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Expanding TNM for lung cancer through machine learning
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Abstract
Background: Expanding the tumor, lymph node, metastasis (TNM) staging system by
accommodating new prognostic and predictive factors for cancer will improve patient
stratification and survival prediction. Here, we introduce machine learning for incor-
porating additional prognostic factors into the conventional TNM for stratifying
patients with lung cancer and evaluating survival.
Methods: Data were extracted from SEER. A total of 77 953 patients were analyzed using
factors including primary tumor (T), regional lymph node (N), distant metastasis (M), age,
and histology type. Ensemble algorithm for clustering cancer data (EACCD) and C-index
were applied to generate prognostic groups and expand the current staging system.
Results: With T, N, and M, EACCD stratified patients into 11 groups, resulting in a signifi-
cantly higher accuracy in survival prediction than the 10 AJCC stages (C-index = 0.7346 vs.
0.7247, increase in C-index = 0.0099, 95% CI: 0.0091–0.0106, p-value = 9.2 × 10−147). There
nevertheless remained a strong association between the EACCD grouping and AJCC stag-
ing (rank correlation = 0.9289; p-value = 6.7 × 10−22). A further analysis demonstrated that
age and histological tumor could be integrated with the TNM. Data were stratified into
12 prognostic groups with an even higher prediction accuracy (C-index = 0.7468 vs. 0.7247,
increase in C-index = 0.0221, 95% CI: 0.0212–0.0231, p-value <5 × 10−324).
Conclusions: EACCD can be successfully applied to integrate additional factors
with T, N, M for lung cancer patients.
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INTRODUCTION

Cancer staging systems play an essential role in cancer
medicine. They are used to develop prognosis, determine
appropriate treatments, evaluate clinical trials, and convey
clinical experiences. Lung cancer is classified according to
the TNM staging system, based on anatomic factors of

tumor extent, nodal status, and metastatic spread.1 The
TNM provides basic information for tumor evaluation,
treatment, and prognosis. However, lung cancer is no longer
characterized by the anatomic extent of disease, but by a
combination of various factors that can be clinical, biologi-
cal, molecular, or genetic. Therefore, new and important fac-
tors need to be integrated in order to build prognostic
systems that can improve evaluation and management deci-
sions for lung cancer patients. Unfortunately, additional†Deceased.
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prognostic factors cannot be easily incorporated into the
TNM staging system because the system is a result of con-
sensus across many different areas.

Cox regression modeling2,3 and tree modeling4,5 are two
major approaches that allow expansion of the TNM by inte-
grating additional factors. Although Cox regression model-
ing can achieve a high accuracy in survival prediction, the
risk groups extracted from the output (e.g., the nomogram)
usually have a lower accuracy of survival prediction than the
original model. Traditional survival tree modeling, which
can be used to explicitly define prognostic groups, does not
provide a high prediction accuracy in general.

In this study we describe a machine learning approach
using the ensemble algorithm for clustering cancer data
(EACCD)6–17 to create prognostic systems for lung cancer.
EACCD can adapt to any type and number of prognostic
factors and generate systems that can be viewed as expan-
sions of the TNM staging system. Variables/factors can be
integrated by the EACCD to generate prognostic systems for
refinements in patient stratification and outcome prediction
that are needed for patient care such as monitoring of large
scale therapeutic trials. We demonstrate the method by
building two prognostic systems. One system, based on pri-
mary tumor (T), regional lymph node (N), and distant
metastasis (M) was primarily employed to compare our
approach with the AJCC. The second system, based on T,
N, M, age (A), and histological type (H), expanded the tradi-
tional staging system based on T, N, M only. These prognos-
tic systems from EACCD provide well-defined patient
stratification and high accuracy of survival prediction.

METHODS

Data source

Disease-specific survival data with a primary diagnosis of
lung cancer during 2010 to 2012 were obtained from 18 data-
bases of the Surveillance, Epidemiology, and End Results
Program (SEER) of the National Cancer Institute.18 This
restriction on the year of diagnosis ensured a minimum
five-year follow-up, since current release of SEER includes
case reports up to the end of calendar year of 2017. As
detailed below, patients diagnosed prior to 2010 were not
included in our analysis. SEER cause-specific death classifi-
cation variable19 was used to capture all deaths related to
lung cancer. Survival time was measured in months.

