets, except one
case, were in normal ranges. In some individuals the mean value
of the CD4+/CD8+ ratio significantly differed from the reference
interval after recovery from COVID–19 (Figure 2A). In the case
of six convalescents, this parameter was still less than 1.5, in two
cases, it was even less than 1.0, and in two other cases, it was
higher than 2.5 (Figure 2A). These data indicate that in majority
of the convalescents, CD8+ T cells were induced by SARS–CoV–
2 (Figure 2B). However, these CD8+ T cells when further
analyzed, showed to be positive for PD–1 expression
(Figure 2C), suggesting their exhaustion due to stimulation by
viral antigens. In parallel, we correlated the absolute numbers of
circulating CD8+, CD4+, and DNTs with the level of LDNs/
PMN–MDSCs. This analysis showed that the numbers of CD8+

T cells and DNTs negatively correlated with the frequency of
PMN–MDSCs (Figures 2D, E). In respect to CD4+ T cells, such
an association was not observed (data not shown). Moreover, we
Frontiers in Immunology | www.frontiersin.org 4
have noticed a positive correlation between the CD4+/CD8+ ratio
and the number of circulating neutrophils (Figure 2F).

LDNs/PMN–MDSCs and NDNs May Affect
Anti–SARS–CoV–2 Antibody Production
In the next step, we asked if LDNs/PMN–MDSCs may impact on
anti–SARS–CoV–2 antibody production. To address this question,
we evaluated the serum level of anti–SARS–CoV–2 S1 IgG
antibodies and correlated with the frequency of LDNs/PMN–
MDSCs in blood of COVID–19 convalescents. The obtained
results showed a clear tendency for negative correlation between
these two parameters. Additionally, similar dependency was
observed in relation to neutrophils. Although these data did not
reach a statistical significance (Figures 2G, H), the tendency
suggests that LDNs/PMN–MDSCs and NDNs interfere with anti–
SARS–CoV–2 antibody production in COVID–19 convalescents.

Both LDNs/PMN–MDSCs and NDNs From
COVID–19 Convalescents Possess
Immunosuppressive Activity
Identification of myeloid cells with regulatory activity requires, in
addition to their immunophenotype characterization, also a
confirmation of their suppressive nature (30). Following this
requirement, the FACS–sorted LDNs/PMN–MDSCs from the
blood of COVID–19 convalescents were added to the cultures of
autologous anti–CD3–stimulated T cells. Simultaneously, as
controls, anti–CD3–stimulated T cells from COVID–19
convalescents and healthy donors were cultured alone or in the
presence of autologous NDNs, added at the same ratio. The
obtained results showed that T cells from COVID–19
convalescents already have a tendency (n.s.) for diminished
proliferation ability in response to stimulation (Figure 3A). These
data, although not statistically significant, collaborate the results by
others (39). Moreover, LDNs/PMN–MDSCs from the COVID–19
convalescents effectively suppressed anti–CD3–induced
proliferation of autologous T cells (p < 0.01). Surprisingly, NDNs
from the convalescents also showed suppressive activity, and this
was even more pronounced compared to LDNs/PMN–MDSCs (p <
0.0001). On the contrary, NDNs from healthy donors’ blood did not
have such activity, instead, they slightly enhanced proliferation of
autologous T cells stimulated with anti–CD3 mAb (Figure 3A).

Searching for the reason of suppression induced by
neutrophil subsets from COVID–19 convalescents, we looked
at the PD–L1 expression as a key marker related with such an
activity and found that both populations of LDNs/PMN–MDSCs
and NDNs showed high expression of immunosuppressive PD–
L1 (Figure 3B). Further, we took an advantage from the study by
Khanna et al., who described a similar phenomenon operating in
mesothelioma patients, and pointed on GM–CSF as a factor
promoting emergency myelopoiesis and granulocyte–related
immunosuppression (40). With this in mind, we analyzed the
GM–CSF level in the convalescent’s sera. Results from the ELISA
measurements showed that sera from COVID–19 convalescents
contain significantly higher concentration of GM–CSF than sera
from healthy donors (Figure 3C).
September 2021 | Volume 12 | Article 748097
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DISCUSSION

