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biology approach
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Yan-Rong Su3, Xiong-Hui Zhou1 and Feng-Xia Liu1*

1Department of Blood Transfusion, The Third Xiangya Hospital of Central South University,
Changsha, China, 2Department of Pediatrics, The Third Xiangya Hospital, Central South University,
Changsha, China, 3Department of Laboratory Medicine, The Third Xiangya Hospital of Central
South University, Changsha, China
Corona Virus Disease 2019 (COVID-19), an acute respiratory infectious disease

caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has

spread rapidly worldwide, resulting in a pandemic with a high mortality rate. In

clinical practice, we have noted that many critically ill or critically ill patients

with COVID-19 present with typical sepsis-related clinical manifestations,

including multiple organ dysfunction syndrome, coagulopathy, and septic

shock. In addition, it has been demonstrated that severe COVID-19 has some

pathological similarities with sepsis, such as cytokine storm, hypercoagulable

state after blood balance is disrupted and neutrophil dysfunction. Considering

the parallels between COVID-19 and non-SARS-CoV-2 induced sepsis

(hereafter referred to as sepsis), the aim of this study was to analyze the

underlying molecular mechanisms between these two diseases by

bioinformatics and a systems biology approach, providing new insights into

the pathogenesis of COVID-19 and the development of new treatments.

Specifically, the gene expression profiles of COVID-19 and sepsis patients

were obtained from the Gene Expression Omnibus (GEO) database and

compared to extract common differentially expressed genes (DEGs).

Subsequently, common DEGs were used to investigate the genetic links

between COVID-19 and sepsis. Based on enrichment analysis of common

DEGs, many pathways closely related to inflammatory response were

observed, such as Cytokine-cytokine receptor interaction pathway and NF-

kappa B signaling pathway. In addition, protein-protein interaction networks

and gene regulatory networks of common DEGs were constructed, and the

analysis results showed that ITGAM may be a potential key biomarker base on

regulatory analysis. Furthermore, a disease diagnostic model and risk prediction

nomogram for COVID-19 were constructed using machine learning methods.

Finally, potential therapeutic agents, including progesterone and emetine, were

screened through drug-protein interaction networks and molecular docking

simulations. We hope to provide new strategies for future research and
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treatment related to COVID-19 by elucidating the pathogenesis and genetic

mechanisms between COVID-19 and sepsis.
KEYWORDS

COVID-19, sepsis, differentially expressed gene (DEG), functional enrichment, gene
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Introduction

The novel coronavirus, SARS-CoV-2, is the causative agent

of an atypical respiratory disease that has caused a global

pandemic since 2019. The World Health Organization defines

the infectious disease caused by the virus as Corona Virus

Disease 2019 (COVID-19) (1). Since the pandemic, the new

coronavirus has undergone a variety of mutations, and it has

now mutated to Omicron BA.4 and BA.5, which has a strong

immune evasion ability. Data showed that as of 31 December

2021, over 287 million cases had occurred worldwide, including

more than 5.4 million deaths (2). More than 80% of COVID-19

patients have mild disease, but the incidence of severe or high-

risk disease varies among patient populations (3). Literature

suggests that critical illness including respiratory failure, multi-

organ damage or shock can occur in up to 5% of patients (2).

Severe COVID-19 is often pathologically manifested by

pulmonary and extrapulmonary organ dysfunction. Studies

have shown that the lung is the organ most severely affected

by SARS-CoV-2, manifesting as diffuse alveolar damage,

exudation, and interstitial fibrosis, accompanied by a large

number of immune cell infiltration and inflammatory factor

expression (3–5). Extrapulmonary organs have different degrees

of tissue damage and inflammatory response, manifested as

multiple organ dysfunction and systemic inflammatory

response (6). In terms of clinical symptoms, most severe

COVID-19 patients eventually develop typical septic shock

manifestations, including cold limbs, microcirculatory

dysfunction, weak peripheral pulse, oxidative stress injury, and

cytokine storm (7). In addition, in clinical care, the latest

COVID-19 treatment guidelines, “surviving sepsis campaign”,

have been adopted as treatment guidelines for critically ill

patients (8). All in all, both in terms of clinical diagnosis and

treatment, severe COVID-19 and sepsis have similarities, and

the two can learn from each other.

Sepsis is a systemic inflammatory response syndrome (SIRS)

caused by a variety of factors, including infection, trauma and

surgery, and its mortality and morbidity are extremely high (5).

Uncontrolled inflammation and overproduction of Reactive

Oxygen and Nitrogen Species (RONS) are the hallmarks of

sepsis, which in turn cause cell and tissue destruction, immune
02
system dysfunction, and marked hemopathology, ultimately

leading to multiple organ failure syndrome Signs (MODS) (9–

13). Part of the viral pneumonia caused by SARS-CoV-2 is a

fulminant disease with similar manifestations to sepsis (14).

Considering the similarities between COVID-19 and non-SARS-

CoV-2 induced sepsis, it is necessary to understand the

biological links and potential molecular mechanisms between

the two to provide new insights into the pathogenesis of

COVID-19 and to search for potential therapeutic agents for

patients with COVID-19 or patients with COVID-19 secondary

to sepsis.

With the development of science and technology, biology

and computer technology are becoming more and more closely

integrated. Bioinformatics is a discipline that uses computer

algorithms to effectively analyze biological data, enabling a

systematic approach to understanding the developmental

process of organisms, classifying organisms, studying

biomarkers of diseases, etc (15). Machine learning is a kind of

algorithm of artificial intelligence, which can explore potential

laws in massive data. It has high accuracy and has emerged in

medical research and medical development (16). In recent years,

machine learning and bioinformatics analysis have played an

important role in medical research and application.

This study aims to understand the common pathogenesis

between COVID-19 and sepsis, and to unearth potential drugs.

First, datasets from the GEO database for COVID-19 and sepsis

were analyzed to identify differentially expressed genes (DEGs)

for these two diseases, and then further compared to obtain

common DEGs. Based on the common DEGs, the enriched

pathways and functions of these genes were analyzed to

understand the biological processes they were involved in.

Next, the protein–protein interaction (PPI) network was

drawn to show the relationship between all DEGs, and the key

genes with the highest degree of interaction were screened out

from the Hub genes as potential biomolecules. The biological

role of this key gene in COVID-19 was then analyzed to explore

its potential mechanism in disease development and

progression. In addition, a disease diagnosis model and risk

prediction nomogram of COVID-19 were established using

machine learning algorithms. Next, the transcriptional

regulatory network of these common DEGs in COVID-19 was
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analyzed. Finally, we predict drugs related to common DEGs,

providing new ideas for the treatment of COVID-19. The

sequential workflow of our research is presented in Figure 1.
Materials and methods

Transcriptomic data acquisition

To determine shared genetic interrelations between COVID-19

and sepsis, three RNA-Sequencing datasets were downloaded from

the Gene Expression Omnibus (GEO) database of the National

Center for Biotechnology Information (NCBI) (https://www.ncbi.

nlm.nih.gov/geo/) (17). The GEO accession ID of the COVID-19

dataset was GSE147507, which included transcriptional profiling

from 78 samples (23 COVID-19 samples and 55 healthy control

samples) through high throughput sequencing Illumina NextSeq

500 platform for extracting RNA sequence (18). The sepsis dataset

having association number GSE65682 was based on GPL13667

[HG-U219] Affymetrix Human Genome U219 Array platform, and

contained 802 samples including healthy controls, non-sepsis

critically ill patients and sepsis patients. Furthermore, the sepsis

patients could be further categorized into pneumonia sepsis

(n=192), abdominal sepsis (n=51) and others (n=443) based on

infection site (19). According to some scholars, COVID-19 is a

systemic infection, and its clinical manifestations range from

asymptomatic to mild respiratory tract infection and influenza-

like illness, to severe diseases with lung injury, multiple organ failure

and death (20). However, the lung is thought to be the main site of

SARS-CoV-2 infection and replication (14). Therefore, in our study,

we screened 192 pneumonia sepsis samples and 42 healthy control

samples from GSE65682 discovery dataset for further analysis.

