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Abstract: Events occurring with a frequency described by power laws, within a certain range of
validity, are very common in natural systems. In many of them, it is possible to associate an energy
spectrum and one can show that these types of phenomena are intimately related to Tsallis entropy
Sq. The relevant parameters become: (i) The entropic index q, which is directly related to the power
of the corresponding distribution; (ii) The ground-state energy ε0, in terms of which all energies are
rescaled. One verifies that the corresponding processes take place at a temperature Tq with kTq ∝ ε0

(i.e., isothermal processes, for a given q), in analogy with those in the class of self-organized criticality,
which are known to occur at fixed temperatures. Typical examples are analyzed, like earthquakes,
avalanches, and forest fires, and in some of them, the entropic index q and value of Tq are estimated.
The knowledge of the associated entropic form opens the possibility for a deeper understanding of
such phenomena, particularly by using information theory and optimization procedures.

Keywords: self-organized criticality; generalized entropies; nonextensive thermostatistics;
information theory
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1. Introduction

Power laws are ubiquitous in many areas of knowledge, emerging in economics, natural
and social sciences, among others [1]. In the latest years, a particular interest has been given to
frequency of events, which very often follow power laws: (i) In humanities, the Zipf’s law states
that the relative word frequency in a given text is inversely proportional to its rank (defined as its
position in a rank of decreasing frequency); (ii) In natural sciences, the frequency of earthquakes
with a magnitude larger than a certain value m, plotted versus m, leads to the Gutenberg–Richter
law [2]; furthermore, the frequency of avalanches, as well as of forest fires, of a given size l, plotted
versus l, yield power laws [1]. Simple dynamic scale-free models, without tuning of a control
parameter, but sharing many features of the critical point in a standard phase transition, like long-range
correlations, have been introduced to approach theoretically the types of phenomena in examples (ii).
For these reasons, the term self-organized criticality (SOC) [3] was coined, considered as the main
characteristic exhibited by these models; since then, a vast literature appeared in this area (for reviews,
see References [4–7]). Although stationary states may occur in SOC models, they are essentially
characterized by out-of-equilibrium states, and in many cases jumps between different states occur
due to energy changes; consequently, equilibrium thermodynamics does not apply to these models.
Moreover, one of the most curious aspects concerns the fact that a critical state is approached without
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a temperature-like control parameter, and one of the most relevant questions concerns which real
systems are well-described by SOC models, and under what conditions SOC applies [7].

Recently, a wide variety of entropic forms have been considered in the literature, either in the
context of information theory, or for approaching real phenomena (see, e.g., References [8–18]). Many
of these proposals recover the well-known Boltzmann–Gibbs entropy [19,20] as particular limits,
and are usually known as generalized entropic forms. In the present work we show a connection
between phenomena following power-law frequency of events and Tsallis Sq entropy [9–11]. For this
purpose, we develop a framework that could be relevant for some of the phenomena described in the
previous paragraph. In this proposal we assume the existence of equilibrium (or long-living metastable)
states, characterized by an energy spectrum {εi}, which represent notorious differences with respect
to the SOC models. The main motivation is that in many cases it is possible to define an energy-like
variable, related in some way to one of the relevant parameters of the system, e.g., the magnitude of
an earthquake, or the size of an avalanche, should be associated to some quantity of energy released.
Since these parameters obey power laws, one expects that their corresponding energies should be also
power-like distributed, leading an energy probability distribution p(ε) ∼ ε−γ, where γ ∈ <, restricted
to γ > 1, for reasons that will become clear later.

Then, from the distribution p(ε) we follow previous works, where a procedure for calculating
fundamental quantities (like the partition function) was developed, by combining information theory
and a key thermodynamical relation (see, e.g., References [21–24]). More precisely, we calculate the
internal, or more generally, average energy U and define a general entropic form satisfying basic
requirements [19,20], like being a functional that depends only on the set of probabilities. Furthermore,
imposing the fundamental relation of thermodynamics,

dU = TdS , (1)

We obtain the associated entropy and verify that the temperature should be constant,
for consistency. Curiously, the distribution p(ε) turns up to be temperature-independent,
and consequently, all average values calculated from this probability distribution become independent
of the temperature. Hence, similarly to what happens in SOC models, in the present approach the
temperature does not play a crucial role for these types of phenomena.