SARS–CoV–2 infection is associated with lymphopenia and
profound alterations of the myeloid compartment (32, 39).
Here we showed dysfunctions of myeloid cells also in
convalescents from mild/asymptomatic COVID–19.
Specifically, our data suggest that propagation of LDNs/PMN–
MDSCs and presence of NDNs with regulatory functions are
responsible for long–term endotype of immunosuppression in
this group. Recently, in the elegant study, Schulte–Schrepping
et al. using scRNA–seq analysis showed in–depth COVID–19–
associated alterations in monocyte and neutrophil components,
documenting occurrence of immature and dysfunctional
neutrophils and HLA–DRlow monocytes during the severe
course of disease (35). Accumulation of HLA–DRlow

monocytes, suggesting an impairment of antigen presentation
to naive T cells in severe form of infection, has also been detected
by others (3, 41–44). HLA–DR downregulation, typical for
MDSCs, was also shown to immediately precede progression to
severe respiratory failure (45). In opposite to severeCOVID–19, in
patients with mild course of infection, the HLA–DRhigh/CD11chigh

inflammatory monocytes with an interferon–stimulated gene
signature were detected (35). In our study, 1 month after
infection, we observed no difference in HLA–DR expression level
Frontiers in Immunology | www.frontiersin.org 5
on monocytes, comparing convalescents to healthy donors
(Supplementary Figure S2A), suggesting that such cells might be
only temporarily present in peripheral blood. Also, Mo–MDSCs
were found to expand in blood ofCOVID–19 patients and associate
with disease severity (36), however, in the case of convalescents, we
didnot detect changes in the frequencyof this cell subset inPBMCs,
when comparing to healthy controls (Figure 1).

In respect to neutrophils, they comprise a heterogenous cell
population, differing both in their functions and density. In
pathological conditions, including infections, the presence of
LDNs within the fraction of mononuclear cells in the interphase
after density gradient centrifugation has been reported (28, 46),
with a substantial composition of immunosuppressive PMN–
MDSCs (47). Neutrophils upon activation and degranulation
secrete arginase–1 and produce ROS to mediate cell
suppression, indicating functional and phenotype overlap
with PMN–MDSCs (48–50). In line with this, many studies
have described LDNs as being composed of immature
neutrophils (51), heterogeneous populations consisting of
both immature and mature “neutrophil–like” populations (52,
53), and “activated/degranulated” mature neutrophils (49,
54, 55).

Several markers, including maturation, e.g., CD10, CD11b,
and CD16, or activation ones, e.g., CD66b, CD64, PD–L1,
A B

C

FIGURE 1 | (A) Frequency of LDNs/PMN–MDSCs in the blood of convalescents and healthy controls (CTR). MDSCs were identified by flow cytometry after gating
according to the cell surface antigens, as described in Materials and Methods and presented in Supplementary Figure S1. Cell frequency was calculated as
percentage of nucleated cells (NC) from PBMCs. (B) Frequency of Mo–MDSCs in the blood of convalescents and healthy controls (CTR). MDSCs were identified by
flow cytometry after gating according to the cell surface antigens, as described in Materials and Methods and presented in Supplementary Figure S1. Cell
frequency was calculated as percentage of nucleated cells (NC) from PBMCs. (C) Changes in LDNs/PMN–MDSCs frequency in peripheral blood as a function of
time after COVID–19 recovery. Around day 80 from COVID–19 infection, the level of LDNs/PMN–MDSCs is dropping noticeably in the blood of convalescents. LDNs/
PMN–MDSCs level was analyzed in three time points by flow cytometry as LIN–HLA–DRlow/–CD11b+CD14–CD15+ cells and calculated as percentage of nucleated
cells (NC) from PBMC. Data from three patients with initial highest level of LDNs/PMN–MDSCs are presented. The average level of LDNs/PMN–MDSCs in peripheral
blood of healthy donors is indicated by a yellow line.
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CD11b, and CD16, have been proposed to differentiate
neutrophil subsets in LDNs, depending on the study design
(56–58). However, recent sc–RNAseq analysis in severe and
mild COVID–19 patients revealed the presence of seven
phenotypically distinct neutrophil clusters within LDNs (35).
With this in mind, to indicate the complexity of LDNs, in the
Frontiers in Immunology | www.frontiersin.org 6
current paper, we have used the previously proposed acronym
LDNs/PMN–MDSCs (28).

