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Introduction
The development of high-throughput gene expression profiling 
techniques, such as microarray and RNA deep sequencing, 
enables genome-wide differential gene expression analysis for 
complex phenotypes, including various types of human cancer. 
Researchers are usually interested in identifying one or more 
genes that can be used as markers for diagnosis, potential tar-
gets for drug development, or features for predictive tasks to 
guide treatment. Indeed, previous studies show that features 
selected based on the differential gene expression of individ-
ual genes are useful in predicting patient outcome in cancers. 
Various gene expression-based features for certain types of 

cancer1 are also studied and used as targets for drug devel-
opment.2 However, an important problem with individual  
gene markers is that they usually cannot provide reproducible 
results for outcome prediction in different patient cohorts. For 
example, two previous studies in breast cancer have identi-
fied a set of about 70 genes from two different breast cancer 
microarray datasets, and they only share three genes and pro-
duce poor cross-dataset classification accuracy.3,4

A majority of recent studies focus on identifying com-
posite gene features and using these features for classifi-
cation. Composite gene features are usually defined as a 
measure of the state or activity (eg, average expression) of a 
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set of functionally related genes in a specific sample. The idea 
behind this approach is that individual genes do not func-
tion independently and complex diseases such as cancer are 
usually caused by the dysregulation of multiple processes and 
pathways. Therefore, instead of performing classification by 
using the expression of individual genes as features, we can 
aggregate the expression of multiple genes that are function-
ally related to each other. This approach is expected to increase 
the discriminative power of each feature by deriving strength 
from multiple functionally associated genes, and noise caused 
by biological heterogeneity, technical artifacts, and the tempo-
ral and spatial limitations can be eliminated.5 Consequently, 
these composite gene features have the potential to provide 
more accurate classification.

The main problem in identifying composite gene features 
is to find sets of genes that are (i) functionally related to each 
other and (ii) dysregulated together in the phenotype of inter-
est. Two common sources of functional information we can use 
to identify the genes that are functionally related are protein– 
protein interaction (PPI) networks and molecular pathways. 
Over the past few years, many algorithms are developed  
utilizing these two sources of information to improve predica-
tion accuracy. Three main challenges in utilizing composite 
features are the following: (1) identification of composite gene 
features (ie, which genes to integrate), (2) inferring the activity 
of composite features (ie, which function to use to integrate 
the individual expression of the genes in each feature), and  
(3) feature selection (ie, which composite features to include in 
the predictive model).

Previous studies majorly focused on composite gene fea-
ture identification. Various algorithms have been proposed to 
combine genes into a composite feature using PPI networks6,7 
and pathway information.8 These algorithms combine genes 
together based on different statistical criteria like t-test score, 
or mutual information to achieve maximal differentiation 
power for the features. Feature activity is usually calculated 
by averaging the expression levels of the genes composing the 
feature. Test with microarray datasets in these studies shows 
that composite gene features offer great advantage in classifi-
cation compared to individual genes. 

One common issue with these studies is that their 
testing datasets are limited. For most studies, only a few 
datasets relating to a single type of cancer and a specific 
outcome are used. Also, different studies adapt different 
training and testing procedures, as well as different feature 
ranking and feature selection methods. Finally, different 
studies try to improve classification from different angles. 
For example, in network-based studies, the emphasis is on 
finding the best way to identify the subnetwork features, 
whereas studies on pathways focus on improving activity 
inference for multiple gene features. However, since these 
approaches are not necessarily mutually exclusive, and it 
is desirable to understand how well these methods work 
together.

In this study, we take a comprehensive approach to 
evaluate the algorithms and techniques involved in feature 
extraction, feature activity inference, and feature selection 
in a unified framework. By doing so, we are able to make 
a direct comparison between these different algorithms and 
techniques. We perform computational experiments in a 
total of 12 setups (different phenotypes, training instances, 
and test instances), using seven microarray datasets covering 
three types of phenotypes for two different cancers (breast 
and colorectal). With multiple tests on different datasets 
and phenotypes, we are able to evaluate performance more 
reliably. Finally, by combining algorithms and techniques 
for feature identification and feature activity inference, we 
investigate how well different techniques work together and 
characterize the limits of the prediction performance they 
can achieve.

Review of Existing Methods
The process of using composite gene features for prediction 
tasks can be divided into three stages: (1) feature identifica-
tion, (2) feature activity inference, and (3) feature selection. 
Feature identification refers to the process of identifying sets 
of genes to be collapsed into a single composite feature, based 
on the collective ability of genes in distinguishing different 
phenotypes. Feature activity inference refers to the model used 
to represent the state of multiple genes in a sample. Such a 
model is needed to score the collective dysregulation of a set of 
genes, ie, to assess the ability of multiple genes in distinguish-
ing phenotypes. For this reason, all methods for composite 
feature identification are coupled with a method for feature 
activity inference. Feature activity is also used in performing 
the classification task. Finally, feature selection refers to the 
process of selecting the composite features (sets of genes) to be 
used in the classification task. In this section, we provide an 
overview of existing methods for each of these tasks.