In the next section we review some results of References [21–24], and especially how to combine
general concepts of information theory with the fundamental relation of Equation (1), with the purpose
of deriving an equation for obtaining the entropic form from a given energy spectrum. In Section 3
we discuss energy power-law distributions, and show a peculiar behavior, namely, that through the
normalization procedure its dependence on the temperature disappears. Consequently, all quantities
derived from these distributions, like average values, do not depend on the temperature. In Section 4
we analyze data of events within the present framework, by associating the corresponding power-law
distributions with the energy distributions discussed in Section 3. Finally, in Section 5 we present our
main conclusions.

2. Combining Information Theory and Thermodynamics

Herein we review some basic results of References [21–24], which were derived by considering
a nondegenerate energy spectrum {εi}. Hence, a discrete index i will identify uniquely a state with
an energy εi, occurring with a probability pi, in such a way that the internal energy is defined as

U = ∑
i

εi pi . (2)
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Moreover, let g(pi) be an arbitrary concave smooth function of pi; we assume that the entropic
functional may be written in the form [19,20]

S({pi}) = k ∑
i

g(pi) [g(pi) = 0, if pi = 0, or pi = 1], (3)

where k is a positive constant with entropy dimensions.
Let us now consider a small change in the level populations (which may occur, e.g., due to

an infinitesimal exchange of heat); then, the probabilities {pi} will vary according to,

pi → pi + dpi, with ∑
i

dpi = 0 , (4)

with the last condition resulting from normalization (∑i pi = 1). This procedure will in turn generate
infinitesimal changes in the entropy and internal energy, and we impose the fundamental relation
of Equation (1). One obtains (up to first order in dpi) [21],

∑
i

[
εi − kTg′(pi)

]
dpi ≡∑

i
Kidpi = 0, (5)

where the prime indicates a derivative with respect to pi. As shown in Reference [21], Equations (4) and (5)
lead to just one expression for the pi and further, that all Ki should be equal. The resulting value K is
found through the normalization condition on the ensuing probability distribution (K is, in fact, related to
the partition function), to be determined by the relation,

K = εi − kTg′(pi) ⇒ g′(pi) = β(εi −K) ; (β ≡ 1/kT) . (6)

From now on we will consider, for simplicity, a continuous energy spectrum represented by
an energy probability distribution p(ε), defined in a given range of energies between a minimum value
ε0, and a maximum εm. Although the events to be studied herein are expressed in terms of discrete sets
of data, we will associate to them continuous distributions, which result from fittings of these data in
such a range, as will be defined appropriately in the following sections. In the next section we define
the probability distribution p(ε) of interest for the present work, and calculate relevant quantities;
moreover, we consider the continuous form of Equation (6) to obtain the associated entropic form.

3. Power-Law Distributions and Associated Entropy

Power-law distributions frequently appear to be valid for certain ranges of its parameters,
in variegated empirical settings pertaining to diverse disciplines [1–7]. We enlarge the scope of
our methodology by considering systems for which a strict underlying thermodynamics does not exist,
the inverse-temperature β being just a measure of the probability-distribution’s ”spread”. Let us then
consider an energy spectrum following a power-law distribution, defined in a given range of energies
between a minimum value ε0, and a maximum εm,

p(ε) =
1
Z
(βε)−γ (γ > 1; ε0 ≤ ε ≤ εm), (7)

with a non-negative ground-state energy, ε0 ≥ 0. The normalization condition,∫ εm

ε0

dε p(ε) = 1 , (8)

yields

Z =
∫ εm

ε0

dε (βε)−γ =
ε0

γ− 1
(βε0)

−γ

[
1−

(
ε0

εm

)γ−1
]

, (9)



Entropy 2018, 20, 940 4 of 12

leading to

p(ε) =
γ− 1

ε0

[
1− (ε0/εm)

γ−1
] ( ε

ε0

)−γ

, (10)

which does not depend upon β.
One should notice that, in order to obtain an appropriate power-law decay from the distribution

above one should have γ ∈ <, restricted to γ > 1. Furthermore, p(ε) presents dimensions [energy]−1,
as required by Equation (8).

