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Resulting from a various etiologies, the most notable remains ischemia; heart failure (HF) manifests as the common end pathway of
many cardiovascular processes and remains among the top causes for hospitalization and a major cause of morbidity and mortality
worldwide. Current pharmacologic treatment for HF utilizes pharmacologic agents to control symptoms and slow further
deterioration; however, on a cellular level, in a patient with progressive disease, fibrosis and cardiac remodeling can continue
leading to end-stage heart failure. Cellular therapeutics have risen as the new hope for an improvement in the treatment of HF.
Mesenchymal stem cells (MSCs) have gained popularity given their propensity of promoting endogenous cellular repair of a
myriad of disease processes via paracrine signaling through expression of various cytokines, chemokines, and adhesion molecules
resulting in activation of signal transduction pathways. While the exact mechanism remains to be completely elucidated, this
remains the primary mechanism identified to date. Recently, MSCs have been incorporated as the central focus in clinical trials
investigating the role how MSCs can play in the treatment of HF. In this review, we focus on the characteristics of MSCs that give
them a distinct edge as cellular therapeutics and present results of clinical trials investigating MSCs in the setting of ischemic HF.

1. Introduction

Heart failure (HF) has become a major epidemic through-
out the world. Resulting as the common end pathway for
a myriad of cardiovascular disease processes, HF is the
most common cause of hospital admission in patients over
65 years old, with the number of individuals having HF
reaching 8 million and expected costs in the United States
exceeding 40–70 billion dollars [1]. The foundation of cur-
rent therapy for HF is pharmaceutical interventions. Certain
subsets of patients with HF may benefit from advanced ther-
apies including cardiac resynchronization therapy (CRT),
mechanical circulatory support devices, and even transplant,

which is reserved to the sickest patients. However, these mea-
sures are not without pitfalls; pharmaceutical therapies have
side effects, and CRT, while advantageous, is only available
to some patients [2]. Recently, there has been a push to inves-
tigate more innovative treatments for HF that aim at not only
improving clinical symptoms but also improving cardiovas-
cular pathophysiology. While pharmaceutical and device
therapy can improve the pathophysiology of ischemic HF,
nonischemic HF still has limited options currently. One of
the leading treatments under investigation for HF is the use
of mesenchymal stem cells (MSCs). Mesenchymal stem cells
are multipotent adult stem cells that have been at the fore-
front of regenerative medicine research. Mesenchymal
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stem cells are unique cells that can be cultured ex vivo and
utilized as cellular therapies in a variety of disease states.
Currently, MSCs are being entertained as treatment
modalities in cardiovascular disease states such as acute
myocardial infarction, fibrosis, and heart failure. There
are other cell therapies that have been explored in transla-
tional projects including those of induced pluripotent stem
cells (iPSCs) and vector-based gene therapy. Here, we focus
on MSCs and their desirable properties as cellular thera-
peutics in heart failure and implicate their potential use
in clinical practice.

2. Mesenchymal Stem Cells in Cell-Based
Therapies

Mesenchymal stem cells are a type of adult stem cells that are
multipotent cells [3, 4]. Mesenchymal stem cells maintain the
ability to give rise to a number of different end-cell lineages
including bone cells, adipose cells, stromal cells, muscle cells,
tendon cells, and other mesenchymal cells (Figure 1) [3–5].
Mesenchymal stem cells are utilized for endogenous cell-to-
cell communication and paracrine signaling and also employ
these properties for cellular repair when utilized in cellular
therapeutics [5]. Although not conclusively proven, mesen-
chymal stem cells are postulated to achieve these processes
via expression of a wide spectrum of secreted factors and to
a lesser extent direct end-cell differentiation for replacement
of damaged cells [4, 5]. Factors that are expressed by MSCs
include cytokines, chemokines, and adhesion molecules,
which then regulate the activation and/or inhibition of
molecular signaling pathways for endogenous cellular repair
[3]. Additionally, MSCs are immunoprivileged cells given the
lack of expression of major histocompatibility complex II
(MHC II) complexes in their multipotent state [6]. Further-
more, MSCs have been shown to decrease inflammation

and inflammatory cues as well as to promote angiogenesis
[3, 5, 7]. Mesenchymal stem cells represent an ideal candidate
in the emerging field of regenerative medicine [8]. These
properties combined with the accessibility of MSCs from
the bone marrow or adipose tissues make MSCs ideal candi-
dates for cell- and gene-based therapies.