Besides, the GSE196822 discovery dataset was used as a
Frontiers in Immunology 03
validation cohort for development of the COVID-19 diagnostic

model. This second selected COVID-19 dataset consisted of 40

samples from COVID-19 subjects and 9 healthy controls. which

were sequenced using microarrays called Illumina HiSeq 4000

platform. The summarized information of the datasets was shown

in Table S1.
Differential gene expression analysis

Firstly, the DEGs for the corresponding diseases were

extracted from two mRNA datasets (GSE147507 and

GSE65682). Specifically, the DEGs were identified by using the

“limma” R package and the Benjamini–Hochberg false discovery

rate method was used to discover genes which were statistically

significant and limit false positives (21). Genes exhibiting an

adjusted P-values of <0.05 along with |log2FC|≥1.0 were

identified as statistically significant genes. The mutual DEGs of

GSE147507 and GSE65682 was acquired through an online

VENN analysis tool called Jvenn (http://jvenn.toulouse.inra.fr/

app/index.html) (22).
Functional insights into the differentially
expressed genes

To clarify potential biological mechanisms between

COVID-19 and sepsis, we attempted to investigate the gene

ontology (GO) terms and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment pathways base on common

DEGs. KEGG is considered as a knowledge base for

systematic analysis of gene functions, linking genomic

information with higher order functional information (23).
FIGURE 1

Schematic illustration of the overall general workflow of this study.
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Additionally, GO, a community-based bioinformatics

resource, can provide information about gene product

function by presenting biological knowledge as ontologies

(24). GO analysis was classified into three subgroups,

including molecular function (MF), biological process (BP)

and cellular component (CC) (25). For quantifying the top

listed functional items and pathways, a”clusterProfiler” R

package was used to perform functional enrichment

analysis, and a statistical threshold criterion with an

adjusted P-value <0.05 was used to identify significant GO

terms and KEGG pathways.
Protein–protein interaction analysis and
hub genes extraction

Proteins conclude their journey into a cell with a similar

protein affiliation formed by a protein–protein network, which

indicates the protein mechanisms (21). In this study, the protein

subnetworks on common DEGs were identified to discover the

associations between different diseases from the perspective of

protein interactions. Specifically, an online analysis tool called

STRING (https://www.string-db.org/) (version 11.5) was to

insert common DEGs to generate PPI networks. Supported by

Damian Szklarczyk, the STRING is a database which aims to

integrate all known and predicted associations between proteins,

including both physical interactions as well as functional

associations (26). A combined score larger than 0.4 was used

to construct the PPI network of frequent DEGs in this

experiment. Then, the Cytoscape (version 3.9) was used for

visual representation and further PPI network experimental

studies. Furthermore, a Cytoscape plugin, CytoHubba (https://

apps.cytoscape.org/apps/cytohubba), was put into practice to

extract hub genes. Cytohubba is a significant Cytoscape

application, which can rank and extract central or potential or

targeted elements of a biological network based on various

network features (21). Moreover, Cytohubba has 11 methods

for investigating networks from various viewpoints, and

Maximal Clique Centrality (MCC) is the best of them (27).

The MCC function of Cytohubba was carried out to confirm the

top 30 hub genes from the PPI network.
Regulatory analysis of the key gene

Based on the analysis results of PPI network and Hub gene

extraction, we further explored the biological function and

possible mechanism of ITGAM, the most critical gene located

at the core of the protein interaction network. First, the “limma”

R package was used to implement differential expression analysis

in GSE147507 discovery dataset to determine whether ITGAM

differed between COVID-19 and healthy controls. Gene co-

expression is a type of analysis method that uses a large
Frontiers in Immunology 04
amount of gene expression data to construct correlations

among genes and thus discover the function of genes (28).

Next, based on gene co-expression analysis, ITGAM-related

gene regulatory networks were constructed using gene

expression data from COVID-19 dataset. In addition, to

further explore the potential pathways and molecular

biological functions that ITGAM may affect in COVID-19,

gene set enrichment analysis (GSEA) for ITGAM was

performed in GSE147507 discovery dataset. GSEA includes

pathway analysis and gene ontology analysis, which plays an

essential role in extracting biological insight from genome-scale

experiments (29, 30). Furthermore, immune correlation analysis

of ITGAM was conducted. Specifically, based on ITGAM’s

expression data, the COVID-19 samples were divided into

high- and low-expressed groups using the mean of ITGAM

expression levels as a zero cut-off. Next, the difference for

immune cell infiltration between the high- and low-expressed

groups was analyzed using the “CIBERSORT” R package, and

the correlation between ITGAM and immune cells was further

explored (31). Finally, differences in the expression of immune

checkpoints between the high- and low- expressed groups and

the correlation between ITGAM and immune checkpoints were

analyzed by the “corrplot” R package.
Developing diagnostic signature and risk
model for COVID-19

Based on the common DEGs obtained by differential

expression and VENN analysis, machine learning methods

were used to screen the features/key genes and further

constructed the diagnostic model and risk prediction model

for COVID-19. Specifically, random forests (RFs) were

applied to screen diagnostic features in GSE147507

discovery dataset. RF is one type of very popular ensemble

learning method in which numerous randomized decision

trees are constructed and combined to form an RF that is then

used for classification or regression (32). In this study, the

DEGs with Gini index > 1.0 were considered characteristic

variables. Next, using GSE147507 discovery dataset as

training cohort, artificial neural networks (ANNs) were

performed to construct COVID-19 diagnostic model based

on the signature genes. ANNs are a set of technologies often

encompassed with artificial intelligence that attempt to

simulate the function of the human brain, and have been

applied in almost every aspect of medicine (33, 34). Further,

the GSE196822 discovery dataset was used as a validation

cohort to evaluate the performance of the diagnostic model.

Finally, a nomogram was developed based on the results of RF

analysis to calculate the risk of COVID-19 for an individual

patient by the points associated with the risk factors, and the

performance of the nomogram was assessed by decision and

calibration curve.
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Identification of transcription factors
and miRNAs

To determine the major variation at the transcriptional level

and gain a deeper understanding of the key protein regulatory

molecules or common DEG, the DEG–miRNA (microRNA)

interaction networks and transcription factor (TF)–DEG

interaction networks were identified in our analysis.

Specifically, the NetworkAnalyst platform was utilized to

locate topologically credible TFs from the JASPAR database

that tend to bind to the common DEGs (21). For DEG–miRNA

network construction viaNetworkAnalyst platform, the TarBase

(35) and miRTarBase (36) databases were used to extracted

miRNAs with common DEGs focused on topological

analysis (37).
Gene–disease association analysis

DisGeNET is a knowledge management platform, which

integrates and standardizes the data about disease associated

genes and variants frommultiple sources, including the scientific

literature (38).The gene-disease relationship network was

established through NetworkAnalyst platform to uncover

associated diseases and their chronic complications related to

the common DEGs (21).
Evaluation of applicant drugs

In this analysis, the protein–drug interaction (PDI) and

identified pharmacological molecules were predicted by using

the common DEGs that COVID-19 shares with sepsis. The web

portal od Enrichr and the Drug Signatures Database (DSigDB)

were used to analyze the drug moleculars based on the DEGs

from both COVID-19 and sepsis. Enrichr (http://amp.pharm.

mssm.edu/Enrichr) contains a large collection of diverse gene set

libraries available for analysis and download, which can be used

to explore gene-set enrichment across a genome-wide scale (39).