Defining factors

SEER does not provide T, N,M categories in the eighth edition of
the AJCCCancer StagingManual. Therefore, we used the derived
AJCC seventh edition of theT,N,Mvariables20 tomatch theT,N,
M levels for the eighth AJCC cancer staging systems. Specifically,
with the SEER Collaborative Stage (CS) data collection system,
we made the following reclassification of T: (1) classify seventh

(edition) of T1a with CS tumor size20 ≤10 mm as eighth of T1a;
(2) classify seventh of T1a with CS tumor size between 10 and
20 mm as 8th of T1b; (3) classify seventh of T1b as eighth of T1c;
(4) classify seventh of T2a with CS tumor size between 30 and
40 mmas eighth of T2a; (5) classify seventh of T2awithCS tumor
size between 40 and 50 mm as eighth of T2b; (6) classify as eighth
of T3 (i) seventh of T2b and (ii) seventh of T3 with CS tumor size
≤70 mm; (7) classify as eighth of T4 (i) seventh of T3 with CS
tumorsize>70 mmand(ii) seventhofT4.

Because SEER started to include the derived AJCC-7 T,
N, M variables in 2010, patients with the year of diagnosis
earlier than 2010 were not included in our analysis. This
study investigated five factors: T, N, M, A, and H. Seven
levels (T1a, T1b, T1c, T2a, T2b, T3, and T4) were used for
T; four levels (N0, N1, N2, and N3) for N; and two levels
(M0, M1) for M. Age and histological type were studied in
this study since they are considered critical factors in sur-
vival prediction.2,3,5 Factor A had two levels: A0 (<70) and
A1 (≥70). This cutoff, representing the lower boundary of
senescence, was suggested by Gridelli et al.21 and was also
used by Tanvetyanon et al.2 We note that 70 is also the
median age for lung cancer in the SEER data. We studied
four main histological types: squamous cell carcinoma (H1),
small cell carcinoma (H2), adenocarcinoma (H3), and large
cell carcinoma (H4). These four types were defined
according to WHO histological classification of tumors of
the lung.22 Table S1 lists the detailed definition of T, N, M,
A, and H.

Data management

Starting from the SEER lung cancer data with a primary
diagnosis during 2010 to 2012, we selected all cases with
complete information on the following factors/variables: T,
N, M, A, H, survival time, and SEER cause-specific death
classification variable. Further selection of cases was made
in terms of combinations of factors. We define a combina-
tion as a subset of the data corresponding to one level of
each factor and we use levels of factors to denote combina-
tions (e.g., T1N1M0A0H1 represents a subset of patients
with T = T1, N = N1, M = M0, A = A0, H = H1). Due to the
statistical techniques employed in EACCD, we required each
combination to contain a sufficient number of patients in
order to optimize robustness of results. We retained each
combination of T, N, M, A, and H that contained a mini-
mum of 50 cases. The resulting dataset contained 227 combi-
nations of T, N, M, A, and H (77 953 cases, Figure 1 and
Table 1). The median follow-up of patients in the dataset
was 70 months by the reverse Kaplan–Meier method.23

EACCD

The EACCD (Supplementary Appendix A) is a machine
learning algorithm for clustering combinations. It first
defines initial dissimilarities between two combinations, then
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obtains learned dissimilarities by an ensemble learning process,
and then performs hierarchical clustering analysis to cluster
combinations. The output of the algorithm is a tree-structured

dendrogram, showing the relationship among survival of
patients in different combinations. Several approaches are avail-
able for each step. In this study, the initial dissimilarity between
two combinations was defined by the Mann–Whitney parame-
ter24 (Supplementary Appendix B); the ensemble learning pro-
cess was based on the two-phase Partitioning Around Medoids
algorithm;25 and the minimax linkage method26 was chosen for
hierarchical clustering. This is the first time the Mann–Whitney
parameter and the minimax linkage have been used together.

Prognostic systems

The dendrogram, obtained from the EACCD, can be cut hori-
zontally to generate individual prognostic groups that serve the
same role as the staging groups in the TNM. We cut the den-
drogram in light of the C-index.27 C-index serves as an esti-
mate of the probability that a subject who died at an earlier
time had a shorter predicted survival time than a subject who
died at a later time. Because of the tradeoff between model
simplicity and prediction accuracy, we chose the “optimal”
number of prognostic groups n* around the “knee” point of
the C-index curve (the C-index vs. the number of prognostic
groups).12,14–16 Survival curves for the prognostic groups were
plotted by using Kaplan–Meier estimates.28 The final prog-
nostic system included the dendrogram, group assignment,
C-index, and survival curves for the prognostic groups.