Since their initiation, isolation, and description by Frie-
denstein and colleagues from bone marrow, MSCs have been
considered potential candidates for cell-based therapies [9].
Mesenchymal stem cells have been isolated from a wide vari-
ety of tissues including bone marrow tissue, adipose tissue,
cardiac tissue, umbilical cord tissue, as well as those of other
sites [10–15]. The therapeutic potential of MSCs makes them
the ideal candidates for cell- and gene-based therapies for a
number of reasons including their applicability for “off the
shelf use” potential in cellular therapeutics; their immunopri-
vileged state; their ability to express cytokines, chemokines,
and adhesion molecules; and their ability to be expanded to
sufficient therapeutic quantities ex vivo [3, 7, 16]. Previous
studies have shown that MSCs maintain their therapeutic
potential even after cryopreservation, further adding to the
list of desirable characteristics of MSCs [17, 18]. Addition-
ally, given their immunoprivileged state, allogeneic treatment
modalities could be a legitimate possibility as well for the
desired therapy in heart failure patients.

3. MSCs and Paracrine Signaling

While MSCs can differentiate along mesenchymal lineages to
produce end-cell types needed for repopulation of damaged
tissues, the primary mechanism postulated by which MSCs
are able to direct and facilitate endogenous cellular repair
is via paracrine signaling [5, 16]. It is postulated that utilizing
paracrine signaling, MSCs direct and modulate the cellular
microenvironment by promoting survival and proliferation
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Harvesting MSCs
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Figure 1: Multipotent capacity of mesenchymal stem cells. MSCs are derived from numerous tissue sources including bone marrow and
adipose tissue. They are able to differentiate into various end-cell types including osteoblasts, adipocytes, chondrocytes, and myoblasts.
Additionally, they are immunoprivileged, therefore allowing autologous as well as allogeneic therapeutic potential. They can also be
cryopreserved, whilemaintaining theirmultipotent properties, thus allowing them to be ideal candidates for “off the shelf” cell-based therapies.
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of endogenous cells, induce angiogenesis, quell inflamma-
tion, inhibit apoptosis, and recruit endogenous progenitor
cells to endpoint differentiation, with an end result of func-
tional improvement (Figure 1) [19–22]. Many studies have
attempted to characterize the mechanisms by which MSCs
produce a more favorable microenvironment conducive to
endogenous cellular repair. It appears among the key compo-
nents involved in modulating cellular signaling cascades
including anti-inflammatory cues, proangiogenic signaling,
and avoidance by immune surveillance [3, 4, 19, 22]. Many
of the cytokines expressed by MSCs work by quelling the
inflammatory signaling present in disease states including
HF [5, 23, 24]. Furthermore, recent studies have shown that
IL-1β may play a critical role in instigating the onset of HF
[24]. Mesenchymal stem cells are able to secrete potent levels
of interleukin 1 receptor antagonist (IL-1rn), which has been
thought to be a key regulator of MSC-based therapy [5].

With MSCs available from a variety of tissues, one ques-
tion that frequently arises with the proposal of MSCs as cell-
based therapies is “Are MSCs taken from the varying tissues
equal in directing paracrine-mediated endogenous cellular
repair?” Many studies have investigated the differences in
MSCs isolated from different tissue sources, and the potential
of these cells remains the same despite the location of isola-
tion [3, 25]. While MSCs possess multiple attributes desirable
for the ideal cell-based therapy for HF, pitfalls do currently
exist as well. Limitations as to method, timing, and dose of
cells remain unknown for MSC administration in the setting
of HF.