DSigDB is a new gene set resource for gene set enrichment

analysis, which related drugs/compounds and their target genes.

The DSigDB database was accessed through Enrichr under the

Diseases/Drugs function (40).
Molecular docking simulation

Molecular docking that an established in silico structure-

based method is widely used in drug discovery. Docking enables

the identification of novel compounds of therapeutic interest,

predicting ligand-target interactions at a molecular level, or

delineating structure-activity relationships (SAR), without
Frontiers in Immunology 05
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modulators (41). In our study, key targets of COVID-19 were

obtained through literature search, including ACE2, 3CLpro,

Mpro, PLpro and RdRp. Next, the crystal structures of these key

proteins were downloaded from the Protein Data Bank (https://

www.rcsb.org/) for further molecular docking. The PDB codes

for these five key proteins are shown below: 1R42 for ACE2,

6LU7 for 3CLpro, 5B60 for Mpro, 6Y2E for PLpro, 6NUS for

RdRp. In addition, the molecular structures of potential drug

molecules were obtained from the ZINC (https://zinc.docking.

org/) database. The Autodock tools (version 1.5.4) was utilized

in all the docking experiments, with the optimized model as the

docking target. The screening method is restricted to molecular

docking, and molecular dynamics simulation has not been

carried. In addition, the results were shown with binding

energy (BE), a weighted average of docking score, to assess the

reliability and describe the accuracy of the ligand positioning.

Pymol (PyMOL Molecular Visualization System 2020) was used

for 3D visualization of the docking results.
Results

Identification of common transcriptional
signatures between COVID-19 and sepsis

Patients with severe COVID-19 may develop a systemic

inflammatory response syndrome (SIRS) that may progress to

sepsis if inflammation worsens. To examine the interrelationships

and implications between COVID-19 and sepsis, the human

RNA-seq dataset and microarray datasets were analyzed from

the GEO to identified the disrupting genes that trigger COVID-19

and sepsis. a total of 1855 DEGs were obtained from the COVID-

19 dataset, including 1206 up-regulated DEGs and 649 down-

regulated genes. In addition, a total of 1086 DEGs were identified

in the sepsis blood dataset by differential expression analysis, of

which 481 genes were up-regulated and 605 genes were down-

regulated (Table S1). The two volcano plots in Figure 1 visually

demonstrated the overall picture of transcribed gene expression

for COVID-19 and sepsis, where red and blue dots indicated up-

and down-regulated genes with significant differences, respectively

(Figures 2A, B). Furthermore, we employed heatmaps to present

the results of cluster analysis and expression analysis of the top 20

DEGs among different samples in COVID-19 and sepsis datasets,

respectively (Figures 2C, D). The top 20 DEGs for COVID-19

included HIST1H2AK, OLR1, SELL, ZBTB10, DUSP8, CREBRF,

PLD6, BHLHE41, ZNF57, ZNF77, BCL2A1, IFITM2, ARRDC3,

CLK1, HIST2H2BE, NFIL3, ZNF267, SERTAD2, ZNF292 and

ZNF12. In sepsis discovery set, the top 20 DEGs were ABLIM1,

LRRN3, EPHX2, NMT2, THEM4, GATA3, CD96, PLEKHA1,

DYRK2, PID1, P2RY10, C2orf89, NELL2, LEF1, S100A8,

S100A12 , C5orf32 , ARG1 , C19orf59 and ANXA3 .The

identification of these genes with significant differential
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expression could help us to obtain a critical entry point for

studying the development of diseases, which in turn could help

to understand the underlying mechanisms of diseases and to

obtain new therapeutic targets. After performing the cross-

comparative analysis on the Jvenn, a reliable web portal for

Venn analysis, a total of 151 common DEGs were identified

from COVID -19 and sepsis datasets (Figure 4A). The results of

differential expression analysis suggested that there were some

mechanistic commonalities and interaction between COVID-19

and sepsis.
Pathway enrichment and gene
ontology analysis

To further understand the biological functions and signaling

pathways involved in these common DEGs, we implemented

KEGG pathway enrichment and GO functional analysis. The top

15 important pathways were displayed with bubble plots

(Figure 3A). From the results of KEGG pathway analysis, these

151 common DEGs were mainly enriched in infectious/

inflammatory disease-related and immune response-related

pathways, for example, Staphylococcus aureus infection,

Inflammatory bowel disease, Cytokine-cytokine receptor

interaction pathway and NF-kappa B signaling pathway. It is

well-known that both COVID-19 and sepsis are associated with

inflammatory and immune responses in the body, which play an
Frontiers in Immunology 06
important role in the development and progression of these two

diseases, and are closely related to the therapeutic effect and

prognosis of patients (3, 14, 42). Our pathway analysis results

also showed that the immune-related pathway, Cytokine-

cytokine receptor interaction, was the most significantly

enriched pathway (Figure 3B), suggesting that these common

DEGs may affect the progression of the disease through

immune-related biological functions or signaling pathways.

GO analysis is divided into three parts: MF, BP and CC.

Figure 3C presented the top 10 GO terms for MF, BP, and CC,

respectively. Specific analysis revealed that the top 10 GO terms

of BP were all associated with immune function, such as T cell

activation, lymphocyte differentiation, mononuclear cell

differentiation and negative regulation of cytokine production.

Interestingly, most of the BP terms were associated with T cell

immune function. In addition, the results of CC showed that

these common DEGs were mainly involved in the formation or

release of intracellular granules, for example, tertiary granule,

specific granule, specific granule lumen and cytoplasmic lumen

vesicle. Previous studies have suggested that tertiary granule and

specific granule are associated with the function of human

mature neutrophils, including differentiation and pro-

inflammatory effect of neutrophils (43). During inflammation,

neutrophils are activated and secrete part of the granular

contents, which are cytotoxic and in part responsible for the

collateral damage associated with neutrophil tissue infiltration

(44). Furthermore, the results of MF analysis presented that MF
A B

DC

FIGURE 2

Volcano plots exhibit differentially expressed genes (DEGs) of (A) COVID-19 and (B) sepsis. Red dots indicated up-regulated genes, blue dots
indicated down-regulated genes, and gray dots indicated non-DEGs, with FC≥1.0 and P-value<0.05. Heatmaps show the result of clustering
analysis based on DEGs for (C) COVID-19 and (D) sepsis.
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terms were also mainly associated with immune responses,

including immune receptor activity, immunoglobulin binding

and IgG binding. Figure 3D shows the correlation between the

five most important GO terms and the enriched DEGs, including

lymphocyte differentiation negative regulation of cytokine

positive production regulation of leukocyte cell−cell adhesion

T cell activation, all of which are immune-related molecular

functions. Similar to the results suggested by KEGG analysis,

these common DEGs may involve immune-related functions

and pathways of the body, which in turn affect the disease

progression of COVID-19.
Protein–protein interaction network
analysis and identification of hub genes

A PPI network was constructed using the common DEGs

among COVID-19 and sepsis. The PPI network visually

demonstrates the intercorrelations between different proteins,

suggesting the underlying mechanisms by which proteins

function. The assessment and analysis of PPI networks can help

to obtain key proteins that influence the biological functions of

cells and systems (45). Based on the online analysis website,
Frontiers in Immunology 07
STRING, the PPI network of proteins derived from shared

DEGs was constructed to portray functional and physical

interactions between COVID-19 and sepsis. The PPI network of

common DEGs included 151 nodes and 322 edges and was

depicted in Figure 4C, with the PPI enrichment p-value < 0.001.

