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Developingmodels for predicting molecular properties of organic compounds is imperative
for drug development and environmental safety; however, development of such models
that have high predictive power and are independent of the compounds used is
challenging. To overcome the challenges, we used a thermodynamics-based
theoretical derivation to construct models for accurately predicting molecular
properties. The free energy change that determines a property equals the sum of the
free energy changes (ΔGFs) caused by the factors affecting the property. By developing or
selecting molecular descriptors that are directly proportional to ΔGFs, we built a general
linear free energy relationship (LFER) for predicting the property with the molecular
descriptors as predictive variables. The LFER can be used to construct models for
predicting various specific properties from partition coefficients. Validations show that
the models constructed according to the LFER have high predictive power and their
performance is independent of the compounds used, including the models for the
properties having little correlation with partition coefficients. The findings in this study
are highly useful for applications in drug development and environmental safety.
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INTRODUCTION

The rapid development of new organic compounds in various chemical-related laboratories and
industries has increased the difficulty in measuring the physicochemical, and absorption,
distribution, metabolism, excretion, and toxicity (ADME/Tox) properties of all possible
compounds. Therefore, the development of techniques for predicting these properties via
computational tools is imperative (Sarkar et al., 2012; Li et al., 2019; Sun et al., 2019; Suay-
Garcia et al., 2020). Quantitative structure–property relationships (QSPRs) with multiple predictive
variables are widely used for predicting various properties of organic compounds. QSPR employs
regression statistics using algorithms, such as artificial neural networks, (Deeb et al., 2011; Song et al.,
2017), machine learning (Bushdid et al., 2018; Cheng and Ng, 2019; Zheng et al., 2019), and partial
least square (Deeb et al., 2011; T. Stanton, 2012), with predictive variables usually selected from a few
thousand molecular descriptors based on mathematical and statistical tools (Mansouri et al., 2018;
Lee et al., 2019; Fioressi et al., 2020). A large number of articles related to QSPR were published per
year and QSPR has gained importance in a wide range of fields, such as drug design, pesticide design,
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and environmental toxicology (Roy et al., 2018; Yang et al., 2018;
Zhu et al., 2018; He et al., 2019; Khan et al., 2019; Zhu et al.,
2020a). For example, predicting the ADME/Tox of drug
candidates before synthesis can significantly reduce the cost
and time of drug development and increase the success rate
(Cheng et al., 2013; Dickson et al., 2017; Zhu et al., 2018).
Predicting soil/water partition coefficients and the toxicities of
organic compounds is vital for environmental risk assessments
(Freitas et al., 2014; Sabour et al., 2017; Khan et al., 2019). Some
properties can be predicted accurately with hydrophobicity
(logPoct, the logarithm of the partition coefficient between
n-octanol and water) and/or other commonly used molecular
descriptors, e.g., electrophilicity index (ω) (Raevsky, 2004; Pal
et al., 2019; Jana et al., 2020). For example, logPoct has been used
to predict the water solubility with high accuracy, (Raevsky,
2004), Robust multiple linear regression (MLR) models for
toxicity prediction can be constructed by using the
combinations of electronic factor (ω, ω2, or ω3) and
hydrophobicity factor [logPoct, (logPoct)

2] as predictors (Pal
et al., 2019; Jana et al., 2020). The robustness of the models
were ascertained by neural networks. However, for many
properties, constructing QSPR models with high predictive
accuracy and reliability remains a challenge. The performance
of QSPR models greatly depends on the compounds used for
investigation, quality of the data, and modelling methodology
employed (Song et al., 2017; Mansouri et al., 2018; Zhang et al.,
2020). For a given property, the predictive variables would be
different if the data in the training set are different. In addition,
QSAR models usually work well only for the compounds within
their applicability domains and do not have good predictive
accuracy for other compounds (Kaneko, 2017; Liu and
Wallqvist, 2019). However, it is difficult to define the accurate
applicability domains for QSPR models because there is no
general agreement for quantifying compound similarity
(Carrió et al., 2016). It is thus important to develop a new
methodology for constructing models that have high predictive
power and the performance of the models is independent of the
compounds used.