RESULTS

Prognostic system for T, N, M

Applying the EACCD to the data based on T, N, and M
yielded the dendrogram in Figure 2(a). The C-index curve

F I G U R E 1 Clinical and demographic
characteristics of the study cohort
(N = 77 953)

T A B L E 1 Clinical and demographic characteristics of the study cohort
(N = 77 953)

N %

Primary tumor

T1a 1708 2.2

T1b 10 088 12.9

T1c 8830 11.3

T2a 7939 10.2

T2b 4789 6.1

T3 16 636 21.3

T4 27 963 35.9

Regional lymph node

N0 34 422 44.2

N1 6253 8.0

N2 28 355 36.4

N3 8923 11.4

Distant metastasis

M0 43 936 56.4

M1 34 017 43.6

Age

A0 39 547 50.7

A1 38 406 49.3

Histological type

H1 22 306 28.6

H2 10 449 13.4

H3 44 437 57.0

H4 761 1.0
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(Figure 2(b)) was used to find the optimal number of prog-
nostic groups n*. The knee point of the curve corresponds
to 11 groups (C-index = 0.7346), which suggested n* = 11
(the C-index slowly increases from 7 to 11 groups). Cutting
the dendrogram into n* = 11 groups is shown in rectangles
(Figure 2(c)). The survival curves for these 11 groups are
seen in Figure 2(d). For convenience, the definition for all
11 groups is restated in the fourth column of Table S2. The
resulting prognostic system for T, N, and M includes the
dendrogram with cutting (Figure 2(c)), the groups in the
fourth column of Table S2, and the survival curves (Figure 2
(d)). This system contains 11 groups: group 1, group 2 …
group 11 whose risk increases as the group number
increases.

For comparison, the eighth edition AJCC divides the
data into 10 groups. Details are seen in the fifth column of
Table S2 and Figure 3 (we did not include stage 0 and we
treated stage M1a/b/c as M1). Calculation shows that the
AJCC staging system has a C-index of 0.7247. The p-value
of the C-index based test29 for testing differences between
the prediction accuracy of the above EACCD prognostic sys-
tem (11 groups, C-index = 0.7346) and the AJCC staging
system TNM (10 groups, C-index 0.7247) was 9.2 × 10−147.

This shows that the EACCD system has a significantly
higher survival prediction accuracy than the AJCC system.

Prognostic system for T, N, M, A, and H

Before building the EACCD prognostic system for T, N, M,
A, and H, we assessed the performance in survival predic-
tion of the models for the following three sets of factors:
{T, N, M, A}, {T, N, M, H}, and {T, N, M, A, H}, as com-
pared with the model based on {T, N, M}. This is done by
examining the C-index curves for all these four scenarios
(Figure 4). For more than three groups, the curves for
{T, N, M, A} and {T, N, M, H} are higher than the curve
for {T, N, M}. Therefore, adding A or H to {T, N, M}
increases the C-index and thus improves the prediction
accuracy. The curve of {T, N, M, A, H} is the highest
among all four curves, implying that adding both A and H
to {T, N, M} leads to the biggest improvement on the pre-
diction accuracy of {T, N, M}.

Applying the EACCD to the data based on T, N, M, A,
and H yielded the dendrogram in Figure 5(a). The optimal
number of prognostic groups n* = 12 with a corresponding

F I G U R E 2 Creating ensemble algorithm for clustering cancer data (EACCD) prognostic groups on T, N, and M. (a) Dendrogram from running
EACCD. A five-year cancer-specific survival rate in percentage is provided below each combination. (b) C-index curve based on the dendrogram in panel (a).
The knee point of the curve corresponds to 11 groups and a C-index value of 0.7346. (c) Cutting the dendrogram in panel (a) according to n* = 11 suggested
in panel (b) creates 11 prognostic groups. Group numbers are listed on the bottom of the dendrogram. (d) Lung cancer-specific survival of 11 prognostic
groups in panel (c). Five-year cancer-specific survival rates are listed on the right side
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C-index of 0.7468 is indicated in Figure 5(b). Therefore, we
cut the dendrogram into n* = 12 groups (rectangles in
Figure 5(a)). Accordingly, the survival curves for the
12 prognostic groups can be plotted (Figure 5(c)). A detailed
definition for all 12 groups is listed in Table S3.

DISCUSSION

Comparison with the TNM

The EACCD prognostic system based on TNM can be com-
pared with the AJCC staging system in terms of both strati-
fication and prediction. Previously, we showed that the
EACCD system based on TNM (11 prognostic groups with
C-index = 0.7346) has a significantly higher survival predic-
tion accuracy than the AJCC staging system (10 stage
groups with C-index = 0.7247). Below we compare the two
systems by examining how patients are stratified.

In fact, there is a strong positive association between
AJCC staging and EACCD grouping. Table 2 presents the
distribution of patients of each of 10 AJCC stages over the
11 EACCD groups. The upper right and lower left corners
of the table are filled with 0. Approximately, the higher stage

the patient is assigned to by the AJCC system, the higher
risk group the patient is assigned to by the EACCD, and vice
versa. Indeed, the assignment to ordered stages and the
assignment to ordered prognostic groups have a large
Spearman’s rank correlation coefficient30 of 0.9289 with a
p-value of 6.7 × 10−22.

In summary, in predicting survival, the EACCD prog-
nostic system on {T, N, M} has a significantly higher accu-
racy than the AJCC staging system TNM; in stratifying
patients, the EACCD grouping and AJCC staging are
strongly positively associated.