As shown in the figure, the size and color depth of the circles

indicated the degree of intercorrelation of the proteins, and the

more connections to the central proteins, the stronger

the relationship, suggesting its importance. By using cytoHubba

package of Cytoscape, the top 30 (19.87%) DEGs were considered

as the most influential genes. The top 30 influential genes included

ITGAM, FCGR3A, S100A12, FCER1G, FCGR1A, LY86, IL1RN,

C3AR1, LCN2, BCL6, CAMP, RGS18, CXCR4, CLEC5A, SOCS3,

CD1D, FGL2, GPR29, AQP9, CLEC4D, CD74, TNFSF13B, CD24,

LTF, HCST, MPEG, CR1, MMP8, MS4A4A and FCGR1B, with

specific information showing in Table S2. The identification of

hub genes from common DEGs facilitates us to obtain more

critical signatures in order to discover potential biomarkers. Since

hub genes were potential, a submodule network was constructed

by the Cytohubba plugin’s aid to deeper understand their near

connectivity and proximity (Figure 4B).

From the sub-module network of hub genes, ITGAM was

shown to have the most edges, that is, the most proteins
A B

DC

FIGURE 3

Bubble graphs indicate the results for (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) and (C) Gene Ontology (GO) analysis based on
the common differentially expressed genes (DEGs). Loop graphs show the correlation between the five most important (B) pathways or (D) GO
terms and the enriched DEGs.
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associated with it, so in further studies, the biological role of

ITGAM in COVID-19 was focused to explore its potential

mechanism in the development and progression of the disease.

ITGAM encodes integrin-aM (CD11b +), molecule that

combines with integrin-b2 to form a leucocyte-specific

integrin, which associated with multiple immune disorders

(46). The expression difference analysis indicated that the

expression level of ITGAM was significantly different between

COVID-19 and normal samples, with p-value < 0.01

(Figure 5A), suggesting that this signature may have an

important role in COVID-19. In addition, a co-expression

network of ITGAM with other genes was constructed by Gene

Co-expression Network Analysis (GCNA) (Figure 5B). The

GCNA results showed that ITGAM had a significant

correlation with 156 genes (p-value < 0.05), and Figure 4B

showed only the top 11 important genes, including TGFBR3,

NMNAT1, RHOU, PLEKHG5, MAP3K8, ZCCHC17, DCAF6,

CTNNBIP1, SRP9, F5, and S100A2. Among them, TGFBR3,
Frontiers in Immunology 08
RHOU, MAP3K8, SRP9 and F5 were positively correlated with

ITGAM expression, and the remaining six genes were negatively

correlated with ITGAM. As a result of GCNA, the co-expressed

genes mediated the expression and function of ITGAM through

different pathways, and ITGAM played multiple biological roles

in vivo. Furthermore, GASE enrichment analysis was

implemented to interrogate the function and pathway of

ITGAM. Among the GO terms, the GSEA analysis in the

GSE147507 dataset revealed that the samples of highly

expressed ITGAM were mainly enriched in an important

immune-related biological process, adaptive immune response.

Other GO terms involved included cornification, epidermal cell

differentiation, epidermis development and keratinization

(Figure 5C). Among the KEGG pathways, the top 5 signaling

pathways influenced by highly expressed ITGAM were cytokine-

cytokine receptor interaction, graft versus host disease,

leishmania infection, systemic lupus erythematosus and type I

diabetes mellitus (Figure 5D). In addition, based on the average
A B

C

FIGURE 4

(A) The Venn diagram depicts the shared differentially expressed genes (DEGs) between COVID-19 and sepsis. (B) The top 30 hub gene was
identified from the protein–protein interaction (PPI) network, and the hexagonal nodes represent DEGs and edges represent the interactions
between nodes. (C) The (PPI) network of common DEGs among COVID-19 and RA, and the circle nodes represent DEGs and edges represent
the interactions between nodes.
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expression level of ITGAM, the COVID-19 samples from the

GSE14750 dataset were divided into high- expressed and low-

expressed groups. In order to explore the degree of immune cell

infiltration between the high and low ITGAM expression groups

to understand the potential immune mechanism, the infiltration

levels of 22 immune cells were analyzed between the two groups

using the “CIBERSORT” R package. The results of
Frontiers in Immunology 09
“CIBERSORT” analysis showed that there were significant

differences in resting NK cells, activated NK cells and

Eosinophils between the ITGAM high-expressed and the low-

expressed groups (Figure 5E). Interestingly, our results showed

that ITGAM was positively correlated with activated NK cells,

but negatively correlated with resting NK cells, with a p-value <

0.01 (Figure 5F). Finally, the expression levels of immune
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C

FIGURE 5

(A) The differential expression levels of ITGAM between COVID-19 and healthy controls. (B) The construction of a co-expression network for
ITGAM with other genes in COVID-19. Gene set enrichment analysis (GSEA) for ITGAM in COVID-19, including (C) gene ontology analysis and
(D) pathway analysis. (E) The difference for immune cell infiltration between ITGAM high- and low-expressed groups in COVID-19. *p < 0.05;
**p < 0.01. (F) Plots of immune cells associated with ITGAM in COVID-19. (G) The clustering analysis for differentially expressed immune
checkpoints between ITGAM high- and low-expressed groups in COVID-19. (H) Heatmap of immune checkpoints associated with ITGAM in
COVID-19.
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checkpoints were analyzed between the ITGAM high-expressed

and the low-expressed groups and found that a total of 16

immune checkpoint genes were differentially expressed,

including ICOS, PDCD1, CD28, TNFRSF4, CD48, LAIR1,

LGALS9, CTLA4, HHLA2, TNFSF15, TNFRSF18, LAG3,

ADORA2A, ICOSLG, TNFRSF9 and CD200R1 (Figure 5G).

Among them, the study results suggested that 14 immune

checkpoints (TNFRSF4, CD48, TNFRSF18, CD70, HHLA2,

BTLA , ICOSLG , TNFRSF9 , CTLA4 , LGALS9 , PDCD1 ,

TNFSF15, LAIR1, ADORA2A) were positively correlated with

ITGAM, while CD276 and TNFRSF25 were negatively correlated

with ITGAM (Figure 5H). The results of the above analysis help

us to preliminarily understand the immune mechanism of

ITGAM in COVID-19, which in turn taps its potential

biological functions.
Construction of disease diagnosis and
risk model based on common DEGs

Through the above analysis, it was found that the common

DEGs of COVID-19 and sepsis may affect the disease process of

COVID-19 through different functions and pathways, therefore,

based on 151 common DEGs, we screened and constructed a

diagnostic model and risk model of COVID-19 using machine

learning algorithms. Specifically, the RF analysis was implemented

to select key DEGs, and selected the top eight important DEGs for

model construction according to the variable importance ranking,

with a Gini index > 1.0 (Figures 6A, B). Figure 6C visually showed

the expression levels of these eight key genes in COVID-19 and

normal samples. Next, based on eight key signatures, a disease

diagnostic model for COVID-19 was constructed in the training

set, with an AUC = 0.998 (Figures 6D, E). In addition, the

GSE196822 dataset was used as a validation cohort to further

assess the performance of this ANN model and found that it

performed well in the validation set (Figure 6F). The above

diagnostic model has a good discriminatory ability for COVID-

19 and hopes to be applied in clinical practice to assist the clinical

diagnosis of COVID-19. Furthermore, a nomogram for COVID-

19 disease risk assessment was successfully established by using

the above eight key signatures for easier use (Figure 6G). Then, the

accuracy of this nomogram was preliminarily assessed using the

calibration curve, and the results showed that the Bias-corrected

curve coincided well with the Ideal curve (Figure 6H).

