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Introduction
Delayed-release dimethyl fumarate (DMF), an approved 
oral therapy for relapsing forms of MS (RMS), has 
demonstrated sustained efficacy and a favorable bene-
fit-risk profile.1–3 As of January 31, 2020, more than 
445,000 patients have been treated with DMF world-
wide, representing more than 875,000 patient-years of 
exposure. Of these, 6335 patients (14,241 patient-years) 
were from clinical trials. (Biogen, data on file). DMF 
treatment induces absolute lymphocyte count (ALC) 
reductions, typically in the first year of treatment, 

followed by stabilization.4 Mean ALC reduction is 
~30% from baseline and most patients remain above the 
lower limit of normal (LLN) (0.91 × 109/L).5 Grade 3/
severe lymphopenia (ALC < 0.5 × 109/L) persisting 
for ⩾ 6 months develops in ~2% of patients.5 Absolute 
T-cell counts are more strongly impacted by DMF than 
B or natural killer (NK) cells, although most cell types 
are reduced to some degree. Within the T-cell compart-
ment, CD8 + cells are reduced more profoundly than 
CD4 + cells.6–12 Despite ALC changes, DMF-treated 
patients mount an effective immune response to 
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vaccination, including both T-cell–dependent and 
T-cell–independent antigens, comparable to interferon 
(IFN)-treated patients.13 Although ALC does not appear 
to directly correlate with clinical response, functional 
shifts in circulating lymphocyte subsets favoring naive 
and anti-inflammatory phenotypes likely contribute to 
the effect of DMF.1,2,14,15

Previous immunophenotyping studies have been 
either cross-sectional6,9 or longitudinal, with few 
patients10 or minimal data-collection time points.16 
PROCLAIM, the first large longitudinal study 
designed to assess the effects of DMF on lymphocyte 
subset counts and immunoglobulin (Ig) isotypes, may 
provide greater insight into DMF’s therapeutic benefit 
and inform the safety profile.

Methods

Study design
PROCLAIM (EUDRA CT 2015-001973-42) was a 
prospective, open-label, multicenter, phase 3b study 
assessing changes in immune cell compartments through 
2 years of DMF treatment. The study period consisted of 
a screening visit, a 96-week treatment period, and a final 
follow-up visit 4 weeks after the last dose of DMF. All 
patients received 120 mg twice daily (BID) for the first 
7 days, followed by a maintenance dose of 240 mg BID 
thereafter (approved dosing regimen for MS). Temporary 
dose reduction to 120 mg BID through 4 weeks was per-
mitted for individuals who did not tolerate the mainte-
nance dose due to flushing or gastrointestinal disturbance. 
Treatment compliance was monitored by study person-
nel via capsule counting at visits. Blood samples were 
collected at baseline and Weeks 4, 8, 12, 24, 36, 48, 72, 
and 96.

Patients
Eligible patients were aged 18–65 years with a con-
firmed diagnosis of RMS.17 Key exclusion criteria 
were positive serology for HIV or hepatitis B/C; his-
tory of drug or alcohol abuse within 1 year before 
screening; clinically significant comorbid disorders 
or conditions, including infectious illness; leuko-
cytes < 3.5 × 109/L; ALC values ⩽ LLN (0.91 × 
109/L); or prior treatment with cladribine, mitox-
antrone, total lymphoid irradiation, alemtuzumab, 
T-cell or T cell–receptor vaccination, or any therapeu-
tic monoclonal antibody (except natalizumab or dacli-
zumab). Concomitant treatment with alternative MS 
drugs or systemic steroid therapy was not allowed 
unless approved by the medical monitor for treatment 
of a protocol-defined relapse.

Study objectives and endpoints
The study objectives were to evaluate the effect of DMF 
on lymphocyte subset counts (primary) and the pharma-
codynamic effect of DMF on ALCs and Ig isotypes (sec-
ondary) in patients with RMS during the first 48 weeks 
of treatment. Exploratory study objectives included 
evaluation of safety and tolerability over 96 weeks; lym-
phocyte subset counts through 96 weeks of DMF treat-
ment; the relationship between changes in ALC and 
lymphocyte subsets and MS disease activity (measured 
by clinical relapse; annualized relapse rate (ARR)) or 
sustained clinical disease progression (CDP) (measured 
by the Expanded Disability Status Scale (EDSS)); and 
ad hoc evaluations of hypothesis-driven biomarker anal-
yses, including neurofilament light chain(NfL).