Feature identification. One of the first algorithms for 
the identification of network-based composite gene features 
is developed by Chuang et al.6 This algorithm quantifies the 
collective dysregulation of a set of interacting gene products 
based on the mutual information between subnetwork activity 
and phenotype. It then performs a greedy search by growing 
a set of interacting gene products and adding to this set the 
most promising interacting partner of the current set of genes 
to maximize the mutual information. Testing on two7 breast 
cancer datasets shows that classification with subnetwork fea-
tures improves the prediction of metastasis in breast cancer 
over individual gene-based features. Chuang et  al also con-
clude that subnetwork features are more reproducible across 
different breast cancer datasets.

Chowdhury and Koyutürk7 propose a dysregulated sub-
network identification algorithm based on set cover-based 
model, called NetCover. Instead of using actual gene expres-
sion values, this algorithm binarizes gene expression. Namely, 
in NetCover, a gene is said to cover a phenotype sample 
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positively/negatively if it is upregulated/downregulated with 
respect to the control samples. Similar to Chuang et  al’s 
algorithm, NetCover performs a greedy search on the PPI 
network by adding genes that maximize positive or negative 
cover of the subnetwork. Chowdhury and Koyutürk test their 
algorithm on three colon cancer datasets. Their results show 
that, by converting the problem to sample cover problem, not 
only are they able to reduce the computational complexity but 
also the subnetworks identified by NetCover, providing better 
classification performance as compared to the algorithm that 
directly maximizes mutual information.

Su et al.11 describe another method that limits the search 
to sets of gene products that induce a linear path in the PPI 
network. Different from other algorithms, Su et al’s algorithm 
uses average t-test score as a scoring criterion to assess the 
dysregulation of subnetworks. For every gene in the PPI net-
work, Su et al use dynamic programing to find short paths in 
the network with maximum average t-test score. Then they 
rank all the short paths based on the average t-test score and 
combine top-scoring paths together into a longer linear path. 
Su et al also improve on the linear path-based algorithm by 
modifying the objective function to incorporate the correla-
tion among the genes in the subnetwork.10 

Besides these network-based algorithms, other subnet-
work identification algorithms are also proposed, with differ-
ences in the way they score the dysregulation of subnetwork, 
the way they restrict the topology of target subnetworks, and 
the search algorithm they use.12–14

As compared to networks, utilizing pathways to identify 
composite gene features is more straightforward, since the 
set of genes involved in each pathway is available. Most com-
mon studies use canonical pathways curated from literature 
resources such as the Gene Ontology,15 KEGG (Kyoto Ency-
clopedia of Genes and Genomes),16 and MSigDB (Molecular 
Signatures Database)17 pathway databases to identify sets of 
genes that are involved in the same pathway. Generally, how-
ever, pathway-based approaches do not demonstrate signifi-
cant improvement in classification accuracy over conventional 
individual gene-based classifiers. One possible explanation for 
this is that not all the member genes in a perturbed pathway 
are necessarily dysregulated. Motivated by this observation, 
Lee et al.8 propose algorithms to preselect a subset of genes 
from a pathway and use them as composite features. Lee et al’s 
algorithm ranks the genes within a pathway based on individ-
ual t-statistic, and performs a forward search starting from the 
top ranked gene to select a subset of genes that maximize the 
t-test score of the composite feature. By doing so, they are able 
to improve the classification performance over standard path-
way-based classifiers and individual gene-based classifiers.

Feature activity inference. One key question in using 
composite gene features is how to compute a function that rep-
resents the collective state of multiple genes in a specific sam-
ple. In most of the network- and pathway-based approaches 
described above, the average expression value of all genes in 

the composite feature is used to represent the activity of the 
feature. One shortcoming of additive subnetwork activity 
is that the genes composing subnetworks are required to be 
dysregulated in the same direction; ie, they must be either all 
up-regulated or all down-regulated in the phenotype samples 
compared to the controls. Clearly, this assumption may be 
biologically unreasonable since the interplay among biomole
cules is rather complex.