Despite the fact that MSCs can be scaled to large quanti-
ties ex vivo, limitations still exist as to delivery of an adequate
number of cells given the progression and individual state of
the disease for a given patient [7]. This problem seems to
have been overcome with the use of allogeneic MSCs from
healthy donors. Other studies have reported concerns
regarding retention of injected cells over time in the heart
given issues of low engraftment and limited retention of
MSCs or other cell-based therapies [26]. However, given that
the primary function of MSCs seems to be promotion of
endogenous repair via paracrine signaling rather than direct
end-cell lineage differentiation, absolute cell numbers can
be deceptive. Additionally, local engraftment of cells is not
entirely necessary given that paracrine signaling largely con-
tributes to the overall function of MSCs in directing endoge-
nous cellular repair [27, 28]. Thus, while several mechanisms
have been investigated to identify the ideal route of delivery
of MSCs, further work is necessary regarding optimization
of delivery to the area of injury given poor understanding
of how MSCs would be best utilized [29–31]. Nonetheless,
advancements have been made with recent clinical trials
demonstrating safety of allogeneic MSCs [32]. Additionally,
many of these studies were conducted in the context of acute
infarction, with significant work still needing to be initiated
in the setting of HF.

4. Heart Failure

Heart failure is a major cause of morbidity and mortality
worldwide, with greater than 5.6 million individuals afflicted

in the US alone [33]. Heart failure is among the most com-
mon diagnoses for hospital admission with estimates of
approximately one percent of the western world afflicted
and constitutes approximately 400,000 new admissions
annually [34]. It is now appreciated that the underlying cellu-
lar processes in HF are an interplay of myocardial factors,
systemic factors, and local inflammation [35]. Collectively,
the disarray of molecular pathways, downstream signaling,
and subsequent gene expression culminates in the debilitat-
ing clinical disease state of HF. Recent studies have demon-
strated that inflammatory cues play a critical role in
instigating the onset of HF at the molecular level with cyto-
kines such as interleukin 1 beta (IL-1β) and nuclear factor
kappa B (NF-κB) contributing critically to left ventricular
(LV) deterioration [23, 24, 36–39].

5. Current Treatment of Heart Failure

Current treatment strategies in HF focus on minimizing
disease morbidity, reducing hospitalizations, and prevention
of mortality [33]. Despite the significant economic burden as
well as morbidity and mortality stemming from HF, no
promising treatment modalities to reverse the disease process
currently exist. In particular, end-stage HF results in a com-
mon final pathway initiated by several signaling mechanisms
that are ultimately characterized by myocardial dysfunction
and cardiac remodeling. Current treatment options for HF
include drug therapy, cardiac resynchronization therapy,
mechanical circulatory support, and/or cardiac transplanta-
tion [40–43]. While cardiac transplantation does improve
mortality and quality of life, it remains a limited therapy
given the epidemiologic restriction of donor hearts available.
Furthermore, an ever-increasing number of HF patients have
no remaining therapies available given these restrictions
[44]. Potential new therapies for HF will likely require tar-
geted molecular therapy thus integrating local and systemic
inflammation, promoting neoangiogenesis, and developing
a methodology by which LV dysfunction can ideally be
restored. Cellular therapeutics could allow a greater number
of patients afflicted with HF to benefit from therapy than is
possible via current advanced heart failure therapies, espe-
cially, given consideration that the only true treatment
currently available for HF patients remains cardiac trans-
plantation, which is prohibitive given the associated costs
and limited donor hearts [7]. Indeed, cell-based therapies
and regenerative medicine-directed therapies for HF would
significantly change the course of disease progression and
patient outcomes. Mesenchymal stem cells represent an
ideal candidate in the emerging field of regenerative med-
icine that could be at the forefront of cell-based therapies
for heart failure.