ALC, immune cell phenotyping, and Igs
ALC was measured using complete blood cell differ-
ential. Changes in lymphocyte subsets were assessed 
by flow cytometry utilizing cell surface markers 
(Supplementary Table 1). Serum Ig levels (total IgA, 
IgG, IgM, and subclasses IgG1, IgG2, IgG3, and 
IgG4) were measured using an immunoturbidimetric 
method on the Integra/Plus (Roche Diagnostics, 
Basel, Switzerland) or by immunologic methods 
(LOINC®, LabCorp, Burlington, North Carolina).

Clinical assessments
Safety outcomes were monitored throughout the study 
and safety assessments were performed at the post-treat-
ment follow-up visit. Relapses were defined as new or 
recurrent neurologic symptoms not associated with fever 
or infection, lasting ⩾ 24 hours, accompanied by objec-
tive neurological findings and confirmed by a neurolo-
gist. Sustained CDP was defined as ⩾ 1.0-point increase 
on the EDSS from a baseline score of ⩾ 1.0, sustained 
for 24 weeks, or ⩾ 1.5-point increase on the EDSS from 
a baseline EDSS score of 0, sustained for 24 weeks.

ALCs were categorized as follows: always > LLN, 
0.91 × 109/L; mild lymphopenia, < 0.91 × 109/L 
anytime, excluding patients with ALC < 0.8 × 109/L 
for ⩾ 6 months; moderate prolonged lymphopenia, 
⩾0.5 × 109/L to <0.8 × 109/L for ⩾ 6 months; and 
severe prolonged lymphopenia, <0.5 × 109/L 
for ⩾ 6 months.

ALCs were stratified by age at baseline; younger 
patients (<50 years) versus older patients (⩾50 years). 
This cutoff was selected in order to explore the immune 
function in patients who may be prone to decreased 
immune function and immunosenescence based on age, 
while maintaining a sufficient sample size.18,19
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Ad hoc analysis
Serum NfL (sNfL) levels were measured using single 
molecule array (Simoa™ NF-light® Advantage assay, 
Quanterix, Billerica, MA). Two patients with 
extremely high (> 10 standard deviations (SDs)) 
baseline sNfL values were excluded.

Statistical analyses
All patients who received ⩾ 1 dose of study treatment 
were included in safety and relapse assessments. All 
patients who received ⩾ 1 dose of study treatment and 
had ⩾ 1 post-baseline pharmacodynamic measurement 

were included in the immune cell phenotyping analysis; 
EDSS was assessed in those with ⩾ 1 post-baseline 
EDSS measurement. For the primary endpoint, the 
actual value, change, and percent change from baseline 
(CFB) were descriptively summarized. The Wilcoxon 
signed-rank test was used to assess if changes were dif-
ferent from zero. For secondary analyses, changes in 
levels of Ig isotypes and ALCs were descriptively sum-
marized. Mixed-effect model repeated measurement 
assessed CFB in the Ig isotypes, and ALC CFB to Week 
96 as the dependent variable. The model included visit, 
corresponding baseline value, age, and sex as fixed 
effects, and an unstructured variance-covariance matrix 
structure. Least squares mean, standard error, and 95% 
confidence intervals were reported for each visit.

ARR was estimated from a negative binomial regres-
sion model, adjusted for baseline covariates. No 
imputation was used for missing data; the missing 
values were skipped. The observed data were used for 
all analyses. EDSS metrics and the proportion of 
patients with CDP were descriptively summarized. 
All adverse events (AEs) were included.