One curious aspect of p(ε) in Equation (10) concerns its non-dependence on the parameter β,
which, although introduced in Equation (7), it cancelled by imposing normalization; later on, it will
be shown that the parameter β takes a constant value, for consistency. Consequently, all properties
derived from the probability distribution of Equation (10) will not allow variations on the temperature;
as an example, one has the average energy,

U =
∫ εm

ε0

dε ε p(ε) = ε0

(γ− 1)
[
1− (ε0/εm)

γ−2
]

(γ− 2)
[
1− (ε0/εm)

γ−1
] . (11)

As mentioned before, the present approach holds for any γ > 1; the particular limit γ→ 2 of the
internal energy above may be obtained through the l’Hopital rule,

U = lim
γ→2

ε0
(γ− 1) [1− exp(γ− 2) ln (ε0/εm)]

(γ− 2)
[
1− (ε0/εm)

γ−1
] = −ε0

ln (ε0/εm)

1− (ε0/εm)
. (12)

In order to deal appropriately with the continuous form of Equation (6), we define the
dimensionless quantities,

p̃(ε̃) = p(ε)ε0 ; ε̃ =
ε

ε0
(ε̃ ≥ 1) , (13)

so that Equation (10) may be expressed as

p̃(ε̃) =
ε̃ −γ

B
; B =

1
γ− 1

[
1−

(
ε0

εm

)γ−1
]
=

1
γ− 1

[
1−

(
1

ε̃m

)γ−1
]

, (14)

whereas the normalization condition becomes∫ εm

ε0

dε p(ε) =
∫ ε̃m

1
dε̃ p̃(ε̃) = 1 . (15)

The continuous form of Equation (6) becomes

g′( p̃) = β[ε0ε̃( p̃)−K] , (16)

and we are using the fact that p̃(ε̃) is of monotonic decreasing nature, so that it can be inverted,
yielding a function ε̃( p̃). Notice that Equation (16) is a first-order differential equation for g( p̃), in fact
a Bernoulli equation of zeroth-order; its solution reads,

g( p̃) = β
∫

[ε0ε̃( p̃)−K] dp̃ + C′ . (17)

Now, one can invert Equation (14), so that ε̃( p̃) = B−1/γ p̃−1/γ, and substitute this result
in Equation (17), leading to

g[ p̃(ε̃)] = −βK p̃(ε̃) + βε0B−1/γ [ p̃(ε̃)]1−1/γ

1− 1/γ
+ C′ . (18)
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Using the conditions of Equation (3), i.e., g[ p̃(ε̃)] = 0, for p̃(ε̃) = 0 and p̃(ε̃) = 1, one obtains that
C′ = 0 and

K =
B−1/γ

1− 1/γ
ε0 , (19)

showing that K is indeed related to the normalization of the probability distribution. Hence,
Equation (18) becomes

g[ p̃(ε̃)] =
βε0B−1/γ

1− 1/γ

{
− p̃(ε̃) + [ p̃(ε̃)]1−1/γ

}
, (20)

leading to

S[ p̃] = k
∫

dε̃ g[ p̃(ε̃)] =
kβε0B−1/γ

1− 1/γ

∫
dε̃
{
− p̃(ε̃) + [ p̃(ε̃)]1−1/γ

}
. (21)

By recourse to the exact mapping detailed below, the expression above may be identified with
Tsallis entropy [9–11],

Sq[ p̃] =
k

q− 1

(
1−

∫
dε̃ p̃ q

)
, (22)

through

1− 1
γ
= q ;

βε0B−1/γ

1− 1/γ
=

1
1− q

, (23)

where q represents the usual entropic index. This is of practical utility because we have now at our
disposal the large set of useful recipes developed since 1988 with regards to Tsallis’ measure. Now,
manipulating Equations (14) and (23), we obtain