The quantitative formula and quantitative relationships that are
developed via theoretical derivation in physical chemistry are
absolutely correct and are independent of the compounds used.
For example, the partition coefficient between water and an organic
solvent (logPow) for a solute is directly proportional to the standard
free energy change for transferring the solute from water to the
organic solvent (ΔGtr). The ΔGtr in turn depends on the standard
enthalpy change (ΔHtr) and entropy change (ΔStr) of the phase-
transferring process. Thus, at a given temperature, the model
logPow � b1ΔHtr + b2ΔStr + c (b1, b2, and c are constants) is
absolutely correct and has high predictive power for predicting
logPow. This example indicates that the models developed via
thermodynamics-based theoretical derivations may overcome
the shortages of the models developed by using mathematical
and statistical tools. A large number of physicochemical properties,
ADME/Tox qualities, and many other properties of organic
compounds depend on the changes in free energy caused by the
intermolecular noncovalent interactions of the compounds with
their environments. The enormous catalytic power of many

enzymes depends on the noncovalent interactions between
substrates and enzymes (Warshel et al., 2006; Chen et al., 2019).
It is thus expected that models with high predictive power formany
properties can be developed by considering the free energy changes
related to the properties. In this study, we used a thermodynamics-
based theoretical derivation to develop a general linear free energy
relationship (LFER) for predicting various properties of organic
compounds. The LFER can be used to construct models for many
specific properties. Validation shows that the models for specific
properties have high predictive power and their performance is
independent of the compounds used.

COMPUTATIONAL METHODS

Data set selection
In this study, all experimental data of logPoct, logP16 (the
logarithm of the partition coefficient between hexadecane and
water), logPchl (the logarithm of the partition coefficient between
chloroform and water), logPaln (the logarithm of the partition
coefficient between aniline and water), logKbrain (the logarithm of
the partition coefficient from air to human brain) and logKp

(logarithm of experimental human skin permeability) are
collected from literatures (Abraham et al., 1994; Abraham
et al., 1999; Abraham and Martins, 2004; Abraham et al.,
2006; Abraham et al., 2015; Zhang et al., 2017). Hydrogen
bond acceptors (HBAs) include very weak H-bond acceptors.
For example, the sp2 carbon atoms from carbon-carbon double
bonds and aromatic rings are weak HBAs. Hydrogen bond
donors (HBDs) include very weak H-bond donors. For
example, the hydrogen atoms in CHCl3 and CH3NO2 are
weak HBDs.

Calculation of Sm
Sm is a molecular descriptor developed in this study. The Sm values
of organic compounds were calculated based on the formula of the
compounds. Assume the formula of a neutral organic compound is
CcHhOoNnSsFfClclBrbrIi, the Sm of this compound is

Sm� c + 0.3h + o + n + 2s + 0.6*f + 1.8cl + 2.2br + 2.6i − 0.2Nc3−0.6Nc4.

(1)

In Eq. 1, c, h, o, n, s, f, cl, br and i are the numbers of carbon,
hydrogen, oxygen, nitrogen, sulfur, fluoride, chloride, bromide
and iodide atoms in the solute, Nc3 is the number of sp3 carbons
connecting three heavy atoms (fluoride is not included), Nc4 is the
number of sp3 carbons connecting four heavy atoms (fluoride is
not included).

Calculation of HM_HBD
HM_HBD values of solutes were calculated based on the approach
reported in a previous study (Chen et al., 2020).

Calculation of Flexibility
In this study, the flexibility of a solute is calculated by
summarizing the flexibilities of the bonds of the solute. If a
bond is not rotatable or if the rotation of a bond does not change
the conformation of the solute, the flexibility of the bond is set to

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 7375792

Chen et al. LFER for property prediction

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


zero (note: hydrogen atoms are not included for determining
conformations). The flexibility of the C—C bond in
R1CH2—CH2R

2 is set to one. If the energy barrier for rotating
a bond is obviously higher than that for rotating the
R1CH2—CH2R (Sun et al., 2019) bond, the flex value is set to
zero. For example, the C—N bond in RCO—NH and the C—C
bond in Ar—CO are set to zero. If the energy barrier for rotating a
bond is obviously lower than that for rotating the R1CH2—CH2R

2

bond, the flex value is set to 1.5. For example, the energy barrier
for rotating the R1O—CH2R

2 bond is lower than that for
R1CH2—CH2R (Sun et al., 2019) and thus the Flex value of
the C—O bond is set to 1.5. Also, the flexibility of C—C in
R1CH2—C6H5 is set to 0.5 because of the symmetry of
phenyl ring.