Furthermore, both the DCA curve and clinical impact curve

(Figures 6I, J) indicated that the risk model had good

performance ability. Specifically, it can be seen from the above

figure that the model can achieve a higher net benefit rate at a

threshold around 0.6.
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Construction of regulatory networks at
transcriptional level

To identify substantial changes happening at the

transcriptional level and get insights into the common

DEGs, a network-based approach was employed to decode

the regulatory TFs and miRNAs. The DEG–TFs interactions

network was identified by using TarBase and miRTarBase

bases and displayed in Figure 7. Circles represented common

DEGs, while diamonds were TFs. The size of the circular or

rhombus node depends on the degree of the node. The degree

of a node is the number of connections the node has with

other nodes in the network. Nodes with a higher degree are

considered as important hubs of the network. From the

Figure 7, FCGR1B, BCL6, CD1D, MS4A4A and LTF were

more among more highly expressed DEGs as these genes have

a higher degree in the TF–gene interactions network. TFs

such as FOXC1, YY1, GATA2, PPARG and FOXL1 were more

significant than others as presented in the same figure. Again,

the Figure 8 represented the interactions of miRNAs

regulators with common DEGs. In the Figure 8, red squares

represented miRNA s, while blue circles represented DEGs.

Our results showed that SOCS3 , BCL6 , CXCR4 , and

TNFSF13B were the hub genes of this network, with the five

genes most involved in miRNAs. Besides, the significant hub

miRNAs were detected from the miRNAs-gene interaction

network, namely hsa-mir-27a-3p, hsa-mir-26a-5p, hsa-mir-

124-3p, hsa-mir-146a-5p and hsa-mir-20a-5p.
Identification of disease association

The circumstances in which different diseases can be

correlated or associated are that they must usually have one

or more similar genes (21). Therapeutic design strategies for

disorders begin with deciphering the relationship between

genes and disease (40). From the analysis of the gene-disease

association base on the DisGeNET platform, it was noticed

that liver Cirrhosis, rheumatoid arthritis, hypertensive

disease, allergic contact dermatitis, lupus erythematosus

systemic, anemia, hypersensitivity and Influenza were most

coordinated to our reported hub genes, and even in COVID-

19 (Figure 9). Interestingly, the study results suggested that

most of the diseases mentioned above were related to

inflammation or immune response in the body. The gene-

disease association suggests that certain diseases may have the

same molecular mechanism in progression, which has

implications for our development of new therapeutic

strategies for COVID-19.
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Identification of candidate drugs and
target–chemical interaction in COVID-19

A chemical–protein interaction network is an important

research tool for understanding the function of proteins,

which is helpful for advancing drug discovery (29). In the

aspects of common DEGs as potential drug targets in COVID-
Frontiers in Immunology 11
19 and sepsis, the candidate drugs were identified by using

Enrichr based on transcriptome signatures from the DSigDB

database. The top 10 drug molecules selected based on p-value

were considered as potential compounds that could be used for

COVID-19 treatment and subsequent analysis. These 10

possible drug molecules included cephaeline, mebendazole,

tretinoin, progesterone, emetine, digitoxigenin, trichostatin A,
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FIGURE 6

Screening feature genes from common differentially expressed genes (DEGs) using random forest (RF): (A) The random forest trees; (B) The
importance rankings of features. (C) Heatmap shows the clustering analysis results for feature genes in COVID-19. Red represented up-
regulated genes and blue represented down-regulated genes. (D) Graph represents the disease diagnosis model constructed by artificial neural
network (ANN). Receiver operating characteristic (ROC) curve analysis of the model’s performance for (E) training set and (F) validation set,
respectively. (G) A constructed nomogram for risk prediction of COVID-19. (H) The calibration curve, (I) decision curve analysis (DCA) curve and
(J) clinical impact curve for assessing the nomogram’ performance.
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piperlongumine, terfenadine and strophanthidin (Table 1).

These potential drugs were recommended for use in the

common DEGs, which was a common compound for the

treatment of two diseases.

Furthermore, molecular docking was implemented to

predict the binding mode of these 10 potential compounds
Frontiers in Immunology 12
with five different targets from COVID-19, including ACE2,

3CLpro, Mpro, PLpro and RdRp. It is generally believed that the

lower the stabilization energy of ligand binding to the receptor,

the greater the possibility of action, and the binding energy in

screening criteria was changed to ≤−5.0 kcal/mol (-20 kJ/mol) in

this study. The results of molecular docking analysis were shown
FIGURE 7

The construction of an interconnected regulatory interaction network for DEG-TFs. In this figure, circles represent common differentially
expressed genes (DEGs), while diamonds are transcription factors (TFs).
FIGURE 8

The construction of an interconnected regulatory interaction network for DEGs-miRNAs. In this figure, square nodes indicate miRNAs and circle
nodes represent common differentially expressed genes (DEGs).
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in Table 2, and the binding energy of most compounds met the

criteria. Figure 10 demonstrated the binding differences of the

top 3 potential compounds that bind to these 5 COVID-19

targets. The bioactive compounds, progesterone, emetine, and

digitoxigenin, were the most promising compounds on ACE2,

and emetine, progesterone and cephaeline were the most active

on 3CLpro. For the main protease (Mpro), the most promising

compounds included progesterone, cephaeline and emetine.

Besides, the most potential compounds binding to PLpro were

progesterone, cephaeline and terfenadine, while progesterone,

emetine and tretinoin were the most active on RdRp.

Interestingly, emetine was found to have lower stabilization

energy at binding sites to four targets (ACE2, 3CLpro, Mpro,

and RdRp), while progesterone could stably bind to all COVID-

19 targets, with all binding energy ≤−6.5 kcal/mol. Therefore,
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these two drugs may be the most potential compounds for the

treatment of COVID-19, and further studies on the

pharmacological effects of these two compounds are needed.
Discussion

From the COVID-19 pandemic to the present, research on

COVID-19 has become more and more in-depth, and it has been

found that COVID-19 has many unique characteristics, and

many manifestations are very similar to sepsis (47). For example,

both cytokines and chemokines are elevated in the serum of

severe COVID-19 patients, and similar manifestations are seen

in sepsis patients. Severely ill COVID-19 patients have clinical

manifestations of shock without hypotension. At the same time,

a hypercoagulable state is present in both diseases. At present,

many pathological studies believe that sepsis is caused by the

imbalance between the body’s pro-inflammatory response and

anti-inflammatory response (48). According to some scholars,

treating COVID-19 as viral sepsis, using effective antiviral

therapy for patients, regulating innate and adaptive immune

responses, and limiting their damage to tissues will help improve

the treatment outcome (7). The focus of this study is to explore

the correlation between COVID-19 and sepsis, and to explore

the common mechanisms that may be involved between the two,

so as to provide a theoretical basis for the classification and

treatment of COVID-19.