βε0 =

(
q

1− q

)q
[

1−
(

ε0

εm

)q/(1−q)
]1−q

, (24)

showing that the parameter β should assume a real constant value, for a given value of 0 < q < 1.
Hence, defining a fixed pseudo-temperature Tq, such that the spread β = 1/(kTq), one finds

kTq = ε0

(
1− q

q

)q
[

1−
(

ε0

εm

)q/(1−q)
]q−1

. (25)

In this way, the probability distribution of Equation (10), which is indeed a power-law, may be
expressed in terms of the entropic index q,

p(ε) =
q

(1− q)ε0

1[
1− (ε0/εm)

q/(1−q)
] ( ε0

ε

)1/(1−q)
, (26)

being defined for 0 < q < 1 only; notice that this restriction is equivalent to γ > 1 (cf. Equation (23)).
For several of the examples to be considered below, the associated energy spectra will be

characterized by εm � ε0, so the Equation (25) may be expanded in a power series, e.g.,

kTq = ε0

(
1− q

q

)q
[

1 + (1− q)
(

ε0

εm

)q/(1−q)
+ · · ·

]
, (27)

whereas for the probability distribution one has the approximate expression

p(ε) =
q

(1− q)ε0

( ε0

ε

)1/(1−q)
[

1 +
(

ε0

εm

)q/(1−q)
+ · · ·

]
, (28)

which is not a q-exponential.
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The expansions of Equations (27) and (28) show that the maximum energy value εm only appears
in higher-order corrections of Tq and p(ε). In such cases, the most relevant parameters in Equation (10)
become the exponent γ [directly related to q through Equation (23)] and the ground-state energy ε0.

One should focus attention upon the curious result we have obtained in this effort. We were able
to relate with Tsallis entropy the power-law distribution Equation (7) (not the usual q-exponential
distribution). In fact, the equilibrium distribution that arises out of the extremization procedure for
a given entropic form depends directly on the constraints imposed and the choices made regarding the
corresponding Lagrange multipliers [10]. As shown in Reference [24], the distribution Equation (7)
may be obtained from an extremization procedure effected on Tsallis entropy in Equation (22),
by considering the usual constraints of probability normalization (associated Lagrange multiplier α̃)
and internal energy definition in Equation (2) (corresponding Lagrange multiplier β), by choosing
appropriately the first Lagrange multiplier, i.e.,

α̃ = − Z−1/γ

1− 1/γ
. (29)

In the following section we will analyze examples of real systems governed by a power-law
frequency of events.

4. Typical Examples in Natural Systems: From Data of Events to Energy Spectrum

Next, we describe some examples, chosen from the literature, of power-law distributions found
in natural systems. In order to associate these examples with the theoretical approach of the previous
sections, we will assume that: (i) The relevant variable of each distribution may be related in some
way to the energy ε; (ii) The fittings describing each class of phenomena may be associated with
the continuous probability distribution of Equation (10), defined in the range between its minimum
and maximum values (ε0 and εm, respectively). We discuss separately two types of phenomena:
(i) Systems presenting energy power-law distributions that can be directly related to the distribution
of Equation (10). In such cases, we calculate, from the corresponding data, important quantities like the
entropic index q, the dimensionless ratio ε0/εm, and the fixed value of the temperature Tq; (ii) Systems
presenting power-law distributions P(x), depending on a parameter x that can be related to the energy
ε through some invertible monotonic function. For these cases, we propose a procedure for calculating
the quantities of interest.

4.1. Systems Exhibiting Energy Power-Law Distributions

Certainly, one of the most paradigmatic power-law distributions is the Gutenberg–Richter law,
which measures the frequency of earthquakes with a magnitude larger than a certain value m [2].
The magnitude m may be related to the seismic energy (or energy released) E [25], so that the
Gutenberg–Richter law is sometimes expressed in a form similar to Equation (10),

p(E) ∼ E−γ′ . (30)