Calculation of the effects of HBAs on the
logPoct/logPchl
The free energy changes for transferring depolarized solutes from
water to hexadecane (ΔGtr_depol) were calculated based on the
method reported in previous study (Chen et al., 2020). Based on
the logPoct (or logPchl) and ΔGtr_depol values of nonpolar
compounds, the model for the regression of logPoct (or
logPchl) against ΔGtr_depol was developed. This model was then
used to calculate the logPoct (or logPchl) values for depolarized
solutes. For a solute containing HBAs but no HBDs, the
difference between the calculated logPoct (or logPchl) for the
depolarized solute and the experimental logPoct (or logPchl) of
the solute is the effect of HBAs on the logPoct (or logPchl) of the
solute.

Model development
All the models and the statistical reliabilities of the models were
obtained by performing the multiple linear regressions
implemented in Excel.

RESULTS AND DISCUSSION

Thermodynamics-Based Theoretical
Derivation for Generating a Linear Free
Energy Relationship
In the theoretical derivation, we used “Y” to represent a property
and the symbol “ΔGY” to represent the free energy change that
determines Y. The ΔGY values for many properties are not easy to
be calculated directly. Thus, we decomposed ΔGY into the free
energy changes that are caused by the factors affecting Y. The free
energy change caused by a factor is denoted by “ΔGF”. Thus, ΔGY

equals the summarization of the ΔGFs for all the factors
affecting Y.

ΔGY � ∑ΔGF (2)

For the properties depending on the noncovalent interactions
of solutes, they are affected by the molecular sizes, hydrogen-
bond acceptors (HBAs), and hydrogen-bond donors (HBDs) of

the solutes, which was demonstrated in a previous study (Chen
et al., 2020). Many properties are also affected by the flexibilities
of solutes. For example, the partition coefficients of organic
compounds between a flexible environment (e.g., blood) and a
much less flexible environment (e.g., muscle) are obviously
affected by the flexibilities of the compounds. It is challenging
to accurately quantify the ΔGFs for various properties. However,
it is possible to develop molecular descriptors that are directly
proportional to ΔGFs. We used DF to represent the molecular
descriptor that is directly proportional to ΔGF. Then, ΔGY can be
expressed as:

ΔGY � ∑kFDF (3)

The kF values are constant for a given property. Theoretically,
if the molecular descriptors apply to various properties, Eq. 3 can
be used to construct models with high predictive power for the
properties. Many properties are mainly affected by the molecular
sizes, HBAs, HBDs and flexibilities of solutes. Thus, in this study,
we developed or selected molecular descriptors for quantifying
the effects of molecular size, HBAs, HBDs and flexibility on the
properties.

The molecular descriptor we developed for quantifying the
effects of molecular size on properties is denoted by “Sm”. The Sm
values of organic compounds represent the relative molecular
sizes of the compounds and can be easily calculated from their
molecular formulas (see Computational Methods). For example,
the Sm for catechol (formula: C6H6O2) is 9.8 (num. for C +
0.3× num. for H + num. for O). To illustrate whether Sm is an
ideal molecular descriptor for molecular size, we first explored the
linear associations between logP16 and Sm and between logPoct
and Sm for a series of alkane compounds (Figure 1A). The logP16
and logPoct values for alkane compounds are affected merely by
the sizes of the compounds. The robust linear associations in
Figure 1A support that Sm is directly proportional to the effects of
molecular size on logP16 and logPoct. We next explore whether Sm
is also an ideal molecular descriptor of molecular size for the
properties that have little correlation with logP16 or logPoct. As
reported in a previous study, logKbrain has little correlation with
logP16 and logPoct (Chen et al., 2020). We thus explored the linear
association between logKbrain and Sm for nonpolar solutes
(Figure 1B). The R2 and SD values indicate that there is a
strong linear association between logKbrain and Sm. In
Figure 1C, we plotted the free energy changes for transferring
the depolarized compounds from water to hexadecane
(ΔGtr_depol) against the Sm values for the compounds from
Supplementary Table S1 of a previous study (Chen et al.,
2020). The high statistical reliability for the regression of
ΔGtr_depol against Sm further supports that Sm is an ideal
molecular descriptor for quantifying the effect of molecular
size on the properties depending on noncovalent interactions.
Thus, Sm is an ideal molecular descriptor for molecular size and
applies to various properties.