Results

Study population
A total of 218 patients were enrolled from six coun-
tries (Table 1 and Supplementary Figure 1); 158 (72%) 
patients completed the study and 60 (28%) withdrew, 
primarily due to withdrawn consent (n = 22) and AEs 
(n = 17). Five patients withdrew due to lymphopenia: 
one with severe lymphopenia and four with moderate. 
The mean (SD) age in PROCLAIM was 42 (11) years 
and 69% of patients were female (Table 1). Patients 
were older in PROCLAIM than in the pivotal phase 3 
clinical trials DEFINE/CONFIRM (NCT00420212/
NCT00451451): 27% were aged ⩾ 50 years in 
PROCLAIM (Table 1) compared with 13% in the 
DMF 240 mg group in DEFINE/CONFIRM.1,2 Other 
demographic variables were consistent with the phase 
3 studies.1,2

DMF treatment reduced lymphocyte subset counts 
together with temporal changes in ALC
ALC decreases were evident as early as 8 weeks after 
DMF treatment initiation, continuing to decline for 
6–12 months, then stabilizing; median ALC CFB was 
–41% by Week 48 and –39% by Week 96 (baseline, 
1.82 × 109/L; Week 48, 1.06 × 109/L; and Week 96, 
1.05 × 109/L) (Figure 1(a)). When stratified by 
younger patients (<50 years) versus older patients 
(⩾50 years) at baseline, median ALC CFB was –38% 

Table 1. Patient baseline demographics and disease 
characteristics.

Characteristic PROCLAIM 
N = 218

Mean ± SD age at enrollment, years 42 ± 11

Age ⩾ 50 years, n (%) 59 (27)

Female, n (%) 151 (69)

Mean ± SD body mass index 26.8 ± 7

Mean ± SD baseline lymphocyte level 
(×109/L)

 

 ALC 1.97 ± 0.71

 T cells 1.32 ± 0.54

 CD4+ T cells 0.88 ± 0.40

 CD8+ T cells 0.42 ± 0.20

 B cells 0.24 ± 0.17

 NK cells 0.18 ± 0.11

Mean ± SD time since MS diagnosis, 
years

6.9 ± 6.5

Mean ± SD number of relapses in 
prior year

0.8 ± 0.9

Median (range) baseline EDSS score 2.5 (0, 7)

Baseline EDSS score > 2.0, n (%) 121 (56)

Mean ± SD duration of prior 
treatment, weeks

82 ± 27

Any prior DMT, n (%)

 No prior DMT 69 (32)

 At least one prior DMT 149 (68)

  Interferon beta-1a 68 (31)

  Glatiramer acetate 57 (26)

  Interferon beta-1b 30 (14)

  Natalizumab 8 (4)
  Othera 65 (30)

ALC: absolute lymphocyte count; DMT: disease-modifying 
therapy; EDSS: Expanded Disability Status Scale; NK: natural 
killer; SD: standard deviation.
aOther DMTs used by ⩾ 3 patients: fingolimod (14), 
investigational drug (14), methylprednisolone (11), blinded 
therapy (7), dimethyl fumarate (5), interferon beta (5), 
fampridine (4), peginterferon beta-1a (3), teriflunomide (3).
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and –51% by Week 96, respectively. After 2 years of 
DMF treatment, 110/218 (50%) patients had never 
developed lymphopenia (all ALCs remained > LLN), 
69 (32%) had mild lymphopenia, 32 (15%) had mod-
erate prolonged lymphopenia, and 1 (< 1%) had 
severe prolonged lymphopenia.

The degree of change in lymphocyte subset counts 
correlated with changes in ALC; CD4 + and CD8 + T, 
CD19 + B, and NK cell median CFB to Week 48 were 
–42%, –55%, –30%, and –26% (all p < 0.0001), 
respectively (Figure 1(b)). The changes were sus-
tained through Week 96 (Figure 1(a)). Using a sequen-
tial, cross-sectional analysis of correlations over 
2 years, changes in T-cell, B-cell, and NK cell subsets 
generally correlated with changes in ALC; the strong-
est correlations were observed in T cells (Pearson’s 
correlation coefficient range, 0.798–0.911; p < 0.001), 
though all correlations reached statistical signifi-
cance. Among T cells, both CD4 + and CD8 + T cells 
correlated highly with ALC from baseline through 
Week 96 (Pearson’s correlation coefficient range, 
0.559–0.880; p < 0.001) (Figure 2(a)). The correla-
tions remained strong when stratified by age < 50 
and ⩾ 50 years at baseline (Figures 2(b) and (c)).