In fact, as pointed out in Reference [26], the distribution above was proposed previously by
Wadati (1932) in a paper written in japonese [27]. By analyzing earthquakes around the Tokyo station,
Wadati obtained two different estimates for the exponent γ′, respectively γ′ = 1.7 and γ′ = 2.1,
under different assumptions for the distributions of hypocenters. One should notice that the first
estimate is very close to γ′ = 5/3, which is nowadays generally accepted for the index of the power-law
distribution of seismic energies [26,28]. For earthquakes, one can assume that the seismic energy E
can be related to the energy ε in a simple way, e.g., at most, apart from a proportionality constant,
ε ∝ E, so that Equation (30) can be associated with the probability distribution of Equation (10).
Under this assumption one has γ′ = γ, and using Equation (23) one obtains the entropic index
q = 2/5 for earthquakes.
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Recently, the possibility of investigating seismic phenomena by means of laboratory experiments
has gained a big motivation after the identification of deep associations between earthquakes and the
fracture of materials [29,30]. As examples, one may mention experiments of compression on porous
glasses [31,32], as well as on small wood samples [33]. This connection is based on the crackling
noise idea, where systems under slow perturbations may respond through discrete events covering
a wide variety of amplitudes. By recording the amplitudes of these cracking noises, one can compute
the associated energies, which may be normalized conveniently in such a way to produce energy
probability distributions. Inspired by those, further experiments have been carried out by considering
different apparatus, e.g., without compression, through the analysis of the acoustic emission in a variety
of systems, like crumpled plastic sheets [34], or ethanol-dampened charcoal [35].

The two examples presented in Figure 1 follow these procedures, where the energy probability
distribution P(E) is represented versus E for two distinct experiments. Results from the cracking noise
produced by charcoal samples, when dampened with ethanol, are presented in Figure 1a; through their
experiments, the authors have shown that the most fundamental seismic laws ruling earthquakes could
be reproduced [35]. In an analogous way, avalanches were observed recently by means of acoustic
emission in small wood samples under compression; these avalanches show results very similar to
earthquakes and crackling noise in rocks and laboratory tests on brittle materials [33]. The distributions
of energies are shown in Figure 1b, where data from different experimental conditions, i.e., constant
strain rate εt, constant stress rate σt, and distinct event rates r(t) (defined as the number of events in
a time interval divided by the interval length), all fall in a universal probability distribution P(E). Like
done before for natural earthquakes, in both cases one can identify directly the energy liberated E
with ε, i.e., ε ∝ E, so that the probability distribution of Equation (10) can be related with the fitting
distributions P(E) shown in Figure 1a,b. In this way, these examples correspond respectively, to
γ = 1.3 and γ = 1.4, representing smaller values when compared to γ = 5/3 generally accepted
for earthquakes. From Equation (23) one obtains the entropic indexes q ≈ 0.23 (Figure 1a) and
q ≈ 0.29 (Figure 1b). Moreover, in the plots of Figure 1 one has very small values for ε0/εm (typically,
(ε0/εm) < 10−4), so that the expansions of Equations (27) and (28) are well approximated by their
leading-order contributions. In particular, the dimensionless temperature of Equation (27) becomes
(kTq/ε0) ≈ [(1− q)/q]q, so that the two examples of Figure 1 can be associated with fixed values of
the dimensionless temperature, (kTq/ε0) ≈ 1.32 (Figure 1a) and (kTq/ε0) ≈ 1.30 (Figure 1b). One
notices that the estimates of q and Tq are very close to one another in these two experiments.
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(a) (b)

Figure 1. Typical energy power-law distributions found in experiments. (a) Energy distribution
P(E) versus E, obtained from the cracking noise produced by charcoal samples, when dampened
with ethanol (from Reference [35]). (b) Energy distribution P(E) versus E, obtained from acoustic
emission in small wood samples under compression. Data from different experimental conditions,
i.e., constant strain rate εt, constant stress rate σt, and various event rates r(t) (defined as the
number of events in a time interval divided by the interval length), all fall in a universal probability
distribution (from Reference [33]). In both cases, the variable E is properly normalized and defined as
a dimensionless quantity; within the present approach (cf. Equation (10)), these examples correspond
to γ = 1.3 (case (a)) and γ = 1.4 (case (b)).