In previous studies, we defined the water to hexadecane phase
transferring free energy contributed by the electrostatic
interactions of the HBAs of a solute as the overall H-bonding
capability of the HBAs of the solute (Chen et al., 2019; Chen et al.,
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2020; Chen et al., 2016) and this overall H-bonding capability is
donated by “HM_HBA.” The definition indicates that HM_HBA is an
ideal molecular descriptor for quantifying the effects of HBAs on
logP16. We next explored whether HM_HBA is an ideal molecular
descriptor for logPoct and logPchl. The strong linear associations
between the effect of HBAs on logPoct and HM_HBA (Figure 2A)
and between the effect of HBAs on logPchl and HM_HBA

(Figure 2B) suggest that HM_HBA is an ideal molecular
descriptor for quantifying the effects of HBAs on various
properties. Similarly, we defined the water to hexadecane
phase transferring free energy contributed by the electrostatic
interactions of the HBDs of a solute as the overall H-bonding
capability of the HBDs of the solute (HM_HBD) (Chen et al., 2016;
Chen et al., 2019; Chen et al., 2020). In a previous study, we
revealed that the contribution of a protein-ligand H-bond to the
protein-ligand binding free energy is directly proportional to the

H-bonding capability of the HBA and the H-bonding capability
of the HBD (Chen et al., 2016). We also found that the effect of an
enzyme-substrate H-bond interaction on the free energy barrier
of the enzymatic reaction is directly proportional to the
H-bonding capability of the atom from the enzyme (Chen
et al., 2019). Thus, we believe that the effects of HBAs and
HBDs of solutes on the properties related to noncovalent
interactions are directly proportional to the HM_HBA and
HM_HBD values of the solutes. HM_HBA and HM_HBD are ideal
molecular descriptors for quantifying the effect of HBAs and
HBDs on the properties related to noncovalent interactions.

The molecular descriptor for quantifying the effect of
molecular flexibility on properties is denoted by “Flex.” The
effects of molecular flexibility on properties mainly result from
rotatable bonds of the solutes because the rotatable bonds of the
solutes can rotate more freely in some environments than in other

FIGURE 1 | Correlations between the molecular descriptor Sm and the effects of molecular size on various properties. (A) Linear associations between logP16/
logPoct and Sm for alkanes. (B) Linear association between logKbrain (log of the partition coefficient from air to human brain) and Sm for nonpolar compounds. (C) Plot of
the water to hexadecane phase-transferring free energy for depolarized solutes (ΔGtr_depol) against the Sm values of the solutes.

FIGURE 2 | Strong linear associations between the effects of HBAs on properties and HM_HBA. HM_HBA: overall H-bonding capabilities of the HBAs of a solute. (A)
For the property logPoct (log of the partition coefficient between n-octanol and water). (B) For the property logPchl (log of the partition coefficient between chloroform and
water).
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environments. The flexibilities of solutes are calculated from the
rotatable bonds of the solutes, especially the rotatable bonds that
change the conformations of solutes (see Computational
Methods). Thus, for many properties that are affected by
molecular size, HBAs, HBDs and flexibility, they can be
quantified with the following equation

Y � k1Sm + k2 HM_HBA + k3HM_HBD + k4Flex + c (4)

where k1, k2, k3, k4 and c are constants for a give property.
Organic compounds usually contain multiple HBAs and the
HBAs affect each other. The accurate calculation of HM_HBA

for many organic compounds is not easy. Eq. 4 would become
simpler and easier to use if HM_HBA is replaced by logPow because
logPow is a well-known molecular descriptor for predicting
properties (Liu et al., 2019; Zhu et al., 2020b) and can be
obtained accurately via experimental and/or computational
approaches. Based on the fact that logPow is a property and
Eq. 4 also applies to logPow, we can convert Eqs. 4 to 5 (see
Supplementary Text S1 for the detail of the process of the
conversion).