For pathway-based composite features, Tomfohr et al.18 
describe a method to compute pathway activity based on prin-
cipal component analysis. Later, this method is also used to 
infer pathway activity for classification purposes, demonstrat-
ing improved accuracy over individual gene features.9 As an 
alternative, Su et  al.9 describe an approach for probabilistic 
inference of pathway activity. Su et al’s method estimates the 
probability density function (PDF) of gene expression for dif-
ferent phenotypes on the training dataset based on an assumed 
Gaussian distribution. Subsequently, they compute the log-
likelihood ratio (LLR) between different disease phenotypes 
based on the PDF and infer the activity of a given pathway 
by averaging the LLRs of all genes in the set. Testing of this 
method on breast cancer metastasis shows that classification 
with pathway activity inferred by this approach results in 
higher accuracy than a subnetwork-based approach and other 
pathway-based approaches.

Feature selection. Feature selection plays an important 
role in improving the accuracy of any classification task, espe-
cially when working with high-dimensional datasets as in gene 
expression data. Many feature selection methods have been 
developed in the literature and studied for particular applica-
tions. For the application in our study, ie, prediction of cancer 
outcome based on gene expression, there are many compara-
tive studies that evaluate different gene selection techniques in 
the context of cancer outcome prediction.19,20

Existing feature selection algorithms are traditionally 
categorized as the filtering method, wrapper method, and 
embedded method.21 Filtering method ranks each feature 
according to some score that quantifies the discriminative 
ability of the feature, and only the highest ranking features 
according to this score are used for classification.21 The prob-
lem with the filter method is that it cannot remove redundant 
features in an informed way. A simple improvement to the 
filtering method is the minimum redundancy and maximum 
relevance (MRMR)-based feature selection, which removes 
redundant features based on their correlation with the features 
that are already selected.22 The wrapper method, on the other 
hand, employs a classification algorithm to conduct a search 
for all features and evaluates the goodness of each selected 
feature subset by estimating classification accuracy.21 Previous 
studies show that the wrapper approach generally results in 
better predictive accuracy than the filtering approach.22 How-
ever, the major issue with wrapper methods is their high com-
putational complexity, and wrapper methods usually do not 
scale to high-dimensional microarray datasets. Many heuristic 
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algorithms like forward and backward selection are used to 
alleviate computational complexity, but these methods do not 
provide any guarantee of optimality.23 More recently, several 
embeddings are proposed. A notable embedding method is 
support vector machine (SVM)-based recursive feature elimi-
nation (RFE).24 SVM-RFE is specifically designed for gene 
expression data analysis, and it works by iteratively training an 
SVM classifier with a current set of features and then heuristi-
cally removing the features with small feature weights.

All the studies presented here employ a different approach 
to improve classification performance in cancer outcome pre-
diction, and they all claim that their approach improves clas-
sification accuracy over other methods. Detailed accuracy 
metrics are provided for all the studies, and some studies also 
include comparison with previous methods. However, these 
results often conflict with each other,6,10,11 making it very dif-
ficult to have a comprehensive understanding of how robust 
these methods are in terms of improving the accuracy of out-
come prediction in cancer.

Methods
Microarray data. The datasets used in our experi-

ments are described in Table  1. As shown in the table, we 
use a total of eight datasets; two of these datasets (GSE2034 
and GSE7390) contain samples for breast cancer metastasis 
(including controls) and three (GSE7390, GSE1456, and 
GSE6532) contain samples for breast cancer relapse (including 
controls). GSE7390 is a dataset generated by a survey of both 
metastasis and relapse; thus, it contains information on both 
phenotypes. Finally, three datasets (GSE17536, GSE27854, 
and GSE17537) contain samples with colorectal cancer metas-
tasis (including controls).

PPI and pathway data. The human PPI data used in our 
experiments are obtained from the Human Protein Reference 
Database.25 This dataset contains 35,023 binary interactions 
among 9299 proteins as well as 1060 protein complexes consist-
ing of 2146 proteins. The binary interactions contain in vivo as 
well as in vitro interactions obtained via high-throughput screen-
ing. We integrate the binary interactions and protein complexes 
using a matrix model (ie, each complex is represented as a clique 
of the proteins in the complex), to obtain a PPI network com-
posed of 42,781 binary interactions among 9442 proteins.

To obtain the set of known biological pathways, we refer 
to MSigDB version 4.0.17 We pick the canonical pathways in 
the C2 curated gene set, which contains 1320 gene sets and 
covers about 8000 distinct genes. These gene sets are curated 
from different pathway databases including KEGG, Reac-
tome, and BioCarta. They provide canonical representation of 
known biological pathways.

Feature identification, activity inference, and feature 
selection algorithms. To have a representative set of com-
posite feature identification methods, we consider methods 
that utilize PPI networks as well as those that utilize path-
ways. Namely, for network-based feature identification, we 

implement NetCover from Chowdhury and Koyutürk’s 
study,7 GreedyMI from Chuang et al’ study,6 and two versions 
of Linear Path (LP111 and LP210) from Su et al’s study. For 
pathway-based feature identification, we implement a method 
that builds composite features by utilizing all genes in a path-
way (Pathway1) and a method that selects genes in a pathway 
based on t-statistic score from Lee et al’s study (Pathway2).8 In 
total, we implement six different feature identification meth-
ods, and we use individual gene-based features as a baseline.