In the case of SARS–CoV–2 infection, myeloid cells with
regulatory functions, including those of neutrophil origin, have
been studied so far, mainly in terms of their effect on the duration
and course of disease (23, 36, 59, 60). In this context, it has been
A B

C

D E

G H

F

FIGURE 2 | (A) Blood WBC, leukocyte populations, and T–cell subset count in peripheral blood of COVID–19 convalescents with normal range marked in green.
Normal range for DNTs was calculated from T cells [1%–5% of T cells, (38)] (n = 13). (B) CD4+ and CD8+ T–cell distribution in individual patients. Patients with CD4+/
CD8+ ratio above the normal range are marked in red, within the norm in green, and below the norm in blue (n = 13). (C) PD–1 expression on CD8+ T cells of
COVID–19 convalescents. Expression of PD–1 on CD8+ T cells of COVID–19 convalescent and healthy controls was evaluated by flow cytometry and presented as
mean fluorescent intensity (MFI). Data from four subjects in each group are presented (n = 4). (D) Correlation of the level of LDNs/PMN–MDSCs and the count of
CD8+ in blood of COVID–19 convalescents. CD8+ T cells were identified by flow cytometry as CD45+CD3+CD8+ cells and their concentrations were calculated from
the total lymphocyte counts (n = 13). (E) Correlation of the level of LDNs/PMN–MDSCs and the count of double–negative T cells (DNT) in blood of COVID–19
convalescents. Double–negative T cells (DNTs) were identified by flow cytometry as CD45+CD3+CD4–CD8– and their concentrations were calculated from the total
lymphocyte counts (n = 13). (F) Correlation of CD4+/CD8+ T cell ratio with neutrophil count in blood of COVID–19 convalescents (n = 13). (G) Correlation of anti
SARS– CoV–2 S1 IgG antibody concentration with the number of neutrophils in COVID–19 convalescents (n = 10). (H) Correlation of anti–SARS CoV–2 S1 IgG
antibody concentration with the frequency of LDNs/PMN–MDSCs in COVID–19 convalescents (n = 10).
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shown that early expansion of these cells may predict a fatal
outcome of COVID–19 (18) and their level is higher in patients
with severe course of infection (61). In line with this, MDSCs
have been postulated as a potential biomarker and therapeutic
target in COVID–19 (23). Here, we have shown that the
frequency of LDNs/PMN–MDSCs is increased in the
convalescents’ blood even 2–3 months from mild or
asymptomatic infection (e–MDSCs were not detectable at this
time). A higher level of PMN–MDSCs, compared to healthy
donors, was already observed in patients with mild course of
disease (61), while delayed and transient expansion of this cell
subset in the cohort of severely ill Japanese patients was
correlated with inhibition of the harmful immune response
(34). These authors even proposed the level of PMN–MDSCs
as a prognostic factor for severe COVID–19 patients. At the same
time, they did not notice any increase in this cell subset level in
cases of mild course of COVID–19. This discrepancy may result
from the use of frozen PBMCs in the abovementioned study, not
recommended for the detection of this type of cells (62). In the
case of our study group, decrease in the frequency of LDNs/
PMN–MDSCs in PBMCs after infection was slow and was close
to the level of healthy donors after ca. 3 months of infection. To
the best of our knowledge, this is the first study documenting
such an observation in convalescents after mild or asymptomatic
infection. In the case of convalescents, we did not observe, typical
for acute COVID–19 lymphopenia (63, 64), which is associated
with severe disease (6, 65) and usually is reversed when patients
recover (6, 66). In some patients, lymphopenia has been reported
to affect CD4+ and CD8+ T cells, and other lymphocytes (12, 45,
66), whereas many data suggest that SARS–CoV–2 infection has
a preferential impact on CD8+ T cells (63, 67). In this context,
Frontiers in Immunology | www.frontiersin.org 7
CD8+ T cells from our convalescents, although in a normal range
for their absolute number, were positive for PD–1, known as a T–
cell exhaustion marker (68). Functional exhaustion of T cells
during COVID–19 has been already documented by many
groups (12, 14, 37, 69).

Zheng et al. reported that elevated exhaustion levels and
reduced functional diversity of T cells in peripheral blood may
predict the disease progression (13). However, expression of the
exhaustion markers could also reflect recent activation, and it is
not clear whether T cells in patients with COVID–19 are
exhausted or just highly activated (69). In keeping, some
reports question the exhaustion of PD–1+ cells in COVID–19,
suggesting that PD–1+ T cells are fully functional in these
patients (70, 71). In our experimental settings, we did not
assess function of CD8+ T cells, however, analysis of their
concentration in peripheral blood of convalescents clearly
showed a negative correlation between the two. This indirectly
supports hypothesis on the regulatory effect of LDNs/PMN–
MDSCs on CD8+ effector T cells in COVID–19 convalescents.
Importantly, a drop in CD8+ level was associated with the severe
course of disease, and posttreatment decrease in CD8+ T cells
and increase in CD4+/CD8+ ratio were indicated as independent
predictors of poor effectiveness of therapy (71, 72).