Y � b1logPow + b2Sm + b3HM_HBD + b4Flex + c (5)

where b1, b2, b3, and b4 are constants, logPow is logP16 or logPoct.
Eq. 5 is identical to Eq. 4. Both equations are correct for the
properties that are determined by the noncovalent interactions of
solutes with flexible environments. All the factors related to
effects of noncovalent interactions on phase-transferring free
energies, including electrostatic interaction, desovation, van
der Waals interactions, entropy change, etc. are considered in
Eq. 5. Eq. 5 is the general LFER we developed for predicting the
properties that depends on the noncovalent interactions of
solutes with flexible environments. Although Sm and HM_HBD

may be strongly correlated with logPow for some properties, none
of the molecular descriptors can be omitted because Eq. 4 is a
general LFER for various different properties.

Validation of the General LFER: Model
Construction for Specific Properties
Prediction of Various Organic Solvent/Water Partition
Coefficients
To prove that this general LFER can be used to construct models
with high predictive power for various specific properties, we first
demonstrated that it can be used to predict an organic solvent/

FIGURE 3 | Prediction of organic solvent/water partition coefficients for validating the general LFER. (A, B) R2 values of the simple regressions (gray columns) of
logP16(A)/logPchl(B) against logPoct and of the corresponding models constructed according to the LFER (black columns). HBA: compounds containing HBAs but no
HBDs; HBD: compounds containing HBDs; apolar: nonpolar compounds; (C) Plot of observed logP16 against the logP16 calculated from the model constructed
according to the LFER; (D) Plot of observed logP16 against the logP16 calculated from the model with logPoct as predictive valuable.
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water partition coefficient from another organic solvent/water
partition coefficient with high accuracy. Eighty-nine compounds
with experimental logPoct, logP16, and logPchl values (Abraham
et al., 1994; Abraham et al., 1999) (Supplementary Table S1)
were used for this investigation. Among the compounds, 45
compounds contain HBAs but no HBDs and 41 compounds
containing HBDs. The equations and statistical results of the
simple regressions of logP16 against logPoct and logPchl against
logPoct for various types of compounds are shown in
Supplementary Text S2. The R2 (squared correlation
coefficient) values of the regressions range from 0.501 to
0.972 (gray columns, Figures 3A,B) and the SD (standard
deviation) values of the regressions range from 0.241 to 0.965,
indicating that the strength of the linear associations between
two partition coefficients largely depends on compounds used
for investigation. Then the same data for constructing the
simple regressions were used to construct models according to
the general LFER and the results are also shown in
Supplementary Text S2 (note: the model descriptor Flex is
not used because Flex has little effect on logPow). The R

2 values
of the models range from 0.947 to 0.992 (black columns,
Figures 3A,B) and the SD values range from 0.183 to 0.248.
The results indicate that the models constructed according to
the LFER have a high statistical reliability and the performance
of the models is independent of the compounds for
investigation.

To demonstrate whether the models have high predictive
power, we compared the experimental logP16 values of 200
organic compounds [from Supplementary Table S1 of a
previous study (Chen et al., 2020)] and the logP16 values
calculated from the model constructed according to the LFER
by using an external validation approach (Figure 3C and
Supplementary Text S3). The result shows that the model has
high predictive power. For comparison, the predictive power of
the corresponding simple regression was also investigated
(Figure 3D), which is much worse than that for the model

constructed according to the LFER. Thus, the LFER is
powerful for constructing models with high predictive power.

Prediction of the Human Skin Permeability
We next used the LFER to construct a model for predicting the
human skin permeability of neutral organic molecules.
Supplementary Table S2 shows the logKp (Abraham and
Martins, 2004; Zhang et al., 2017) values of 51 organic
compounds. Thirty-two of the compounds were used as
training set to develop the model with logPoct as a predictive
valuable and the other 19 compounds as a test set to validate the
model. The model constructed according to the LFER is shown
below.

logKp� 0.6157logPoct+0.0156Sm−0.0626HM_HBD−0.0988Flex − 5.646;

N � 32,R2� 0.953,Q2(ext)� 0.966, SD � 0.178; F � 136.7

(6)

This model is characterized by high statistical reliability
according to the R2 and SD values. It is used to calculate the
logKp values of the 19 solutes in the test set. The plot of the
experimental logKp values versus the calculated logKp values is
characterized by statistically robust linearity (Figure 4A). The
accurate prediction of logKp can provide a rapid and accurate
prediction of human skin permeability of organic compounds,
which is very useful for evaluating environmental risks due to
contact with skin.