DMF drives a general shift toward a naive/anti-
inflammatory repertoire
Decreased total CD19 + B-cell counts were observed at 
Week 4 after treatment initiation (–10% CFB; 
p < 0.001), whereas reductions were observed for ALCs 

and CD4 + and CD8 + T-cell subsets by Week 8. Total  
B cells reached nadir at Week 24 (–31% CFB; 
p < 0.0001). After Week 48, a gradual increase in total 
B cells was observed, though levels did not return to 
baseline, remaining decreased through Week 96 (–13% 
CFB; p < 0.05). Total CD14 + monocytes appeared sta-
ble during DMF treatment, with modest reductions dur-
ing Year 2 (median CFB at Week 96: –11.6%, p = 0.005). 
Circulating classical monocytes (CD14 + CD16-) 
remained generally stable during the treatment period 
(–0.88%, p = 0.948 median CFB to Week 96) while the 
nonclassical (CD14DIMCD16 +) monocyte numbers 
declined beginning at Week 12 (median CFB: –25.5%, 
p < 0.0001) and remained at a lower level for the dura-
tion of the treatment period. As measured by flow 
cytometry, granulocytes slightly increased at Week 96 
(median CFB: 13% (p < 0.001). When assessed by 
hematology, neutrophil shifts of potential clinical sig-
nificance were infrequently reported (< 1.5 cells × 
109/L: 11/218 patients; ⩽ 1.0 cell × 109/L:  
0 patients; ⩾ 12.0 cells × 109/L: 10/218 patients).

At Week 96, the memory compartment was selectively 
reduced compared with naive cells for CD4 + and 
CD8 + T cells and B cells. CFB: CD4 + CD45RA–, –70% 
(p < 0.0001), versus naive CD4 + CD45RA + CCR7 + 

 T cells, –16% (p < 0.005); CD8 + CD45RA–, –85% 
(p < 0.0001), versus naive CD8 + CD45RA + CCR7 + 

 T cells, –55% (p < 0.0001); and CD27 + IgD + B cells (non- 
class switched) –53% (p < 0.0001), and CD27 + IgD–/ 
B cells (class switched), –71% (p < 0.0001), versus 
naive CD27–IgD+ B cells, –16% (p < 0.05) (Figure 1(b)). 
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Figure 1. Median percentage change in ALC and major lymphocyte subsets with DMF treatment over time.
For (a), ALC is from the CBC, with unit × 109/L. For both (a) and (b), data were collected by flow cytometry. (a) Median ALC is shown 
for all patients in the analysis population (N = 218) and median percent change is shown. (b) Median percent change is shown.
ALC: absolute lymphocyte count; DMF: delayed-release dimethyl fumarate; Ig: immunoglobulin; NK: natural killer; Q: quartile;  
Th: T helper.
****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05.

https://journals.sagepub.com/home/msj


EE Longbrake, Y Mao-Draayer et al.

journals.sagepub.com/home/msj 887

Only immunoregulatory CD56bright NK and transitional 
CD24hiCD38hi B-cell numbers increased over 96 weeks: 
+15% CFB (p < 0.001) and +50% CFB (p < 0.0001), 
respectively (Figure 1(b)).

Compartmental relative shifts within lymphocyte 
subsets
When relative changes were assessed within the total 
T-cell compartment, naive CD4 + and CD8 + T-cell 
populations demonstrated a relative increase, whereas 
CD4 + and CD8 + central memory and effector mem-
ory populations decreased (Figure 3). Within T helper 
(Th) cell subsets, there was a relative decline in pro-
inflammatory Th1 and Th17 cells, a relative increase 
in anti-inflammatory Th2 cells, and stable total regu-
latory T cells. The relative proportion of regulatory  
T cells remained stable compared with effector T cells. 
The relative proportion of the naive and transitional 
B-cell populations increased, compared with a 
decrease in the proportion of memory B cells (Figure 3).  
There was a relative increase in the immunoregula-
tory CD56bright NK cell population.