We have noticed the imbalance in the CD4+/CD8+ T cell
ratio, which normally oscillates between 1.5 and 2.5 (72). In 46%
of convalescents, this ratio was below 1.5. Such disturbances were
already observed in COVID–19 patients (64). Interestingly, our
research showed a strong association between CD4+/CD8+ ratio
and neutrophil count, suggesting that cells of granulocyte origin
may have an impact on this parameter, most likely affecting
frequency of CD8+ T cells. In the work by Li et al., the neutrophil
A B

C

FIGURE 3 | (A) LDNs/PMN–MDSCs and NDNs from COVID–19 convalescents inhibit proliferation of autologous T cells. T cells were stimulated with anti–CD3 mAb
for 3 days in the presence of LDNs/PMN–MDSCs or NDNs. LDNs/PMN–MDSCs were isolated by FACS as HLA–DRlow/–CD33+CD66b+CD14– cells from PBMCs,
while NDNs were sorted out as CD66b+ cells from the pellet obtained by density gradient centrifugation and RBC lysis. LDNs/PMN–MDSCs and NDNs were added
to the culture of FACS purified autologous CD3+ T cells with 10% of autologous monocytes (sorted CD14+ HLA–DR+ cells). After 3 days of co–culture, T cells were
pulsed with H3

–thymidine for an additional 6 h and b– radiation was measured as cpm in a liquid scintillation counter. The index of proliferation was calculated as a
ratio of anti–CD3 stimulated test culture [cpm] and non–stimulated culture [cpm] (n = 5). (B) PD–L1 expression on LDNs/PMN–MDSCs (orange) and NDNs (blue) of
COVID–19 convalescent and healthy control (green). LDNs/PMN–MDSCs were gated as presented in Supplementary Figure S1. Individual data from three
convalescents are shown. (C) Serum concentration of GM–CSF in COVID–19 convalescents and healthy controls (n = 10).
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count and CD4+/CD8+ ratio were among the top five variables
contributing in mild COVID–19 cases, selected using a machine
learning approach (69).

Suppression of CD8+ T cells by MDSCs is well documented and
one of the mechanisms involved is the production of
immunosuppressive cytokines, mainly TGF–b and IL–10 (73). In
the case of SARS–CoV–2 infection, the decrease of blood level of
DNTs was also negatively correlated with IL–10 (74). DNTs
contribute to inflammation and were found to act as regulatory
and/or cytotoxic T cells (75). Given that the level of DNTs decreases
in the initial stage of infection and it correlateswith fever inCOVID–
19 (76), these cells can be assigned a cytotoxic role in SARS–CoV–2
infection. Additionally,MDSCs constitute a source of IL–10 (73) and
the level of IL–10 is elevated inCOVID–19 patients (12). In a current
study, we have shown a negative correlation between DNTs count
and frequency of LDNs/PMN–MDSCs. This observation indirectly
supportspreviousdataon the roleof IL–10 in reducing thenumberof
DNTs (74) and suggests such amechanismoperating inCOVID–19.

Although humoral immune response may also be hampered by
MDSCs (77), there is nodirect evidenceon the diminishedantibody
productionbyB cells duringCOVID–19 (37). In our study,wehave
shown a tendency for negative correlation between LDNs/PMN–
MDSC level and the concentration of anti–SARS–CoV–2
neutralizing IgG antibody in the convalescents after 20–60 days
from infection. In line with this, it was documented that the level of
the spike protein–specific memory B cells increases around 30–60
days after infection (78). Although we have no formal proof, it is
tempting to speculate that this might be accompanied by
normalization of the LDNs/PMN–MDSCs level observed in our
study. Tentatively, the phenomenon could be explained by
antibody–dependent enhancement if complexes of neutralizing
antibodies and viral antigens were bound to FcgRII. This aspect,
however, needs to be further investigated.