6. Clinical Trials and MSC-Based Therapies for
Heart Failure

Recently, several clinical trials are ongoing in order to deter-
mine the safety and efficacy of MSC-based treatment for
acute myocardial infarction (MI), with far fewer trials inves-
tigating the use of MSC-based therapies in the setting of HF
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(Table 1) [45, 46]. Most of the trials utilizing MSCs as a
therapeutic option are in ischemic heart failure, and there
are little data to date on the treatment in nonischemic cardio-
myopathies. Indeed, MSCs have been used in clinical trials to
treat both ischemic and nonischemic heart failure with both
approaches showing promising results [47, 48]. While these
diseases differ in terms of presence or absence of coronary
artery disease, the MSCs are directed at generating new myo-
cardium. One could speculate that MSCs would potentially
be more effective in nonischemic disease because the dam-
aged myocardium still has adequate blood supply. In the
ischemic HF trials, studies have already started to show
improvements in regional and global systolic and diastolic
function, reversal of LV remodeling, and enhanced myocar-
dial collateralization and coronary perfusion using the regen-
erative potential of MSCs [49–53]. Of note, the benefits of
MSC therapy appear to be seen in the relative short term,
and there remains a question as to the long-term benefits of
MSC therapy as in other types of cell-based therapy. This
suggests that the paracrine-mediated effects of cell-based
therapy may be directly related to cell survival. Mechanisti-
cally, much remains to be elucidated as to the exact means
by which MSCs achieve reversal of LV remodeling. It has
been suggested that limiting inflammation coupled with
deposition of extracellular matrix components deposited by
MSCs may help limit the total scar size thereby decreasing
LV dimensions and possibly improving diastolic function
[27, 28, 54–57]. Despite these advances, further investigation
into the mechanisms by which MSCs are able to facilitate
these actions is warranted. Some studies suggest critical roles
played by cytokines, expressed by MSCs or progenitor cells
recruited by MSCs, that may be integral to cardiac recovery
including insulin like growth factor 1 (IGF-1), hepatocyte
growth factor (HGF), and vascular endothelial growth factor
(VEGF) [58–62].

With the ever-increasing popularity of MSCs as potential
cellular-based therapeutics for HF, a number of clinical trials
have recently been completed and several are underway
investigating the perspective roles how MSCs could play in
the setting of HF events (Table 1). The majority of these trials
have looked at MSCs, primarily for the reasons outlined pre-
viously [3, 5, 6, 24, 28, 30]. Several trials have attempted to
investigate the use of MSCs in the setting of acute and
chronic HF, with a variety of strategies on cell delivery. Initial
trials focused on events closer to the time of the infarct, with
cell administrations occurring in the setting of acute myocar-
dial infarction, withMSCs being investigated in an attempt to
prevent ischemic cardiomyopathy [50]. Still, other studies
have looked at the therapeutic potential of MSCs in the set-
ting of nonischemic cardiomyopathies including the setting
of chemotherapy and dilated cardiomyopathies [47, 63].
However, given the healthcare burden manifested by ische-
mic chronic HF, later trials have looked at the treatment
potential of MSCs outside the time of acute MI [64]. The
addition of studies investigating the population of patients
afflicted with HF remains paramount given that the disease
state remains the leading reason for morbidity and mortality.
Furthermore, trials investigating nonischemic HF are needed
as well. On a physiologic and biochemical level, chronic

ischemic HF changes the microenvironment and biochemi-
cal milieu of signaling that occurs, thus altering cardiovascu-
lar physiology [32, 65, 66]. In addition to MSCs, other cell-
based therapies are also under consideration in clinical trials
as potential alternatives for cell-based therapies; however, the
majority of trials remain focused on MSCs given their desir-
able characteristics, ease of use, and accessibility [42, 67–69].
Indeed, no other cell-based therapy for HF continues to hold
as much potential as MSCs for a true “off the shelf” approach
that can be utilized in autologous or allogeneic modalities.