The enrichment analysis of pathways and functions helps us

to understand the regulatory effects and specific mechanisms of
FIGURE 9

The gene-disease association network represents diseases associated with common differentially expressed genes (DEGs). The disorder is
depicted by the square node and also its subsequent DEGs are defined by the circle node.
TABLE 1 Candidate drugs (top ten) identified from gene–drug
interaction enrichment analysis.

Name Adjusted P-value Chemical Formula

cephaeline
mebendazole
tretinoin
progesterone
emetine
digitoxigenin
trichostatin A
piperlongumine
terfenadine
strophanthidin

4.94E-10
9.95E-10
1.64E-09
8.06E-09
8.28E-09
2.71E-06
2.71E-06
3.62E-06
7.43E-06
1.67E-05

C28H38N2O4

C16H13N3O3

C20H28O2

C21H30O2

C29H40N2O4

C23H34O4

C17H22N2O3

C17H19NO5

C32H41NO2

C23H32O6
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genes on the body. In this study, firstly, the 151 common DEGs

were obtained by expression profile differential analysis and

VENN analysis, then functional enrichment analysis was

performed on them. The results of enrichment analysis

showed that these DEGs were mainly enriched in infection

and inflammation-related pathways and functions, such as

Cytokine-cytokine receptor interaction pathway and NF-kappa

B signaling pathway. Cytokines play critical roles in the

pathogenesis of COVID-19 and sepsis. Much evidence

suggests that cytokine storm is associated with the severity of

COVID-19 patients and is a key factor in the death of COVID-

19 patients (49). Studies have shown that bacteria-related

molecules are recognized by Toll-like receptors of body cells

and will cause a series of intracellular signaling pathways, which

together activate nuclear factor k-light-chain-enhancer of

activated B cell (NF-kB), eventually leading to the expression

of pro-inflammatory mediators (cytokines, chemokines, oxygen

free radicals) (50). In the bioinformatics analysis of COVID-19,

studies have also shown that the genes related to COVID-19 and

herpes zoster are also involved in the Cytokine-cytokine receptor

interaction pathway and the IL-17 signaling pathway (51). The

pathway analysis results presented that these common DEGs

were enriched in pathway associated with bacterial infections,

staphylococcus aureus infection. Studies have shown that

Staphylococcus aureus bacteremia is associated with high

mortality in hospitalized patients with COVID-19 (52). In

addition, these common DEGs may also be involved in certain

chronic inflammatory diseases, such as Inflammatory bowel

disease (IBD). Interestingly, some studies have also found that

ACE2 is up-regulated in the inflamed intestinal mucosa of IBD

patients, indicating that IBD patients are theoretically more

susceptible to COVID-19 infection (53). However, in clinical

studies, there is no data showing that the IBD population is more

susceptible to COVID-19 infection, so further research is needed

to determine the correlation between the two (54).

In this study, GO terms of CC indicate that these common

DEGs also involve a variety of intracellular granule formation-

and secretion-related pathways, including example, tertiary
TABLE 2 The binding sites and energies for key drug targets of
COVID-19 were evaluated through AutoDock calculations.

Drug
targets

Amino acid Binding
energy

ACE2

cephaeline ALA-348, ASP-350 -7.40

mebendazole TYR-158, SER-254 -4.52

tretinoin UNK-914, UNK-915, UNK-916, UNK-
917

-5.90

progesterone TYR-158 -8.08

emetine GLU-140, GLU-150 -7.97

digitoxigenin UNK-920, UNK-922 -7.48

trichostatin A ASP-350, ARG-393, LYS-562 -4.51

piperlongumine ASN-210 -5.28

terfenadine GLU-564 -6.43

strophanthidin SER-170, UNK-951 -5.13

3CLpro

cephaeline PRO-108, ASP-245 -6.59

mebendazole GLU-166, PRO-168 -3.80

tretinoin LYS-97 -6.01

progesterone LYS-236, LEU-287 -7.00

emetine PRO-108, ASP-245 -7.02

digitoxigenin LYS-137, LEU-272, LEU-287 -6.55

trichostatin A LYS-97, ASN-119, GLY-120 -3.79

piperlongumine GLU-166, PRO-168 -5.45

terfenadine ASP-33 -5.41

strophanthidin LYS-137, LEU-287 -5.06

Mpro

cephaeline ALA-115, GLU-49, ASP-241 -7.15

mebendazole ALA-189, ASP-191 -4.86

tretinoin SER-253 -6.60

progesterone ARG-251 -7.52

emetine GLU-20 -7.05

digitoxigenin ALA-115 -6.17

trichostatin A GLY-215, GLN-224 -3.38

piperlongumine ASP-241 -4.90

terfenadine GLU-20 -5.87

strophanthidin GLY-93 -5.58

PLpro

cephaeline HIS-163, GLU-166, GLN-189 -7.22

mebendazole TYR-239, MET-276, GLY-278, ALA-285 -4.94

tretinoin LYS-97 -5.87

progesterone GLU-166 -7.57

emetine GLY-120 -6.45

digitoxigenin ASN-142, GLU-166 -6.96

trichostatin A ARG-298, GLN-299 -4.24

piperlongumine THR-26, GLY-143 -4.93

terfenadine GLU-166, LEU-141, SER-144 -7.03

strophanthidin GLU-240, HIS-246 -5.71

RdRp

cephaeline ASP-284, ASP-291 -6.06

(Continued)
TABLE 2 Continued

Drug
targets

Amino acid Binding
energy

mebendazole THR-141 -3.69

tretinoin LYS-391 -6.56

progesterone SER-709 -7.36

emetine LYS-288, ASP-291 -7.20

digitoxigenin ILE-266, THR-319 -6.42

trichostatin A ASP-336 -3.05

piperlongumine LYS-603 -3.56

terfenadine SER-709 -4.24

strophanthidin ASP-284, ASP-291, GLN-292, TYR-294 -3.05
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granule, specific granule, cytoplasmic granule lumen and

cytoplasmic vesicle lumen, which have all been shown to be

closely related to the function of neutrophils. It has been shown

that neutrophils also play an important role in COVID-19, and

their main function is phagocytosis of pathogens and debris

(55). Barnes found extensive neutrophil infiltration in the

pulmonary capillaries of a COVID-19 patient (56). In

addition, the neutrophil-to-lymphocyte ratio (NLR) is

increased in patients with COVID-19, and the neutrophil

count and NLR are also the highest in critically ill patients

admitted to the ICU (57). Importantly, the number and

activation of neutrophils correlates with the severity of the

disease (58). Furthermore, current evidence suggests that

immunopathology resulting from neutrophil dysfunction is

one of the important mechanisms in the pathogenesis of

COVID-19 (58, 59). Typically, neutrophils can suppress and

inactivate viruses through specific immune effects (release of

NETs) (60, 61). Specifically, neutrophils can construct a

complex network of DNA and proteins, neutrophil

extracellular traps (NETs), which is a release of histone-

encapsulated nucleic acid networks that retain viral particles

(62). Granules, in addition to being associated with neutrophil

differentiation and maturation, can also be released upon cell

death and is associated with NETs (63, 64). Notably, granules

embedded in NETs has been reported to have a critical

pathological role in atherosclerosis, thrombosis, or tumor

development (43). Data showed that circulating neutrophils

exhibited an activated phenotype in COVID-19 cases and

molecules associated with NETs were significantly

upregulated in severe COVID-19 cases (58). In addition,

Skendros discovered that complement activation enhances

the platelet/NET/tissue factor/thrombin axis in COVID-19

patients (65). Nicolai noted that fibrin- and platelet-related

NETs are contained in inflammatory microvascular thrombi in

the kidneys, lungs, and hearts of COVID-19 patients (66).