Prediction of Air to Human Brain Partition Coefficient
To further illustrate the reliability and accuracy of the LFER, we
used the LFER to construct models for the properties that have
little correlation with logPow. The strength of the linear
association between logKbrain and logPoct (or logP16) is weak
(R2 < 0.1) (Chen et al., 2020). Supplementary Table S3 lists the
compounds that were used to demonstrate the weak linear
association between logKbrain and logP16 (or logPoct) in a
previous study (Chen et al., 2020). Based on the experimental

FIGURE 4 | Predictive power of models constructed according to the LFER. (A) External validation. Plots of observed logKp (log of human skin permeability) against
the logKp calculated from the model constructed according to the LFER (logPoct is used). (B) LOO cross-validation. Plots of observed logKbrain against the logKbrain

calculated from the model constructed according to the LFER.

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 7375796

Chen et al. LFER for property prediction

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


logKbrain, logP16 and logPoct data of the compounds, we
constructed two models according to the LFER.

logKbrain� −0.5129logP16+0.5006Sm+0.1009HM_HBD−0.1893Flex − 1.64;
N � 34,R2� 0.964,Q2

LOO� 0.947; SD � 0.265; F � 195.7

(7)

logKbrain� − 0.7755logPoct+0.5473Sm+0.1790HM_HBD−0.0986Flex − 1.386
N � 31,R2� 0.931,Q2

LOO� 0.914; SD � 0.368; F � 87.4

(8)

Results indicate that both models have high predictive power
and the model with logP16 as predictive variable is better than the
model with logPoct as predictive variable. The predicted logKbrain

obtained from the LOO cross-validation (logP16 is used) and the
observed logKbrain show a robust linear association (Figure 4B).
Thus, the general LFER works well for the properties that have
little correlation with partition coefficients, supporting the
reliability and efficacy of the general LFER in the accurate
prediction of the properties related to noncovalent
interactions. We believe that the thermodynamics-based
theoretical derivation is a powerful methodology for
developing robust models and will be useful in many fields,
including drug design, environmental safety and human health.

Model Simplification
In some cases, not all the molecular descriptors in the LFER are
required for specific models with high predictive power. Some
models still have high predictive power without using the
molecular descriptor HM_HBD. For example, if the HBAs and
HBDs of an organic solvent are obviously weaker than the HBAs
and HBDs of water, the partition coefficient between water and
the organic solvent can be predicted accurately from the model
with logP16 and Sm as predictive variables. Eq. 9 is the model for
predicting the aniline/water partition coefficient (logPaln) with
logP16 and Sm as predictive variables (see Supplementary Table
S4 for the data). Its statistical reliability is high and is obviously
better than that for the simple regression (Eq. 10).

logPaln� 0.4695logP16+0.1506Sm+0.010; N � 54,R2� 0.975, SD � 0.208, F � 1008.

(9)

logPaln� 0.6416logP16+0.726;N � 54;R2� 0.910; SD � 0.394, F � 524.9.

(10)

Without using HM_HBD, the model for predicting logKbrain

from logP16, Sm, and Flex still has high predictive power.

logKbrain� −0.6194logP16+0.5446Sm−0.1928Flex − 1.637;
N � 34,R2� 0.954,Q2

LOO� 0.938; SD � 0.295; F � 207.7
(11)

Because the calculation of Sm and Flex is easy, the accurate
prediction of some properties from logP16 or logPoct is easy for the
researchers across various fields. For example, logKbrain can be
accurately predicted from logP16, without the need for additional
experimental data or complicated calculations. Without using the
LFER, the accurate prediction of logKbrain from logP16 or another
organic solvent/water partition coefficient is difficult because
there is little correlation between logKbrain and organic
solvent/water partition coefficients. For the models containing
HM_HBD, the HM_HBD values of solutes are calculated with

computer software. All the molecular descriptors in the LFER
are easy to be understood and used by the researchers in various
research fields. However, when constructing QSPR models by
using mathematical and statistical tools, the predictive variables
are usually selected from a few thousand molecular descriptors.
The meanings of many predictive variables, e.g., the 3D-MoRSE
descriptors, (Zapadka et al., 2019), are not easy to be understood
or used by many researchers in various research fields.