Igs remain stable during DMF treatment
At baseline, mean (SD) total IgM, IgA, and IgG lev-
els were 133 (71) mg/dL, 212 (91) mg/dL, and 1051 
(233) mg/dL, respectively. Total IgM, IgA, IgG, and 
IgG1-4 subclass levels remained stable over 2 years 
of DMF treatment (Figure 4(a)). Ig levels remained 
stable during the study whether patients experienced 

relapses (n = 41) or not (n = 170) while on DMF treat-
ment (Figure 4(b)). Baseline serum IgM, IgA, or IgG 
levels were below the LLN in 7% (16/218) of 
patients. Most of these patients had been previously 
treated with ⩾ 1 DMTs, although three had no previ-
ous DMT exposure. Seven of the 16 patients with 
low baseline Ig levels reached a normal value during 
DMF treatment. In general, when patients were strat-
ified by ALC category, baseline Ig concentrations 
and median CFB to Weeks 48 and 96 were similar 
across categories. Data were available for only one 
patient with severe prolonged lymphopenia and 
therefore this category was not included in the 
analysis.

Safety outcomes
AEs and serious AEs were reported in 185/218 (85%) 
and 26/218 (12%) patients, respectively (Table 2), con-
sistent with the known safety profile of DMF;1,2 flush-
ing was the most common (46%). Treatment-emergent 
infections were reported in 89/218 (41%) patients. 
When stratified by ALC subgroup, a similar percentage 
of infections were reported across subgroups: 
0.5 ⩽ ALC < 0.8 × 109/L (14/32 (44%) patients);  
0.8 × 109/L ⩽ ALC < LLN (29/69 (42%) and ALC ⩾ LLN 
(43/110 (39%)). No infections were reported in the patient 
with severe, prolonged lymphopenia.

Serious treatment-emergent infections (nasopharyngi-
tis and cellulitis) were reported in two patients, neither 
considered related to study treatment. Nasopharyngitis 
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Figure 2. CD4 + and CD8 + T cells are highly correlated with ALC at all time points, regardless of age.
Results from this cross-sectional analysis using time points from baseline to Week 96 are shown. Panel (a) shows the correlation between 
ALC and either CD4 + or CD8 + T cells; panel (b) shows the correlation between ALC and either CD4 + T cells in patients < 50 years 
of age, or CD4 + T cells in patients ⩾ 50 years of age; panel (c) shows the correlation between ALC and either CD8 + T cells in 
patients < 50 years of age or CD8 + T cells in patients ⩾ 50 years of age. For all panels, p < 0.001 at all time points. ALC was determined 
from the complete blood count with unit × 109/L, n = number of patients with both ALC and TBNK subset data at the specified visits. 
The correlation coefficient was Pearson’s rho; p-value = probability of obtaining a sample correlation coefficient more extreme than the 
value observed, under the null hypothesis that the two variables are not correlated.
ALC: absolute lymphocyte count; DMF: dimethyl fumarate.
A correlation of > 0.7 indicates a strong positive relationship (shaded area).
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occurred in a patient with mild lymphopenia (ALC  
0.8 × 109/L to < LLN) and cellulitis occurred in a 
patient without lymphopenia (ALC ⩾ LLN); IgG con-
centrations were > LLN (700 mg/dL) for both patients. 
A malignancy, stage 1 breast cancer, was reported in 
one patient, considered unrelated to study treatment. 
No deaths or treatment-emergent opportunistic infec-
tions were reported.

ALC is not a marker of treatment response
The overall unadjusted ARR was 0.153. When patients 
were stratified into quartiles by percentage CFB in ALC 
over 96 weeks, ARR for each quartile was generally 
consistent, relapse rates were low across all groups, and 
there were no patterns associating ALC change with 
relapse rate (Figure 5(a)). Similarly, changes in EDSS 
score and the proportion of relapse-free patients were 
not associated with ALC quartiles (Figure 5(b) and (c)). 
The low rate of disability progression observed in this 
study (13 patients with CDP events) prevented assess-
ment of CDP by ALC quartile.