For feature activity inference, we compare two methods: 
(i) aggregate expression of all genes in the set, which is the 
most commonly utilized technique, and (ii) probability infer-
ence based on LLR proposed by Su et al.9

For feature selection, we compare simple filtering, for-
ward selection, MRMR,22 and SVM-RFE.24

We implement all the feature extraction, activity infer-
ence, and feature selection algorithms as well as the testing 
framework in MATLAB. The detailed algorithm can be 
found in Supplementary File 1.

Testing. The framework we use to test and compare 
algorithms is shown in Figure 1. In order to evaluate the clas-
sification performance of the composite and individual gene 
features, we utilize a commonly used and widely accepted cross-
validation protocol. For each phenotype, we consider any pair 
of two datasets available for that phenotype, and use the first 
dataset exclusively for feature identification and the second 
dataset for feature selection, training, and testing. For test-
ing, we perform five-fold cross-validation on the second data-
set. Namely, we partition the samples in the dataset into five 
subsets of equal size and class distribution. We then designate 
one-fifth of the samples as testing data and put together the 
other four folds as training set. To rank the features extracted 
from the first dataset, we use the training data in the second 
dataset. For this purpose, we use the appropriate ranking crite-
rion that matches the specific feature identification and activ-
ity inference algorithms being tested (eg, the P-value of t-test 
score for individual gene features, or the mutual information 
between subnetwork activity and phenotype for aggregate 
features). We select the 50 features that rank best according 
to this criterion, train SVM classifiers for the top K (K = 1,  
2, …, 50) features on training data, and test the resulting 
classifier on the test fold. We repeat this procedure by treat-
ing each of the five folds as the test fold, and we repeat the 
entire cross-validation procedure by randomizing the folds 20 
times for each dataset.

We evaluate the performance of the classifier by 
computing the area under ROC curve (AUC).26 For each 
set of features tested (resulting from a specific combination 
of feature identification and activity inference methods), we 
compute the average and maximum AUC values across vary-
ing values of K (K = 1, 2, …, 50) features. The purpose of this 
is to assess the average and best possible performance that a 
set of features can deliver. Subsequently, we compute the aver-
age of these two performance figures across the 20 random 
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five-fold partitions. We also compute the standard deviation 
of these figures across the 20 random partitions, in order to 
assess the robustness of the features to variation in the dis-
tribution of samples. Note that, in most cases, classification 
accuracy declines significantly when the number of features 
considered is above 10. For this reason, we consider the top 50 
features as the set of candidate features for each combination 

of algorithms, since this ensures that all potentially valuable 
features are considered by the feature selection algorithm.

Results
In this section, we present the results of our comprehensive 
computational experiments by focusing on the general themes 
that emerge based on the comparison of the different fea-
ture identification, activity inference, and feature selection 
algorithms.

Composite features improve stability of classifica-
tion over individual gene features across different datasets. 
It is often claimed that composite features that incorporate 
protein interaction network or pathway information are 
likely to be more stable than individual gene-based features. 
In other words, composite features extracted from differ-
ent datasets for the same phenotype are expected to exhibit 
more overlap as compared to individual gene features. The 
basic premise here is that the composite gene features cap-
ture how the regulation of a process, as opposed to the reg-
ulation of a specific gene, mediates phenotypic outcome. In 
order to determine whether feature sets identified by differ-
ent algorithms show a significant improvement over indi-
vidual gene features in terms of stability, we employ Jaccard 
index as a measure of overlap. More specifically, for each 

Table 1. Gene expression datasets.

GEO ID Samples Description Phenotype (0/1)

GSE2034 286 Breast Cancer Metastasis 179/107

GSE7390 198 Breast Cancer Metastasis 136/62

GSE7390 198 Breast Cancer Relapse 107/91

GSE1456 159 Breast Cancer Relapse 119/40

GSE6532 125 Breast Cancer Relapse 76/49

GSE27854 115 Colon Cancer Relapse 75/40

GSE17536 146 Colon Cancer Relapse 110/36

GSE17537 55 Colon Cancer Relapse 35/20

Notes: All gene expression data are obtained using microarray 
technology, particularly Affymetrix Human Genome platform. After 
preprocessing, each dataset contains 12,089 genes. Column 
phenotype (0/1) contains the number of metastasis/relapse-free 
patients and patients who had relapse or developed distant metastasis.