7. Results of Clinical Trials with MSCs

Predominantly, clinical trials have demonstrated that MSCs
are safe for administration without increased risk for adverse
events [18, 42–44]. Furthermore, results of the previous trials
suggest that treatment with MSCs does not increase risk of
posttreatment arrhythmias [42]. Additionally, studies have
shown significant improvement in patient exercise tolerance
[42, 44]. Investigations have also looked to see ifMSCs utilized
as concurrent or adjuvant therapies with existing treatment
modalities for HF such as in the setting of mechanical circula-
tory support devices can provide benefits [70].While many of
these clinical trials have found trends towards improvement
in New York Heart Association (NYHA) class, the results
have not always been statistically significant or with dramatic
improvements in treatment versus nontreatment groups.
However, this trend seems to be changing. Recent trials have
started to demonstrate findings that are statistically signifi-
cant, likely due to several factors, among which is increasing
sample size [42, 44]. Another factor playing a role in observed
results likely lies with MSCs themselves. The route of admin-
istration has been a focal point of investigation ofMSCs inHF.
Initial studies were in the setting of acute myocardial infarc-
tion, and intracoronary delivery was the standard practice
[71]. The limitations to deliveringMSCs by the intracoronary
route is the observation that the cells are rapidly washed out.
Investigators have tried to increase the dwelling time in the
coronary artery by delivering the cells and then occluding
the coronary artery. To date, it is not clear that this approach
increases the number of cells remaining in the heart. Attempts
have been made to investigate alternative approaches as well.
Intravenous allogeneic MSCs have been tested in a small pilot
study in patients with nonischemic cardiomyopathy [72]. The
authors speculate that the anti-inflammatory effects of the
MSCs may be the mechanism of action because the cells were
delivered intravenously. Other studies have investigated the
role of endomyocardial delivery of MSCs and coronary sinus
approaches as well, albeit the latter was with bone marrow
aspirate and not purely MSCs [32, 47, 73, 74]. However,
the route of administration remains an area that requires
more investigation.

Studies have quelled previous concerns regarding safety
in administration of MSCs [7, 64, 65, 69]. This has even been
investigated in the setting of dilated cardiomyopathies [47].
The POSEIDON-DCM trial is a randomized comparison
of allogeneic versus autologous MSCs for nonischemic
dilated cardiomyopathy delivered transendocardially ([32]).
Although in a small trial, the early results are encouraging
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showing that the allogeneic cells increased ejection fraction
and functional activity with no significant serious adverse
events. The CONCERT-HF trial is an ongoing study investi-
gating the combination of MSCs and c-kit+ cardiac stem cells
in ischemic cardiomyopathy (NCT02501811), and is, inter-
estingly, a trial that employs autologous bone marrow-
derived MSCs. While the original approach for cell-based
therapy in heart failure focused on using autologous cells,
investigators are now using allogeneic cells because of the
potential to deliver larger numbers of cells without har-
vesting from the patient. Allogeneic cells can be obtained
from younger subjects where the cells may have more
regenerative capacity based on protein expression and
bioinformatics [3]. Furthermore, it has been suggested that
HF, at its central process, is an inflammatory process [36].
In addition, it has been shown that MSCs are potently anti-
inflammatory [5]. Knowing this, it follows that MSCs could
slow and potentially reverse the ill effects of HF, if not too
far progressed. Lastly, using allogeneic cells would be less
costly and be able to deliver a true “off the shelf” approach.
Allogeneic MSC therapy has been shown to be as safe and
efficacious as autologous MSC therapy [32, 47, 49, 56, 69,
73, 75–78].