Overall mean (SD) percentage change in sNfL from 
baseline to Week 96 was –19% (34). When stratified 
by age < 50 and ⩾ 50 years at baseline, sNfL mean 
percentage CFB to Week 96 were –22% (34) and –8% 
(33), respectively. Mean percentage change in sNfL 
did not vary significantly based on on-treatment 
ALCs (always ⩾ LLN, –17%; moderate prolonged 
lymphopenia, –21%; all other lymphopenia, –17%). 
Similarly, sNfL mean percent CFB to Week 96 were 
similar regardless of CD4 + and CD8 + levels: CD4 +  
< 200 cells/mm3 (n = 24), –15%, versus CD4 +  
⩾ 200 cells/mm3 (n = 141), –19%, and CD8 + < 100 
cells/mm3 (n = 59), –20%, versus CD8 + ⩾ 200 
cells/mm3 (n = 106), –18%.

Discussion
The PROCLAIM study results demonstrate that DMF 
treatment of up to 2 years produced temporal changes in 
ALC and lymphocyte subsets, consistent with the known 
effect of DMF treatment. A median 39% ALC reduction 
from baseline to Week 96 and stabilization ⩾ LLN for 
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most patients were observed; this decline is slightly 
higher than that observed in previous phase 3 and exten-
sion studies1,2,5 but is similar to an observational study of 
patients who were also older at baseline.20 The number 
of circulating lymphocytes within most major subsets, 
including CD4 + and CD8 + T, CD19 + B, and CD56 +  
NK cells, declined following DMF initiation, consistent 
with overall ALC. Overall, monocytes were generally 
stable, which is expected given that classical monocytes, 
which comprise the majority of the compartment, were 
not changed with treatment. Interestingly, the nonclassi-
cal monocytes, which have been implicated in various 
inflammatory autoimmune disorders,21,22 declined and 

remained low. While likely not a primary driver of DMF 
efficacy, this change may be another reflection of the 
mechanism by which DMF shifts circulating cells from 
an inflammatory to an anti-inflammatory repertoire. 
Granulocytes, specifically neutrophils, were generally 
not decreased. These findings are consistent with clinical 
observations of DMF-treated patients in that the rate of 
serious and opportunistic infection is generally low. The 
relative proportion of regulatory T cells remained stable 
compared with effector T cells, suggesting immune tol-
erance mechanisms were maintained. Increased immu-
noregulatory CD56bright NK cells with DMF treatment 
confirm previous observations.23,24 Overall, DMF treat-
ment induced a general shift toward a circulating naive/
anti-inflammatory cell profile and away from memory/
pro-inflammatory phenotypes, in both the T-cell and 
B-cell compartments. Similar reductions in memory  
B cells have been previously observed.9,14 including 
concomitant reductions in the pro-inflammatory 
cytokines granulocyte macrophage colony-stimulating 
factor (GM-CSF), tumor necrosis factor (TNF)-α, and 
IL-6.15,25 This shift was established within the first 
3–6 months of treatment and maintained over 2 years.

Total IgA, IgG, IgM, and subclass IgG1–4 levels 
remained stable over 96 weeks of DMF treatment, 
regardless of ALCs, and were similar to Ig levels in 
healthy adult and MS populations.26,27 This is consistent 
with prior studies demonstrating that DMF-treated 
patients mount an effective T cell–independent and  
T cell–dependent immune response to recall and neoan-
tigens comparable with that of IFN-treated patients.13 
Previous IFN studies have shown no decrease in sero-
logical response to vaccination when vaccines were co-
administered during treatment with IFN;28,29 therefore, 
the similar rise in immunoglobulin levels in patients who 
were vaccinated while treated with IFN or DMF sug-
gests similar seroprotection potential for the two agents. 
In PROCLAIM, which included patients slightly older 
at baseline than pivotal trials1,2 and those previously 
treated with DMTs, there was no change in serum IgG 
levels, in contrast to the decrease noted during treatment 
with other DMTs.27,30

These data do not support changes in ALC as a bio-
marker of treatment efficacy, consistent with previous 
reports.5 Although T-cell numbers, specifically 
CD8 + T cells, are impacted by DMF treatment,6–12 the 
magnitude of the reduction does not correlate with 
relapse rate or changes in EDSS score. This prospec-
tive study and prior observational studies agree that 
relapse status, unadjusted ARRs, and change in EDSS 
scores were similar across ALC subgroups. Ig iso-
types were also not differentially affected by relapse 

Table 2. Adverse events.