These suggest that we can disrupt the vicious cycle of

thrombosis/thrombotic inflammation in COVID-19 patients

by activating neutrophils and promoting the formation

of NETs.

Based on the results of PPI network and hub gene

extraction, ITGAM interacts with other genes to the

strongest extent, and is probably the most important gene

between COVID-19 and sepsis. In studies on COVID-19 and

Guillain‐Barré syndrome, it was also found that ITGAM is an

important factor in the gene regulatory network associated

with the two diseases (67). ITGAM is a protective factor

expressed during inflammatory injury. Some studies have

found that in patients with COVID-19, the expression of

ITGAM in females is lower than that in males, indicating

that different genders have different mechanisms for

regulating inflammation (68). The integrin CD11b encoded

by ITGAM is expressed on the surface of macrophages and is

involved in adhesion, migration and cel l-mediated
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cytotoxicity (69). Studies have found that CD11b can

mediate thrombus formation in COVID-19, so ITGAM plays

an important role in thrombus formation in COVID-19

patients (70). Another study found that ITGAM also plays

an important role in methicillin-resistant Staphylococcus

aureus (MRSA)-induced sepsis. After mice were infected

with MRSA, the mortality rate of ITGAM knockout mice

was significantly higher than that of control mice (69). In a

scoring system established with ITGAM and two other

immune genes, patients with low- risk scores showed better

response to immune checkpoint therapy (71). Our analysis

also found significant differences in the degree of certain

immune cell infiltration and immune checkpoint expression

levels between COVID-19 patients with high and low ITGAM

expression. Furthermore, our study suggested that ITGAM

was significantly associated with some immune cells (NK cells,

activated NK cells and Eosinophils) and many immune

checkpoints. This also suggests that we can genotype

patients with COVID-19 or patients with sepsis secondary to

COVID-19 to explore which type of patients is more effective

for immune checkpoint therapy.

In order to understand how common DEGs regulate

COVID-19 (or sepsis) at the transcriptional level, the

interact ions among TFs , miRNAs and genes were

investigated via web tools. Our results showed that the

regulatory relationship between TFs (FOXC1, YY1, GATA2,

PPARG and FOXL1) and genes (FCGR1B, BCL6, CD1D,

MS4A4A and LTF), as well as miRNAs (hsa-mir-27a-3p,

hsa-mir-26a-5p, hsa-mir-124-3p, hsa-mir-146a-5p and hsa-

mir-20a-5p) and genes (SOCS3 , BCL6 , CXCR4 , and

TNFSF13B) that may play important roles in COVID-19

and sepsis. In previous bioinformatics analysis, Ahmed (72)

and Islam et al. (73) both found that FOXC1, YY1, GATA2,

and FOXL1 are important TFs for COVID-19. Some network

pharmacology studies (74, 75) also found that PPARG may be

a key therapeutic target for COVID-19. In addition, hsa-mir-

27a-3p may be related to the malignant biological behavior of

glioma cells (76), and may also be an important molecular

feature in esophageal cancer (77). In the serum of lactating

mothers with type 1 diabetes , hsa-mir-26a-5p was

upregulated and was shown to be significantly associated

with inflammatory responses and cytokine- and chemokine-

mediated signaling pathways (78). Hsa-mir-124-3p and hsa-

mir-20a-5p were also considered as potential therapeutic

targets for COVID-19 in previous bioinformatics analysis

(79–82). Although many previous studies have suggested

that these TFs and miRNAs may have important

therapeutic effects, these analytical results require further

experiments to confirm their validity and authenticity.

Based on common DEGs, a gene-disease relationship

network was established to understand the correlation

between these genes and diseases, and these results can

inspire us to develop potential drugs to treat COVID-19
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FIGURE 10

Molecular docking patterns for (A) progesterone, (B) emetine, (C) digitoxigenin with the ACE2, respectively. Molecular docking patterns for (D)
emetine, (E) progesterone, (F) cephaeline with the 3CLpro, respectively. Molecular docking patterns for (G) progesterone, (H) cephaeline, (I)
emetine with the Mpro, respectively. Molecular docking patterns for (J) progesterone, (K) cephaeline, (L) terfenadine with the PLpro, respectively.
Molecular docking patterns for (M) progesterone, (N) emetine, (O) tretinoin with the RdRp respectively.
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with reference to the occurrence, development and treatment

of these diseases. Diseases enriched by these DEGs include:

liver Cirrhosis, rheumatoid arthritis, lupus erythematosus

systemic and other immune and inflammation-related

diseases. Recent studies have found that approximately one-

third of patients with cirrhosis die within 10 days of being

diagnosed with COVID-19, and two-thirds of patients with

cirrhosis die before admission to the intensive care unit due to

pulmonary insufficiency (83). In patients with rheumatoid

arthritis, older age and comorbidities are risk factors for severe

COVID-19. Glucocorticoids, appear to increase the worsening

of COVID-19 outcomes (84). COVID-19 shares similarities

with autoimmune diseases in clinical manifestations, immune

responses, and pathogenic mechanisms. Both cause organ

damage due t o an ex c e s s i v e immune r e spon s e .

Autoantibodies that are hallmarks of autoimmune disease

can also be detected in COVID-19 patients. Meanwhile,

some COVID-19 patients have been reported to have

secondary autoimmune diseases, such as Guillain-Barré

syndrome or systemic lupus erythematosus (85). It appears

that there are some similarities between these two diseases in

terms of pathogenesis, which means that COVID-19 can be

studied from this perspective.

Our drug prediction and molecular docking results

suggest that emetine and progesterone can bind to multiple

key targets of COVID-19 and may become new potential

therapeutic drugs. Emetine is an isoquinoline alkaloid that is

highly enriched in the lungs, and it has been found to have a

certain inhibitory effect on the novel coronavirus in the in

vitro environment. A real-world study showed that low-dose

emetine combined with conventional antiviral drugs

improved symptoms in patients with COVID-19 (86).

There are also studies showing that the synergy between

remdesivir and emetine can inhibit viral growth (87).