Features

Feature Extraction

Dataset 1 Dataset 2Pathway/PPI
Repeat for 20 random partition

5 Fold cross-validation

Tr Tr

Ranking

Traing C with
top i features

Top 50 Features

Features Set

Logistic Regression

SVM Classification
Classification Based
Feature Selection

Testing

Testing

Training

C1,C2,...Cn

C

Tr TeV

Figure 1. Schematic illustration of test process. For each disease and outcome combination, the datasets are matched into pairs. The first dataset in 
each pair and pathway or PPI data are used for feature identification using various algorithms. The second dataset is used for feature selection, training, 
and testing using five-fold cross-validation. For this purpose, features extracted from the first dataset are ranked using the training data from the second 
dataset, based on the P-value of t-test score or other ranking criteria based on discrimination of two phenotype classes. Top 50 features are selected 
according to these criteria, and SVM and logistic regression classifiers are trained with top K (K = 1, 2,…, 50) features on training data and tested on the 
testing dataset.
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dataset pair, we take the union of top 50 features identified  
by each algorithm on each of the two datasets. Subsequently, 
for each algorithm, we compute the overlap between the 
two combined gene sets from the two datasets using Jaccard  
Index. The results are shown in Figure 2A. In the figure, the 
box plot shows the Jaccard index for five dataset pairs for each 
algorithm (Since GSE17537 has a limited number of sam-
ples, we do not use this dataset for feature identification.). As 
expected, individual gene features from different datasets do 
not show considerable overlap. Among the five data pairs, the 
overlap is zero for individual gene features for three pairs, one 
for one pair, and two for another pair. On the other hand, 
for all other composite feature sets, the overlap in gene con-
tent between two pairs of datasets increases considerably over  
individual gene features.

Composite features do not significantly increase 
discriminative power across datasets. Composite feature 
identification algorithms are based on combining the differently 
expressed and functionally associated genes together. For this 
purpose, these algorithms use different search criteria in the 
algorithm like mutual information, sample cover, or t-test 
score. However, ultimately, they all try to maximize the power 
in discriminating phenotypes. In order to assess the discrimi-
native power of composite gene features, we compute the 
t-statistic of the feature activity of features identified on the 

first dataset by using the first and second datasets, for all feature  
sets identified by different algorithms. The results of this anal-
ysis are shown in Figure 2B and C. In the figure, for each of 
the seven different feature identification methods, the aver-
age t-statistic of the feature activity in two different classes is 
reported. When the first dataset (ie, the dataset used for fea-
ture identification is considered), all but one of the composite 
feature extraction methods is able to improve the t-statistic 
considerably as compared to individual gene features. The only 
composite method that is not able to outperform individual 
gene features is the pathway-based method without feature 
selection.

An important problem with individual gene features 
is that genes extracted from one dataset fail to differentiate 
phenotype in the other dataset. While composite features 
improve stability of gene content as we discuss above, the 
cross-dataset t-statistic of composite gene features does not 
show any noticeable improvement over individual gene fea-
tures. Thus, the reproducibility of composite gene features 
is also questionable; the majority of top features extracted 
from one dataset does not provide a clear differentiation 
for different phenotypes in other datasets. Note that this is 
somewhat surprising since there is considerable overlap in 
gene content, and the underlying reason for this unexpected 
result may be inconsistencies introduced by normalization.
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Figure 2. The stability and reproducibility of composite gene features across different datasets. (A) The overlap between the composite gene features 
identified by each algorithm on two different datasets with the same phenotype. The box plot of Jaccard indices for each algorithm is shown. For each 
algorithm, feature extraction was performed on five pairs of datasets. Jaccard index was computed for overlap of genes in the top-scoring 50 features 
for each pair of datasets. (B) The box plot of average t-statistics of top 50 features is shown for each algorithm across seven different datasets. For each 
dataset, top 50 features are extracted. t-Statistics are calculated with each dataset, and average t-test scores are plotted for these 50 features. (C) The 
box plot of average t-test statistics of top 50 features for each algorithm on 12 testing datasets. Seven sets of top 50 features from (B) are applied to their 
paired dataset to compute the average t-statistic on the paired dataset, resulting in 12 data points.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Compoiste gene features

99Cancer Informatics 2014:13(S3)

Composite gene features improve classification accu-
racy over individual gene features, but not consistently. As 
we describe in the Methods section, we have a total of 12 
test cases. For each of these test cases, the mean and maxi-
mum AUC values provided by the top 50 features for each 
combination of algorithms are shown in Supplementary 
Figure 1. Surprisingly, we do not observe any common pat-
terns across all the 12 test cases. We see clear performance 
improvement for composite features over individual gene 
features for many of the test cases, and in most cases, the 
best performance is always achieved by composite features. 
However, we are not able to identify a particular feature 
extraction algorithm that provides consistent performance 
improvement over single individual features in all tests. In 
some cases, such as GSE27854–GSE17536 and GSE17536–
GSE27854 (Supplementary Fig.  1J, K), we observe that all 
the composite features deliver identical or even poorer perfor-
mance as compared to individual gene features. Overall, it is 
difficult to conclusively identify a composite feature identifi-
cation algorithm that performs consistently better than other 
algorithms.