4.2. Systems Exhibiting General Power-Law Distributions: Identifying Relevant Variables with Energy

Let us now analyze systems characterized by a given parameter x and its associated power-law
distribution P(x); contrary to the examples shown in Figure 1, the relation between x and ε does not
follow straightforwardly; two typical examples in this class are shown in Figure 2. In Figure 2a the
forest-fire frequency density per year is represented versus forest burned area AF. The straight line
yields a frequency versus area power-law distribution with an exponent 1.38; the data corresponds to
Ontario, Canada, during the period 1976–1996 [36]. Results from experiments carried out on a NbTi
(conventional superconductor) sample, at the Bean critical state, are exhibited in Figure 2b [37]. For hard
superconductors, the Bean critical state corresponds to a marginal stable state, where the Lorentz force
acting on each vortex equals the maximum pinning force. A sketch of the experimental arrangement
is represented in the inset, where one has a tubular NbTi sample and the pickup coil. An external
magnetic field enters the interior of the tube, inducing a voltage on the pickup coil; large variations of
the voltage in the pickup coil are associated with avalanches. The corresponding probability density for
measuring an avalanche of s vortices is represented versus s (cf. Figure 2b), for three different values
of the magnetic field (the exponent of the power-law distribution is field-dependent); one notices that
for the higher value of the magnetic field (7.55 kG), one gets avalanches up to 5000 vortices. In both
examples shown in Figure 2, one expects the variable ε of the previous section to be an increasing
function of the relevant variable, i.e., of the burned area AF (Figure 2a), as well as of the energy
required for producing s vortices in a given avalanche (Figure 2b).
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(a) (b)

Figure 2. Typical power-law distributions found in natural systems. (a) Forest-fire frequency density
per year is represented versus forest burned area AF; the data corresponds to the period 1976–1996 in
Ontario, Canada (from Reference [36]). (b) Probability density for measuring an avalanche of s vortices
[D(s)] in a hard superconductor is represented versus s, for three different values of the magnetic
field. The inset shows a sketch of the experimental arrangement, where one has a tubular NbTi sample
and the pickup coil. Large variations of the voltage measured in the pickup coil are associated with
avalanches (from Reference [37]).

In order to relate probability distributions associated to these types of events to the approach
of the previous sections, let us consider a given set of discrete data {xi}, given by m + 1 values
(x0, x1, x2, · · · , xm), ordered in such a way that 0 ≤ x0 ≤ x1 ≤ x2 · · · xm−1 ≤ xm. Moreover, each
quantity xi occurs with a frequency ci, following

m

∑
i=0

ci = C ; c0 ≥ c1 ≥ c2 · · · cm−1 ≥ cm . (31)

Rescaling the set of variables by its minimum value x0, one gets a discrete set of dimensionless
data {x̃i}, 1 ≤ x̃1 ≤ x̃2 · · · x̃m−1 ≤ x̃m, each x̃i occurring with a probability Pi(x̃i) [Pi(x̃i) = ci/C
(i = 0, 1, 2, · · · , m) representing a set of decreasing probabilities], so that

m

∑
i=0

Pi(x̃i) = 1 . (32)

Herein we will be interested in the kind of phenomena illustrated in Figure 2, which are well-fitted
by continuous power-law distributions; furthermore, we define dimensionless quantities similarly to
those of Equations (13) and (14), i.e.,

P̃(x̃) =
1
A

x̃−α (α > 1; 1 ≤ x̃ ≤ x̃m), (33)

where now x̃ corresponds to the continuous representation of the discrete variables {x̃i}, whereas P̃(x̃)
denotes a dimensionless probability distribution. Moreover, the normalization condition,

∫ x̃m

1
dx̃ P̃(x̃) = 1 , (34)

requires

A =
1

α− 1

[
1−

(
x0

xm

)α−1
]
=

1
α− 1

[
1− (x̃m)

1−α
]

. (35)
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Accordingly, one can also calculate the average value,

〈x̃〉 =
∫ x̃m

1
dx̃ P̃(x̃)x̃ =

(α− 1)
[
1− (x̃m)

2−α
]

(α− 2)
[
1− (x̃m)

1−α
] . (36)

One should notice the resemblance of the probability distribution P̃(x̃) of Equation (33) with the
energy distribution of p̃(ε̃) in Equation (14), as well as of the average value 〈x̃〉with the internal energy
of Equation (11). Such similarities suggest that ε̃ and x̃ should be directly related to one another; herein,
we propose