While the suppressive nature of LDNs/PMN–MDSCs is not
surprising, detection of the similar activity of NDNs was
unexpected. In our experimental settings, NDNs from
COVID–19 convalescents exhibited robust suppressive activity
on proliferation of autologous T cells, and this was even stronger
than mediated by LDNs/PMN–MDSCs. Such NDNs have been
already described in cancer patients (40, 79) and patients with
severe COVID–19, where the presence of dysfunctional
neutrophils, including LDNs, was linked to emergency
myelopoiesis (35). Several studies have identified emergency
myelopoiesis as a hallmark of fatal COVID–19 (42, 80) and
particularly neutrophil counts were found to be significantly
elevated in patients with COVID–19 and correlated with disease
severity (81, 82). In this context, it is worth mentioning that in
differential analysis, both LDNs/MN–MDSCs and NDNs are
counted as peripheral blood neutrophils, affecting the
neutrophil–to–lymphocyte ratio in COVID–19 patients. The
use of HLA–DR, CD16, CD64, and CD66b markers was able
only to indicate the presence of activated neutrophils within the
LDNs/PMN–MDSCs (slight increase in HLA–DR and CD66b
expression, and presence of CD64high cells) and more mature
CD16+ subset within NDNs but did not allow one to precisely
distinguish the composition of the two. In respect to HLA–DR,
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its expression on LDNs/PMN–MDSCs (characteristic feature of
these cells) of convalescents seems to further decrease over time
(Supplementary Figure S2).

Interestingly, neutrophils from patients with severe SARS–
CoV–2 infection featured expression of genes related to
suppressive functionality, including ARG1 and CD274 (PD–L1)
(83), while culture supernatants from neutrophils isolated from
COVID–19 patients inhibited T–cell proliferation (84). It was also
postulated that activated neutrophils may exert myeloid–derived
suppressor cell activity (48). In our study, both LDNs/PMN–
MDSCs and NDNs were positive for the surface expression of
PD–L1, indicating its role in direct cell–to–cell mediated
immunosuppression of T–cell response. This, however, does not
exclude the involvement of other suppressive–like molecules
released by these cell subsets and operating in COVID–19
patients, e.g., arginase–1 or ROS (22, 33, 85). This mechanism
could explain a more potent suppressive nature of NDNs despite
their generally lower expression of PD–L1, compared to LDNs/
PMN–MDSCs.Altogether, ourdata suggest that incaseofCOVID–
19 convalescents, NDNs and LDNs/PMN–MDSCs may differ in
activation/maturation status and mechanism of suppressive
activity, with a common pathway involving PD–L1 expression.
However, whether and towhat degreeNDNsdisplay properties like
those described for LDNs is still unclear (29).

The mechanism responsible for neutrophil dysfunction further
leading to T–cell suppression may be related to GM–CSF activity
(40). GM–CSF is an emergency myelopoiesis cytokine and may
induce neutrophil (hyper)–activation and degranulation (86)
through STAT3 phosphorylation (87). In addition, both GM–
CSF and STAT3 are associated with the induction of neutrophils
with regulatory functions (88). In this context, an increased GM–
CSF concentration in convalescents observed in our study, also
shownbyothers inCOVID–19patients (89),maybe responsible for
neutrophil (hyper)–activation and induction of their suppressive
activity. In this context, we cannot exclude the role of other
cytokines, e.g., IL–6, TNF–a, and IL–1, responsible for “cytokine
storm” associated with several detrimental clinical features of
COVID–19 in patients with severe course of disease. In the case
of convalescents from mild/asymptomatic COVID–19, these
cytokines (in significantly lower concentrations) could be
involved in secondary activation of “immature” myeloid cells,
further developing their regulatory functions (90). Recent data by
Chu et al. showing no difference in serum cytokine concentrations
between themildly andmore severely affected COVID–19 patients
6 weeks after infection seem to support this scenario (91), however,
the levels of respective cytokines were not compared to
healthy subjects.

In conclusion, although our group of subjects was small, we
were able to show that in convalescents from COVID–19 after 2–
3 months from infection, both LDNs/PMN–MDSCs and NDNs
possess immunosuppressive properties against T cells. Transient
expansion of LDNs/PMN–MDSCs and dysfunction of NDNs
after asymptomatic and mild course of SARS–CoV–2 infection
may be caused by GM–CSF production and upregulation of PD–
L1 expression, leading to prolonged immunosuppression in
COVID–19 convalescents. However, in the light of the current
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controversy in definition of myeloid regulatory cell populations
(31), the precise origin of immunosuppressive LDNs, altered
granulopoiesis, and/or regulatory properties acquired by NDNs
in response to SARS–CoV–2 infection and long–COVID
remains to be determined.
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