Greedy mutual information shows overall improve-
ment over other methods. In order to comprehensively 
assess the overall performance of the six composite feature 
identification algorithms, we take the 12 average and maxi-
mum AUC values of top 50 features from all tests for each 
algorithm and compute the average AUC value provided by 
each algorithm across all test cases (Fig. 3A, B). As seen in 
the figure, the only feature identification algorithm that 

clearly stands out is GreedyMI, which shows slightly larger 
average AUC value over individual gene features. The aver-
age AUC value is 0.606 for the composite features identified 
by GreedyMI and 0.576 for individual gene features, which 
account for 5.2% increase. All other methods show AUC val-
ues comparable to that of individual gene features, with val-
ues ranging from 0.565 to 0.584. The improvement provided 
by GreedyMI over individual gene features is relatively small 
and may not be significant. However, when we look at the 
heat map shown in Figure 3C, which shows the relative per-
formance over individual gene features for each test, we can 
clearly see that GreedyMI stands out among all the feature 
extraction algorithms. In 4 of the 12 test cases, GreedyMI 
achieves 10% or more improvement over individual gene fea-
tures (17.2% for GSE2034–GSE7390, 13.8% for GSE6532–
GSE7390, 12.8% for GSE17536–GSE17537, and 14.7% for 
GSE27854–GSE17537); in 3 test cases, it achieves 5% or 
more improvement (6.6% for GSE7390–GSE2034, 5.6% for 
GSE1456–GSE7390, and 5.2% for GSE7390–GSE6532); 
in 4 others, it delivers compatible performance; and in 1 test 
case, it delivers poorer performance. Other methods are less 
consistent in the improvements they provide. NetCover, for 
example, delivers improved performance in 6 of the 12 test 
cases (5.7%, 4.3%, 2.0%, 7.2%, 8.5%, 9.1%) and poorer per-
formance in the remaining 6 (‑4.9%, ‑1.3%, ‑10.6%, ‑12.5%, 
‑10.5%, ‑11.7%), as compared to individual gene features.

Search criterion, rather than search algorithm, plays 
a key role in composite feature identification. Besides their 
difference in how they combine genes together to identify 
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composite gene features, feature identification algorithms also 
differ in terms of the statistical criteria they use to assess the 
collective dysregulation of gene sets. GreedyMI uses mutual 
information to quantify the statistical dependency between 
aggregate gene expression and the phenotype. On the other 
hand, the Linear Path algorithm is based on t-test statistics, 
which measures the difference between gene expressions in 
two phenotypes. Clearly, these two criteria are closely related, 
and we can expect to see a strong correlation between them. In 
order to empirically assess how these two measures are related 
to each other, we focus on the GSE2034 dataset. For every gene 
in this dataset, we compute mutual information of expression 
with phenotype, rank all genes according to mutual informa-
tion, and select the top 1000  genes with maximum mutual 
information. Subsequently, we compute the average mutual 
information and t-test score of top k genes (k = 100, 200, …, 
1000). The resulting numbers are shown in Figure 4A. As can 
be seen in the figures, these two measures are indeed highly 
correlated. Similar observations can be made for other search 
criteria, eg, chi-square statistic or information gain. Indeed, 
for the NetCover algorithm, mutual information is proven to 
be a monotonic function of sample cover, the search criterion 
used by the NetCover algorithm.16

Given the observation that the search criteria employed 
by different methods are usually correlated, an interesting 

question is whether different search criteria employed by these 
methods affect the performance despite the apparent corre-
lation. In order to answer this question, we focus on three 
test cases, in which we observe considerable performance gap 
between features identified with GreedyMI, LinearPath1 and 
LinearPath2. We modify the GreedyMI feature identifica-
tion method to create a hybrid feature identification method. 
Instead of searching for gene sets to maximize the mutual 
information, we search for genes to maximize the t-test score. 
We call this algorithm GreedyTtest. Similarly, for the linear 
path-based algorithms, we replace t-statistic with mutual 
information to create two other hybrid algorithms, named 
LP1-MI and LP2-MI. We then compare these three hybrid 
algorithms to understand whether it is the search algorithm 
or search criterion that underlies the superiority of a set of 
features on another set of features. Surprisingly, we observe 
that changing the search criteria can alter the performance 
results for search algorithms. Namely, for the test cases 
involving GSE2034–GSE739 and GSE17356–GSE17357, 
although our previous results show that the GreedyMI deliv-
ers much better performance compared to LP1 and LP2, after 
switching the search criteria, LP1-MI and LP2-MI achieve a 
higher AUC value than GreedyTtest. For the test case involv-
ing GSE27854–GSE17537, however, we do not observe this 
change. Therefore, the search criterion (scoring function) 
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appears to have a significant impact on classification accuracy 
of some datasets.