The primary mechanism by which MSCs are able to
promote endogenous repair appears to be via paracrine
signaling; however, the cells still need to hone to the area
of interest and be retained, at least for some duration, to
exert their therapeutic effects. Furthermore, the area(s)
where MSCs hone to must have at least some vasculariza-
tion given that MSCs act via paracrine signaling. Current
administration of MSCs remains entrenched in traditional
approaches including intravenous (IV) and intracardiac
(IC) modes of delivery [34, 42–44, 79]. Recent trials have
investigated the use of allogeneic MSCs, which has been
safe and effective in a comparable capacity to autologous
MSC therapeutic strategies [42]. Furthermore, preclinical
studies as well as data from clinical trials have suggested that
young donor MSCs have different signaling pathways acti-
vated when compared with older donor MSCs, given the
changing cellular dynamics of aged MSCs [3, 44]. Thus, use
of allogeneic young donor MSCs for treatment in an “off
the shelf” therapeutic option make MSCs even more favor-
able as a cell-based therapy modality. This approach is being
used in the Dream-HF trial with allogeneic mesenchymal
precursor cells (NCT02032004). Indeed, an innovative deliv-
ery of MSCs could provide the missing component to propel
MSCs as the long-sought-after treatment option for HF.

8. Delivery of MSCs with Biomaterials

Delivery with tissue-engineered biomaterials could provide
an innovative delivery system to enable MSCs to further
develop as a treatment option for HF and other cardiovascu-
lar disorders. Administration of MSCs via a venous approach
has the risk of cells honing to an area of damage that is out-
side the heart. While IC administration of MSCs will confirm
that MSCs will be present in the heart, often the cells are
injected into the scar, which given its lack of adequate vascu-
lar supply, would not be hospitable to MSCs as therapeutics.

Biomaterials are gaining increasing interest, especially with
the advent of new technologies that allow for innovative
treatment modalities. Administration of MSCs with the aid
of biomaterials such as a scaffold could potentially resolve
some of the perceived issues with MSC delivery in the setting
of HF. Mesenchymal stem cells have been used in combina-
tion with biomaterials in preclinical studies with some prom-
ising results. Investigators injected a self-setting salinized
hydroxypropyl methylcellulose seeded with MSCs and
showed improvements in LV remodeling and infarct expan-
sion in a rat model of myocardial infarction [80]. Another
approach to improve retention of transplanted cells in the
diseased heart is to inject the cells in an in situ cross-linked
alginate hydrogel [81]. Adipose-derived MSCs embedded in
alginate retain their viability, maintain their paracrine poten-
tial, and are not immunogenic suggesting that using alginate
hydrogels may be a method to enhance delivery of MSCs in
the clinical arena. A similar approach encapsulating MSCs
in an alginate hydrogel patch has shown potential clinical
benefit in a rat infarct model with evidence of improved car-
diac function, decreased scar size, and increased peri-infarct
vasculature [82].

The ideal scaffold would allow delivery of MSCs in such a
way that would allow the cells to exert their paracrine signal-
ing and not to impede the release of these secreted factors.
Furthermore, the scaffold used for cell delivery would create
not only a vector for delivery of the cells but also a more hos-
pitable microenvironment from which MSCs could direct
endogenous repair. It would also be advantageous if the scaf-
fold could help generate its own new blood supply. This
would overcome the current dilemmas of how to target MSCs
to specific areas of the heart as well as concerns of engraft-
ment in a potentially hostile environment, the postinfarction
myocardium. Additionally, a biodegradable scaffold would
exist only transiently; once the cells have established, the
scaffold would no longer be needed. Among the current
hypotheses of MSCs used as therapeutics, one suggested that
MSCs typically initiate and direct the early phases of endog-
enous repair, and once the process is sufficiently underway,
these cells are not required and are not retained for longer
periods. Ideally, the scaffold would result in minimal inflam-
mation, remain only transiently, not require removal, and
promote angiogenesis.