We note that the EACCD prognostic system on {T, N,
M} can be further compared with the AJCC staging system
TNM through validation datasets, preferably from sources
other than SEER. For instance, when an appropriate valida-
tion set is available, EACCD and AJCC can be compared in
terms of survival curves and values of C-index on the
validation set.

Effect of factor levels on survival

The EACCD prognostic system on {T, N, M, A, H} allowed
us to examine the effect of levels of individual factors on
survival. To simplify the analysis, we considered the follow-
ing two risk categories: low risk (groups 1–5) and high risk
(groups 6–12) (this partition was suggested by the survival
of prognostic groups shown in Figure 5(c). A graph is used
to show how patients associated with a factor level are dis-
tributed across the two risk categories (Figure 5(d)).

The first row shows that as the T levels become more
aggressive, patients are more likely to be classified into the
high risk category.

The second and third rows reveal that patients with N0,
or N1, or M0 status tend to have favorable survival while
those with N2, or N3, or M1 have unfavorable survival.

The fourth row indicates that A0 and A1 curves are sim-
ilar, both showing an approximately equal distribution in
the two risk categories. This is the marginal effect of age,
given the two risk categories. Earlier age was shown to be an
important prognostic factor. These suggest that age should
be considered in conjunction with other factors when info-
rming prognosis.

The fifth row details the distribution of patients associated
with each histological type. Patients with H1, H3, and H4 are
approximately even distributed across the low and high risk
categories, suggesting that squamous cell carcinoma, adeno-
carcinoma, and large cell carcinoma are not prone to high or
low risk when these levels are presented alone. In comparison,
small cell carcinoma shows a strong tendency towards high
risk. (The H2 curve is increasing, with a small percentage of
patients at low risk and a majority at high risk.) This finding
reconfirms that small cell carcinoma and non-small cell carci-
noma play different roles in prognosis.31,32

The above analysis shows how a factor level is associated
with risk. Although these observations have been previously
reported in the literature, this is the first time that these

F I G U R E 3 Cancer-specific survival of AJCC stages defined in the fifth
column in Table S2. The five-year cancer-specific survival rates for
10 stages are listed on the right side of the figure

F I G U R E 4 C-index curves based on different factors
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F I G U R E 5 Ensemble algorithm for clustering cancer data (EACCD) prognostic groups on T, N, M, A, and H. (a) Dendrogram and cutting the
dendrogram (shown in rectangles). A five-year cancer-specific survival rate in percentage is provided to the left of each combination. Cutting the dendrogram
according to n* = 12 in panel (b) creates 12 prognostic groups. Listed on the left of the dendrogram are group numbers. (b) C-index curve based on the
dendrogram in panel (a). The knee point of the curve corresponds to 12 groups and a C-index value of 0.7468. (c) Lung cancer-specific survival of
12 prognostic groups in panel (a). The five-year cancer-specific survival rates for 12 groups are listed on the right side of the figure. (d) Distributions of
patients over risk categories. In each row, one factor is concerned, and for each level of the factor, the distribution of patients (two proportions at two risk
categories) is presented in two ways: Plot on the left and tabulation on the right
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factor levels have been integrated together and explicitly
highlighted in the ordered risk groups of the prognostic sys-
tem TNMAH created in this study.

Limitations of analyses

Cancer-specific survival data were used in this study.
Although the SEER cause-specific death classification is
determined by taking into account other elements (e.g.,
tumor sequence, site of the original cancer diagnosis, and
comorbidities), death certificate errors can be problematic in
estimating the cause-specific survival. Another limitation is
that the EACCD requires a relatively large size for each
combination to produce robust estimates of survival. This
report includes combinations with at least 50 cases. This
may exclude some “rare” but interesting combinations.
Improved estimates of survival can be achieved with a
larger cutoff. Clearly, this requirement on the size of com-
binations will be met automatically when more data
becomes available. Finally, due to the current restriction
of SEER data, we derived the AJCC eighth edition of
the T, N, M variables from those of the seventh edition,
which could introduce some bias to this present study.

In conclusion, here we describe a machine learning
approach based on EACCD and C-index to refine the TNM
system for lung cancer by integrating additional prognostic
factors. We demonstrated the approach by using the SEER
lung cancer data to create a prognostic system based on T,
N, and M, which classifies patients in a way strongly posi-
tively correlated with the AJCC TNM staging system but has
a higher accuracy for predicting survival. Using SEER, we
created one computational prognostic system based on T,
N, M, A, and H, which expanded (with additional factors)
and improved (with a higher accuracy of survival predic-
tion) the TNM for lung cancers. Results have shown that the
machine learning approach takes into account both predic-
tion and stratification and is analogous to the AJCC scheme
in generating stages.
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