Performance of Models With all Molecular
Descriptors Calculated From Solute
Structures
Because logPoct and logP16 can be calculated accurately from the
structures of solutes (Chen et al., 2020), it is expected that this
method still performs well when all of the molecular descriptors in
the LFER are calculated from solute structures. For example, the R2,
Q2
ext and SD of the model for predicting human skin permeability, in

which all predictive variables are calculated from solute structures,
are 0.940, 0.957, and 0.202 (see Supplementary Text S4). Thus, the
general LFER developed in this study has obvious advantages in
predicting many properties related to noncovalent interactions.

Importance of Thermodynamics-Based
Theoretical Derivation
Above examples indicate that the models constructed according to
the LFER for many specific properties have high predictive power.
Moreover, the performance of the models is independent of the
compounds for investigation, suggesting that the models can
provide guidance for improving properties of organic
compounds and designing compounds with optimal properties.
The merits of the LFER result from the theoretical derivation,
which ensures that the quantitative relationships in the models
constructed according to the LFER are correct in the aspect of
thermodynamics. For the QSPR models developed using
mathematical and statistical tools, the predictive variables are
selected from a few thousand molecular descriptors based on
the data of the compounds in training sets. The relationships
between the properties and molecular descriptors in the QSPR
models are statistical relationships for the compounds in training
sets. The QSPR models usually work well only for the compounds
in the training set and similar compounds, but may do not work
well for other compounds. Thus, for the properties determined by
the noncovalent interactions of solutes with flexible environments,
the models developed according to the proposed LFER performs
better than theQSPRmodels developed by usingmathematical and
statistical tools, including robust artificial neural networks.
Developing models according to the proposed LFER is faster
and computationally cheap than developing traditional QSPR
models because the process of the variable selection is not
required. Moreover, the proposed LFER is quite simple and can
be easily used by the researchers across various fields, while expert
knowledge is required for developing robust artificial neural
networks, such as the knowledge in choosing the most
appropriate approach. Thus, the method developed in study has
obvious advantages over the traditional QSPR construction
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method. Thermodynamics-based theoretical derivation can be
used to solve many problems that are hard to be solved by
using mathematical and statistical tools. In addition, results in
this study demonstrate that there are quantitative relationships
between the properties related to thermodynamics, suggesting that
many properties can be accurately predicted from other properties.

Future Works
The theoretical derivation in this study is based on the
assumption that solutes have similar interactions with their
environments, which requires that the environments for
the properties are flexible or the properties have little
relationship with the conformation or orientations of solutes.
Thus, the present LFER may not work well in predicting the
binding affinities of ligands because the binding sites of proteins
are not flexible. If the environment for a property is rigid (e.g.,
the binding sites of proteins), the model for predicting the
property should consider H-bond interactions individually,
rather than the overall H-bond interactions. In our further
study, we will explore how to develop models for the
properties related to rigid environments, which can be used
to develop scoring functions for predicting protein-ligand
binding affinities and develop QSAR models for screening
databases of ligands. Furthermore, in this study, we
demonstrated to effectiveness of the LFER for predicting the
properties of neutral organic compounds. If a dataset contains
ionizable compounds, it will be necessary to include molecular
descriptors for the ionized forms. Although several approaches
currently exist for considering the effects of ionization on
various molecular properties (Li et al., 2006; Zhang et al.,
2017), our future work with involve attempts to adapt the
proposed LFER for use in these situations.

CONCLUSION

In this study, we used a thermodynamics-based theoretical
derivation to develop a general LFER for accurately predicting

various properties from partition coefficients. The theoretical
derivation ensures that many specific properties can be
accurately quantified with the molecular descriptors in the
LFER. It overcomes the shortages of constructing QSPR
models by using mathematical and statistical tools. It is
expected that the thermodynamics-based theoretical derivation
can be used to solve many difficult problems, including the
accurate prediction of protein-ligand binding affinities.
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