Patients, n (%) PROCLAIM 
N = 218

Treatment-emergent adverse events 185 (85)

Treatment-emergent infections 89 (41)

 Nasopharyngitis 33 (15)

 Upper respiratory tract infection 28 (13)

 Sinusitis 10 (5)

 Bronchitis 8 (4)

 Urinary tract infection 8 (4)

 Influenza 7 (3)

 Gastroenteritis viral 6 (3)

 Pharyngitis 6 (3)

Most common adverse event (⩾ 10%)a

 Flushing 100 (46)

 MS relapse 48 (22)

 Nasopharyngitis 33 (15)

 Diarrhea 28 (13)

 Upper respiratory tract infection 28 (13)

 Fatigue 27 (12)

 Abdominal pain 22 (10)

 Upper abdominal pain 22 (10)

 Nausea 22 (10)

Adverse events leading to study drug 
discontinuation

28 (13)

Deaths 0

Serious adverse events 26 (12)

Most common serious adverse events

(⩾ 1%), n (%)

 MS relapse 16 (7)

Adverse events of special interest

 Serious infections 2 (< 1)

 Malignancies 1 (< 1)

 Opportunistic infections 0
 Progressive multifocal 
 leukoencephalopathy

0

aTreatment-emergent events by preferred term.
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status or disability progression. The exploratory 
marker sNfL was decreased by DMF treatment, simi-
lar to other studies,34 but the magnitude of reduction 
was not associated with ALC. Only younger age was 
associated with higher baseline ALC.

Despite ALC changes not being indicative of the mag-
nitude of treatment response, it is purported that changes 
in the peripheral lymphocyte compartment toward an 
anti-inflammatory phenotype may contribute to 

reducing disease activity in DMF-treated patients with 
RMS.4,11,14,15,35 In addition, a decrease in interleukin-
17–producing CD8 + T cells in DMF-treated patients,36 
together with the reduced IFN-gamma production by 
CD4 + T cells,37,38 dendritic cells, and monocytes,37,39,40 
and greater reduction of CD8 + T cells,6–11 suggests 
DMF impacts MS through multiple mechanisms.

The PROCLAIM dataset provides additional context 
for the safety implications of T-cell subset changes in 

IgM relapse IgM no relapse

0

50

100

150

200

250

M
ea

n 
(S

D
) I

gM
, m

g/
dL

LLN

0 12 24 36 48 72 96
Week

0 12 24 36 48 72 96
Week

IgM IgA

0

100

200

300

IgG

0

500

1000

1500

2000

Reference values are shown in gray

IgG1 IgG2 IgG3 IgG4

M
ea

n 
(S

D
) I

gs
, m

g/
dL

M
ea

n 
(S

D
) I

gs
, m

g/
dL

0 12 24 36 48 72 96 0 12 24 36 48 72 96 0 12 24 36 48 72 96

0

200

400

600

800

1000

M
ea

n 
(S

D
) I

gG
1,

 m
g/

dL

0

200

400

600

800
M

ea
n 

(S
D

) I
gG

2,
 m

g/
dL

0

40

80

120

160

200

M
ea

n 
(S

D
) I

gG
3,

 m
g/

dL
0

20

40

60

80

100

M
ea

n 
(S

D
) I

gG
4,

 m
g/

dL

0 12 24 36 48 72 96 0 12 24 36 48 72 96 0 12 24 36 48 72 96 0 12 24 36

Week Week Week

Week Week Week Week
48 72 96

(a)

(b)

