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Salmonella enterica serovar Typhimurium (S. Typhimurium) is a leading cause of foodborne illness worldwide. Over the past
two decades, strains resistant to antibiotics have begun to emerge, highlighting the need for alternative treatment strategies such
as bacteriophage therapy. Here, we present the complete genome of Mushroom, an S. Typhimurium myophage.
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Salmonella enterica serovar Typhimurium (S. Typhimurium) is
a leading cause of gastroenteritis in humans worldwide. With

growing data that shows increasing drug resistance of S. Typhi-
murium, other alternatives, like bacteriophage therapy, are
needed (1, 2). Future application of phage therapy in the United
States will most certainly require detailed knowledge of the phages
utilized (3). Hence, we present the complete genome of S. Typhi-
murium myophage Mushroom. Mushroom is a component of
IntestiPhage (developed by the George Eliava Institute of Bacte-
riophages, Microbiology and Virology, Tbilisi, Georgia), a cock-
tail of 23 phages active against several enterobacteria strains (4).

Bacteriophage Mushroom was isolated from IntestiPhage (Lot
#M2-401). DNA was sequenced in an Illumina MiSeq 250-bp
paired-end run with a 550-bp insert library at the Genomic Se-
quencing and Analysis Facility at the University of Texas (Austin,
TX). Quality controlled, trimmed reads were assembled to a single
contig at 27.3-fold coverage using Velvet version 1.2.10. The con-
tig was confirmed to be complete by PCR using primers that
face the upstream and downstream ends of the DNA. Products
from the PCR amplification of the junctions of concatemeric
molecules were sequenced by Sanger sequencing (Eton Biosci-
ence, San Diego, CA). Genes were predicted using GeneMarkS (5)
and corrected using software tools available on the Center for
Phage Technology Galaxy instance (https://cpt.tamu.edu/galaxy
-public/). Morphology was determined using transmission elec-
tron microscopy performed at the Texas A&M University Micros-
copy and Imaging Center.

Mushroom has an 87,709-bp genome with a G�C content of
39.03% and a coding density of 88.5%. Mushroom shares 48.6%
nucleotide sequence identity with Salmonella phage Felix O1
(NC_005282) as determined by Emboss Stretcher (6). It is a mem-
ber of the “Lytic 15” phage cluster as defined by Grose and Casjens
(7). The G�C content was lower compared to the host (52.2%), a
common feature of Felix O1-like phages (8, 9). Mushroom en-
codes twenty-three tRNAs, two of which are pseudo tRNA genes
(10, 11). Interestingly, Mushroom does not encode the tmRNA,
ssrA, encoded by Felix O1 (10). For annotation purposes, the ge-
nome has been opened to rIIa.

Mushroom encodes core genes representative of Felix O1-like
phages involved in biosynthesis, replication, morphogenesis, and
lysis (8, 12). Unlike the DNA polymerase of Felix O1, however,
which is encoded by a single gene, the DNA polymerase of Mush-
room exists as two genes whose products align with the single
protein of Felix O1 (8). The region separating the two polymerase
genes in Mushroom is 383-bp in length and has no obvious open
reading frame corresponding to a homing endonuclease. The an-
aerobic ribonucleoside diphosphate reductase of Mushroom is
disrupted by a free-standing homing endonuclease, as is seen in
the ribonucleoside reductase of bacteriophage T4 (13). FelixO1,
on the other hand has no reported T4-like intervening homing
endonucleases (8). Mushroom encodes a T4-like lysis system with
a soluble lysozyme, a class-III holin (1 transmembrane domain;
N-in, C-out topology), and imbedded inner and outer membrane
spanin proteins (14–16).

Nucleotide sequence accession number. The genome se-
quence of Mushroom was contributed as accession no. KP143762
to GenBank.
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