Probabilistic inference of feature activity improves 
predication accuracy. In all the experiments presented so far, 
feature activity is computed by averaging the expression value 
of all the genes in the gene set that comprises the compos-
ite feature. The idea of probabilistic inference is similar, but 
instead of using gene expression directly, one transforms the 
gene expression to LLR between the two phenotypes of inter-
est for each gene. Subsequently, the feature score is computed 
by averaging the LLRs for all genes in the set comprising the 
feature. Transformation from gene expression requires esti-
mation of the conditional PDF for each gene in two pheno-
types. To estimate the PDF for each phenotype, we assume 
that the gene expression for each phenotype follows a Gauss-
ian distribution with mean and standard deviation of all gene 
expression values corresponding to that phenotype. For fea-
ture extraction, we first transform the whole dataset to LLR 
and we use the feature identification algorithm as is. During 
cross-validation, we use only the four folds comprising the 
training data to estimate the PDF and then transform all five 
folds to LLR based on the PDF estimated using the train-
ing set. In order to compare the performance of probabilistic 
inference with average gene expression, we perform the same 
set of tests and compute the average AUC and maximum 
AUC values across 12 test cases for all feature identification 
methods. The results of this analysis are shown in Figure 5A 
and 5B. Surprisingly, as seen in the figure, the average AUC 
value is improved significantly for all feature extraction algo-
rithms except for GreedyMI. The maximum AUC value, on 
the other hand, does not show any significant difference.

Current feature selection techniques are limited in 
terms of optimizing classification performance. Simple 
filtering method for feature selection depends on a certain 
scoring criterion to rank the features. In this study, we use 
the P-value of t-test as the ranking criterion. In order to see 
whether different ranking criteria have impact on the classi-
fication performance, we repeat the same experiments with 
features ranked with mutual information and chi-square test 
score (Supplementary Fig. 2). We indeed observe that there 

are differences between different ranking methods, and some 
of these differences are notable. However, none of the rank-
ing criteria provide consistent improvement in classification 
accuracy over other criteria. Therefore, in the following, we 
use P-value of t-test as the ranking criterion.

Beside the simple filtering method, we also consider more 
sophisticated feature selection methods, namely, MRMR and 
SVM-RFE. MRMR is a multivariate filter-based feature 
selection algorithm. It ranks the features by relevance score 
minus the redundancy score. Here, we use t-test score and 
correlation coefficient to respectively quantify these two crite-
ria. Similar to our previous experiments, we select the top 50 
features and compute the average AUC and maximum AUC 
values. The results of these experiments are shown in Figure 6. 
As seen in the figure, while MRMR delivers similar results to 
simple filtering, SVM-RFE leads to degraded classification 
performance.

The results presented above suggest that there is big 
gap between average and maximum AUC values that can be 
provided by considering the top 50 features as the candidate 
features for selection. One question that naturally arises from 
this observation is whether there is an optimal number of 
candidate features that should be considered for selection to 
optimize classification accuracy. Usually, for a classification 
problem, accuracy increases with increasing number of fea-
tures until it reaches a peak value. Therefore, it would be fairly 
easy in principle to determine the number of features required 
to achieve optimal performance; however, we do observe this 
expected pattern for neither individual gene features nor com-
posite gene features (Supplementary Fig. 3A). Consequently, 
to determine a global Kmax (the number of features needed 
to obtain optimal performance), we plot a histogram of all 
optimal K (number of features that result in peak performance 
in a specific test case) for all of our test cases, and we obtain 
the global Kmax by selecting the K value with the highest fre-
quency (Supplementary Fig. 3B). Using this global number of 
features (Kmax = 1 for individual gene features, Kmax = 6 for 
GreedyMI), we apply tests on 12 test cases, and we plot the 
resulting AUC value together with the average and maximum 
AUC values provided by the top 50 features so as to obtain a 
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direct comparison. As seen in Figure 7A, for individual gene 
features, in 6 out of all 12 tests where with feature selection was 
applied, the AUC value is lower than the average AUC value; 
for the other six tests, it is either close to or slightly higher 
than average AUC value. On the other hand, for GreedyMI 
features, feature selection leads to a better AUC value than 
average for all the 12 test cases.