ε̃ = Λ (x̃) ⇒ ε = ε0 Λ
(

x
x0

)
, (37)

where Λ(y) represents an invertible and monotonically increasing function of y, such that Λ(1) = 1.
The normalization condition on both distributions P̃(x̃) and p̃(ε̃) requires that

P̃(x̃)dx̃ = p̃(ε̃)dε̃ ; ⇒ P̃(x̃)
∣∣∣∣dx̃

dε̃

∣∣∣∣ = p̃(ε̃) , (38)

which implies that ε̃ and x̃ should be related through a power, i.e., Λ(y) = yν, with ν being a positive
real number. In this way, one obtains the relation between the two variables,

ε̃ = x̃ν . (39)

Therefore, the internal energy of Equation (11) may be written as

U = ε0 〈ε̃〉 = ε0 〈x̃ν〉 = ε0

∫ x̃m

1
dx̃ x̃ν P̃(x̃) =

ε0(α− 1)
α− 1− ν

1− x̃ν
m x̃1−α

m

1− x̃1−α
m

, (40)

which recovers the result of Equation (11) by using ε̃m = x̃ν
m and imposing the relation

α− 1
ν

= γ− 1 . (41)

Hence, for systems exhibiting power-law distributions presenting a dependence on a general
parameter x, being characterized by an exponent α according to Equation (33), the entropic form
of Equation (22) still applies. In order to identify the entropic index q, one should carry out the
following procedure: (i) Obtain the exponent ν relating the energy ε to the relevant parameter x
through Equation (39); (ii) The exponent α is taken directly from the data, like those in Figure 2,
e.g., α = 1.38 in the case of forest fires (Figure 2a). Then, use Equation (41) to calculate the exponent γ

of the corresponding energy distribution; (iii) Calculate the entropic index q by means of Equation (23).
In many cases step (i) may become the most difficult task, since obtaining an energy distribution from
a given set of data of natural systems may not be so obvious.

5. Conclusions

We have analyzed events that occur with a frequency following power laws, within a certain
range of validity of their relevant parameters. These types of phenomena are very common in natural
systems and are usually associated with self-organized criticality. In many of such cases it is possible
to introduce an energy spectrum, defined in a given interval of energies between a minimum value ε0,
and a maximum εm, so that an internal energy may be calculated. Based on this, we have assumed
the validity of the fundamental relation dU = TdS, and have calculated important quantities, like the
associated entropic form and temperature. As a curious aspect, the power-law probability distribution
is temperature-independent, in agreement with self-organized-criticality; however, we have shown that
these phenomena occur at a constant temperature and follow Tsallis entropy Sq, with an entropic index
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0 < q < 1; from the thermodynamical point of view, these phenomena could be identified as isothermal
processes. In cases where (εm/ε0) � 1, the relevant parameters within this procedure become the
entropic index q, which is directly related to the power of the corresponding distribution, and the
ground-state energy ε0, in terms of which all energies are rescaled. In particular, the corresponding
processes take place at a temperature Tq with (kTq/ε0) ≈ [(1− q)/q]q.

Typical examples were analyzed, like earthquakes, avalanches, and forest fires, and in some of
them, the entropic index q and value of Tq were estimated. Specially for earthquakes, we obtained
q = 2/5 and (kTq/ε0) ≈ 1.18. It should be mentioned that an analysis of probability distributions
of energy differences (returns) of data from the Northern California earthquake catalogue has led to
q-Gaussian distributions with q = 1.75± 0.15 [38]. Although the power-law distributions considered
herein are very different from the q-Gaussian distribution of Reference [38], both are associated in
some way to Tsallis entropy Sq; curiously, our estimate for the entropic index q agrees, within the error
bars, with the result of Reference [38] by considering the usual correspondence q↔ 2− q.

The main contribution of the present work concerns the association of events occurring with
a frequency following power laws with the entropy Sq, and that distinct types of events should be
characterized by different values of q. Furthermore, the identification of an associated entropic form
opens the possibility for a deeper understanding of such important natural phenomena, particularly
by using information theory and optimization procedures.
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