9. Cellular Scaffolds

Several approaches have been suggested or are under investi-
gation as cellular delivery alternatives to IV or IC administra-
tion of cells. Among these methods are cell- or tissue-based
scaffold, electroshock-assisted cell delivery, and polymers
for transport [83–86]. Criticisms of cell-based therapies point
towards poor retention of cells, insufficient number of cells
utilized for therapy, poor engraftment in the hostile condi-
tions of HF, disruption of molecular honing signals, and
excess extracellular matrix secondary to fibrosis as the pitfalls
of cell administration-based therapies as options for HF. The
potential pitfalls described in cell-based therapies can all be
overcome by the use of cellular/tissue scaffolds. Previously,
we have described a cellular scaffold that has been developed
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and demonstrated hemodynamic improvement as well as
promotion of angiogenesis (Figure 2) [87, 88]. Such a cellular
scaffold would not only allow for adequate delivery in regard
to cell number but also location as it could be placed over the
region of the scar. Furthermore, the scaffold would provide a
more hospitable setting than the surrounding infarct, which
would otherwise be much more hostile for MSC function.
The scaffold would thus work in conjunction with MSCs to
modulate the cellular microenvironment to make it more
favorable and promote cellular repairs. MSCs administered
with the scaffold would provide the necessary components
for increased angiogenesis to occur, while reducing the need
for honing and engraftment of MSCs. Utilizing a cellular
scaffold, with known cardiovascular improvements in the
setting of HF, with MSCs, given their potential as cellular
therapeutics, could provide the elusive component necessary
to progress cell-based therapies in HF.

10. Conclusion

MSCs were once touted as the ideal candidate for cell- and
gene-based therapies. They were identified as the cells that
would change regenerative medicine via their ability to differ-
entiate into end-cell lines, allowing the shortage of donor
organs to become a nonfactor in treatment of many end-
stage disease states. As MSCs have been further investigated,
it is their paracrine signaling that has come to the forefront
and become the characteristic that makes them ideal candi-
dates as cellular therapeutics. The ability to modulate the
cellular microenvironment through expression of various
cytokines and regulation of signal transduction pathways to
direct and promote endogenous cellular repair is considered
the hallmark function of MSCs. Furthermore, MSCs via their
paracrine signaling are able to recruit dormant progenitor
cells to aid in the regenerative process. Clinical trials have
demonstrated that MSCs are safe and can play as a mainstay
of treatment of HF. Novel delivery of MSCs as therapeutics in
HF can overcome many of the current pitfalls such as hostile

environment of HF for regenerative medicine and retention
of cells. Cellular scaffolds in particular can assure that critical
numbers of MSCs are able to reach the target area, whereby
MSCs can then direct endogenous cellular repair.

11. Current and Future Perspectives

MSCs have been of interests for their potential as cellular
therapeutics since their first description 37 years ago. Their
ability to differentiate into end-cell lineages enticed investiga-
tors to believe that the dream of creating organs in the labo-
ratory had become a reality. It was not until recently that it
was determined that the therapeutic potential of MSCs was
primarily in their mechanism of paracrine signaling, and
not with the differentiation potentials. MSCs have been
investigated in a myriad of disease states. Among the most
devastating and costly disease of which currently remains is
chronic HF. The scope of MSCs as potential therapies in
HF is still in the very early stages. While significant progress
is currently being made with ischemic HF clinical trials
revealing that MSCs are not only safe for administration
but may also provide the much anticipated therapeutic ben-
efit. However, future research is needed to elucidate the ideal
delivery of MSCs in the setting of ischemic cardiomyopa-
thies, and research is needed in nonischemic cardiomyopa-
thies as well. The mechanisms at play by which MSCs
function to improve molecular and clinical state of HF need
to be identified. Furthermore, clinically relevant endpoints
of MSC therapy such as exercise time and functional capacity
are important metrics to assess as we strive to improve the
quality of life in patients with heart failure.
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