Another method for feature selection is sequential selec-
tion, which is one of the most commonly used methods in 
literature. Starting with an empty (no features selected) or 
full (all features selected) model, this method adds (forward 
selection) or removes (backward selection) features based on 
the classification performance of the validation set. In order 
to apply the sequential feature selection, we further partition 
the training data (four out of five folds) into a training set 
and a validation set. Subsequently, we use forward selection 
on the training set to select a locally optimal set of features 
based on cross-validation within the training set. The results 
of forward selection are shown in Figure 7B. As seen in the 
figure, for both individual gene features and GreedyMI fea-
tures, forward feature selection is able to achieve slightly 
better results than average AUC value of top 50 features in 
all 12 test cases.

Discussion and Conclusion
In this study, we comprehensively evaluate the prediction 
performance of four network-based and two pathway-based 
composite gene feature identification algorithms on five breast 
cancer datasets and three colorectal cancer datasets. In con-
trast to all the previous individual studies, we do not identify 

a particular composite feature identification method that can 
always outperform individual gene-based features in cancer 
prediction. However, this does not necessarily mean that com-
posite features do not add value to improving cancer outcome 
prediction. We actually observe some significant improvement 
in some cases for certain composite features. These results sug-
gest that the question that needs to be answered is why we 
observe mixed results and how we can consistently obtain bet-
ter results.

There are several issues that could potentially contrib-
ute to the inconsistencies in the performance of composite 
gene features. First, the algorithms for the identification of 
composite features are not able to extract all the informa-
tion needed for classification. For NetCover and GreedyMI, 
greedy search strategy is used to search for subnetworks, and 
as it is known, greedy algorithms are not guaranteed to find 
the best subset of genes. Also, our results show that search 
criteria (scoring functions) employed by feature identification 
methods play an important role in classification accuracy. 
While certain datasets favor mutual information, others may 
have better classification accuracy if t-statistic is used as the 
search criterion. Another potential issue that may have led to 
mixed results is the inconsistency (or heterogeneity) among 
datasets that are in principle supposed to reflect similar biol-
ogy. As the results presented in Figure 3 clearly demonstrate, 
for two datasets (GSE27854 and GSE17536), none of the 
composite features is able to outperform individual gene-
based features.

One possible explanation for the inconsistency between 
datasets is the systematic difference between the biology of 
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samples across different datasets. These may include factors 
such as different subtypes that involve different pathogeneses, 
age of the patient, disease stage, and heterogeneity of the tis-
sue sample. For example, for breast cancer, there are multiple 
ways to classify the tumor, eg, ER positive vs. ER negative 
or luminal, HER2, and basal.27 Furthermore, samples used 
for classification are categorized based on different clinical 
standards. Specifically, for our datasets, the two phenotype 
classes are metastatic and metastasis-free, or relapsed and relapse-
free. The sample phenotype is determined based on the clinical 
status of the patient at the time of survey. For some patients, 
this is done 10 years after surgery, whereas for others, it may 
be only one year or even several months after surgery. There-
fore, depending on how the study is designed, there may be 
a considerable number of miscategorized samples for some 
datasets.

Besides the inconsistent performance improvement pro-
vided by composite gene features, the overall classification 
performance obtained is not impressive. Overall, the average 
maximum AUC value that can be obtained is around 70% 
across all test cases. In this study, we find out that some tech-
niques may improve prediction performance, such as proba-
bilistic inference of feature activity. This observation suggests 
that there is indeed potential to improve the performance of 
composite gene features based on PPI networks, since most of 
the current studies for feature activity inference are focused 
on pathway features. We also compare several feature selec-
tion techniques in terms of their performance in improving 

accuracy; however, there seems to be no significant benefit 
provided by any feature selection algorithm.
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Supplementary Materials
Supplementary Figure 1. Average and maximum AUC 

values provided by top 50 features identified by each algorithm 
for the 12 test cases.

Supplementary Figure  2. Impact of ranking crite-
ria used by filtering-based feature selection on predic-
tion performance. (A) Average and (B) maximum AUC 
values of top 50 features ranked by P-value of t-statistic, 
mutual information, and chi-square score for test case 
GSE2034–GSE7390.
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selection plotted together with average and maximum performance provided by top 50 individual gene features. Performance of (C) the top six features 
and (D) features selected with forward selection plotted together with average and maximum performance provided by top 50 composite gene features 
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Supplementary Figure 3. Distribution of the optimal 
number of features that provide peak AUC value. (A) Plot of 
AUC value as a function of number of features utilized. (B) 
Histogram of the number of features that provide maximum 
AUC value for (A) individual gene features (A) and (B) com-
posite gene features identified by the GreedyMI algorithm.

Supplementary File 1. This file contains the complete 
algorithm used for feature selection.
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