0

100

200

300

400

M
ea

n 
(S

D
) I

gA
, m

g/
dL

LLN

IgA relapse IgA no relapse

0 12 24 36 48 72 96
Week

0 12 24 36 48 72 96
Week

0

500

1000

1500

2000

M
ea

n 
(S

D
) I

gG
, m

g/
dL

LLN

IgG relapse IgG no relapse

0 12 24 36 48 72 96
Week

0 12 24 36 48 72 96
Week

Figure 4. Mean Ig levels (a) over time and (b) in patients with or without relapse during delayed-release dimethyl 
fumarate treatment.
IgM, primary response; IgA, mucosal response; IgG, main Ig during secondary immune response. IgG subclasses: IgG1, induced 
by antibody responses to soluble protein antigens and membrane proteins; IgG2, IgG response to bacterial capsular polysaccharide 
antigens; IgG3, particularly effective in the induction of effector function, typically first response during viral infections; IgG4, induced 
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Ig: immunoglobulin; LLN: lower limit of normal; SD: standard deviation.
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DMF-treated patients. No deaths or treatment-emer-
gent opportunistic infections were reported over the 
2-year study period. Rates of AEs were similar across 
all ALCs, consistent with the known safety profile of 

DMF; rates of serious AEs were low. Taken together 
with the strong correlation between ALC and T-cell 
subsets, these data continue to support that additional 
monitoring of T-cell subsets is not required for safety 
surveillance in routine clinical practice for DMF-
treated patients.11 However, the correlation coeffi-
cient is not 1.0; therefore, a small proportion of 
patients will have lower than expected T-cell subset 
counts despite normal ALCs.

To our knowledge, PROCLAIM is the first large pro-
spective longitudinal study evaluating immunopheno-
typic changes among patients treated with DMF. 
Exclusion criteria for this study were limited, allow-
ing enrollment of patients of a wider age spectrum 
with prior exposure to DMT. The study population 
therefore more closely reflects clinical practice, and 
the data reported here correspond well with the obser-
vational data previously reported. The discontinua-
tion rate (28%) in PROCLAIM was higher than the 
assumption of 10% but in line with the pivotal clinical 
trials (31% and 30%).

This study was not powered to assess changes that 
occur in only a small percentage of patients, for exam-
ple., 2%–3% of patients with severe prolonged lym-
phopenia; this population has been assessed in other 
studies.11,41 Moreover, this open-label prospective 
study did not include a comparator group, limiting the 
interpretation of some results. Disease activity at 
baseline was not controlled for in this study and only 
13 patients experienced disability progression, limit-
ing conclusions for changes in ALC in relation to dis-
ease activity. The clinical significance of this study is 
also limited by the lack of MRI data.

Conclusion
DMF modulates a shift in circulating lymphocytes 
away from memory cells and toward a naive reper-
toire that does not impair protective humoral immu-
nity. This may contribute to the therapeutic benefits of 
DMF in MS. Overall, the relative proportion of naive 
and anti-inflammatory–type (Th2-enriched) cells 
increase, whereas central and effector memory and 
pro-inflammatory–type (Th17) cells decrease over 
2 years of DMF treatment. These shifts do not affect 
Ig isotype concentrations. The magnitude of DMF-
mediated changes in ALC were not associated with 
greater efficacy or increases in serious infections, as 
similarly noted in patients treated with DMF over 
many years.4,35 Additional T-cell subset monitoring is 
not required for safety surveillance in routine clinical 
practice based on the longitudinal correlation between 
T cells and ALC, regardless of T-cell subset type or 
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Figure 5. (a) Adjusted ARR, (b) change in EDSS score, 
and (c) patients with zero relapses by ALC change, from 
baseline to Week 96. (a) Both protocol-defined and non-
protocol–defined relapses are included in the analysis. Based 
on negative binomial regression, adjusted for baseline EDSS 
score (⩽ 2.0 vs > 2.0) and baseline age (< 40 vs ⩾ 40 years). 
If the negative binomial regression model did not converge, a 
Poisson regression model with the same covariates was used. 
(b) Includes patients in the clinical assessment population 
with a baseline EDSS score (n = 183). (c) Percentage of 
patients with 0 relapses from baseline to Week 96.
ALC: absolute lymphocyte count; ARR: annualized relapse rate; 
CI: confidence interval; EDSS: Expanded Disability Status Scale; 
Q: quartile; RR: rate ratio; SD: standard deviation.
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age. Overall, the lymphocyte subset changes and Ig 
stability observed, together with the safety profile, 
indicate that DMF is generally well tolerated as evi-
denced by 72% of patients remaining on the study at 
2 years. Protective humoral immune function is main-
tained over 96 weeks of treatment.
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