Studies have found that emetine not only has a certain

antiviral effect, but also can reduce the inflammatory

response of patients by inhibiting the activity of NF-kB
through IkBa phosphorylation, and can also reduce

pulmonary hypertension by regulating various cellular

processes (88). Progesterone is a sex hormone, and it also

has some anti-inflammatory properties. When the novel

coronavirus is infected, it can help the body control blood

pressure, inhibit the formation of blood clots, and inhibit the

growth of the virus. It can also regulate the body’s immune

response (89).
Conclusions

The transcriptome data of COVID-19 and sepsis versus

normal controls was downloaded from public databases and

then used to find DEGs for both diseases, respectively. The top

30 hub genes were screened from 151 shared DEGs. Based on
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these 151 DEGs, KEGG pathways and GO functions commonly

involved in both diseases were explored. The results showed that

they were mainly involved in infection and immune-related

pathways and functions. To understand the interactions

between common genes, the PPI network was delineated to

show how these 151 DEGs interacted. Based on the results of

hub gene extraction, ITGAM is considered to have the highest

degree of interaction with other genes, and it may be potentially

the most critical gene in both diseases. In order to verify our

conjecture, the functional annotation and immune analysis were

performed of ITGAM-related genes, and results showed that it

does play a key role in immune regulation. The related genes are

involved in immune-related pathways such as cytokines, anti-host

transplantation disease, and infection. At the same time, it is also

related to the infiltration degree of NK cells and eosinophils. In

addition, there are 16 immune checkpoints associated with them,

which are potential targets for the treatment of novel coronavirus

and sepsis. Then these DEGs were used for screening out 8 key

genes to establish an artificial neural network prediction model for

COVID-19, and its AUC was as high as 0.998, indicating that the

model performed very well. At the same time, a nomogram was

built to predict the risk of COVID-19. To understand the role of

these DEGs at the transcriptional level, TF-gene interaction

network and miRNA-gene interaction network for DEGs were

established to discover key TFs and miRNAs. Then the diseases

most related to these DEGs were learned, mainly immune-related

diseases, which suggests that we can mine effective information

related to the treatment of novel coronavirus from the perspective

of the development of these diseases.
Data availability statement

Publicly available datasets were analyzed in this study. The

data could be download from the GEO database of the National

Center for Biotechnology Information (NCBI) (https://www.

ncbi.nlm.nih.gov/geo/), accession numbers GSE147507,

GSE65682 and GSE196822.
Author contributions

FX-L conceived and designed the study. LL and LP-L

provided equal contributions to research design, data analysis

and article writing. RG revised the manuscript. HD, YR-S and

XH-Z helped to write the manuscript. All authors contributed to

the article and approved the submitted version.
Funding

This work was supported by the Natural Science Foundation

of Hunan Province (No. 2020JJ4840) and the Postgraduate
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2022.975848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lu et al. 10.3389/fimmu.2022.975848
Research and Innovation Project of Central South University

(No. 2021zzts1093).
Acknowledgments

The authors would like to acknowledge the GEO database

for providing their platforms and those contributors for

uploading their valuable datasets.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Immunology 18
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.975848/full#supplementary-material
References
1. Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: a
global health crisis. Physiol Genomics (2020) 52:549–57. doi: 10.1152/
physiolgenomics.00089.2020

2. Long B, Carius BM, Chavez S, Liang SY, Brady WJ, Koyfman A, et al. Clinical
update on COVID-19 for the emergency clinician: Presentation and evaluation.
Am J Emerg Med (2022) 54:46–57. doi: 10.1016/j.ajem.2022.01.028

3. Lopez-Collazo E, Avendano-Ortiz J, Martin-Quiros A, Aguirre LA. Immune
response and COVID-19: A mirror image of sepsis. Int J Biol Sci (2020) 16:2479–
89. doi: 10.7150/ijbs.48400

4. Remy KE, Brakenridge ,SC, Francois ,B, Daix ,T, Deutschman CS, Monneret
G, et al. Immunotherapies for COVID-19: lessons learned from sepsis. Lancet
Respir Med (2020) 8:946–49. doi: 10.1016/S2213-2600(20)30217-4

5. Chen L, Huang Q, Zhao T, Sui L, Wang S, Xiao Z, et al. Nanotherapies for
sepsis by regulating inflammatory signals and reactive oxygen and nitrogen species:
New insight for treating COVID-19. Redox Biol (2021) 45:102046. doi: 10.1016/
j.redox.2021.102046

6. Yao XH, Luo T, Shi Y, He ZC, Tang R, Zhang PP, et al. A cohort autopsy
study defines COVID-19 systemic pathogenesis. Cell Res (2021) 31:836–46.
doi: 10.1038/s41422-021-00523-8

7. Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS-CoV-2 and viral
sepsis: observations and hypotheses. Lancet (2020) 395:1517–20. doi: 10.1016/
S0140-6736(20)30920-X

8. Alhazzani, Moller, Arabi, Loeb, Gong, Fan, et al. Surviving Sepsis Campaign:
guidelines on the management of critically ill adults with Coronavirus Disease 2019
(COVID-19). Intensive Care Med (2020) 46:854–87. doi: 10.1007/s00134-020-
06022-5

9. Crunkhorn S. A new route to sepsis therapy. Nat Rev Drug Discovery (2019)
8:d41573-019-00034-7. doi: 10.1038/d41573-019-00034-7

10. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet
(2018) 392:75–87. doi: 10.1016/S0140-6736(18)30696-2

11. Toledo AG, Golden G, Campos AR, Cuello H, Sorrentino J, Lewis N, et al.
Proteomic atlas of organ vasculopathies triggered by staphylococcus aureus sepsis.
Nat Commun (2019) 10:4656. doi: 10.1038/s41467-019-12672-x

12. Olwal CO, Nganyewo NN, Tapela K, Djomkam Zune AL, Owoicho O,
Bediako Y, et al. Parallels in sepsis and COVID-19 conditions: Implications for
managing severe COVID-19. Front Immunol (2021) 12:602848. doi: 10.3389/
fimmu.2021.602848

13. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D,
Bauer M, et al. The third international consensus definitions for sepsis and septic
shock (sepsis-3). JAMA (2016) 315:801–10. doi: 10.1001/jama.2016.0287

14. Wiersinga WJ, Rhodes A, Cheng A, Peacock SJ, Prescott HC.
Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease
2019 (covid-19): a review. JAMA (2020) 324:782–93. doi: 10.1001/jama.2020.12839
15. Ma L, Li H, Lan J, Hao X, Liu H, Wang X, et al. Comprehensive analyses of
bioinformatics applications in the fight against COVID-19 pandemic. Comput Biol
Chem (2021) 95:107599. doi: 10.1016/j.compbiolchem.2021.107599

16. MacEachern SJ, Forkert ND. Machine learning for precision medicine.
Genome (2021) 64:416–25. doi: 10.1139/gen-2020-0131

17. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M,
et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids
Res (2013) 41:D991–5. doi: 10.1093/nar/gks1193

18. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R,
et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19.
Cell (2020) 181:1036–45 e9. doi: 10.1016/j.cell.2020.04.026

19. Zhang Z, Chen L, Xu P, Xing L, Hong Y, Chen P. Gene correlation network
analysis to identify regulatory factors in sepsis. J Transl Med (2020) 18:381.
doi: 10.1186/s12967-020-02561-z

20. Synowiec A, Szczepanski A, Barreto-Duran E, Lie LK, Pyrc K. Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2): a systemic infection. Clin
Microbiol Rev (2021) 34:e00133-20. doi: 10.1128/CMR.00133-20

21. Mahmud SMH, Al-Mustanjid MD, Akter F, Rahman MDS, Ahmed K,
Rahman MDH, et al. Bioinformatics and system biology approach to identify the
influences of SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic
obstructive pulmonary disease patients. Brief Bioinform (2021) 22:bbab115.
doi: 10.1093/bib/bbab115

22. Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C. Jvenn: an
interactive Venn diagram viewer. BMC Bioinf (2014) 15:293. doi: 10.1186/
1471-2105-15-293

23. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res (2000) 28:27–30. doi: 10.1093/nar/28.1.27

24. Gene Ontology Consortium. Gene Ontology Consortium: going forward.
Nucleic Acids Res (2015) 43:D1049–56. doi: 10.1093/nar/gku1179

25. Wang C, Liu H, Yang M, Bai Y, Ren H, Zou Y, et al. RNA-Seq based
transcriptome analysis of endothelial differentiation of bone marrow mesenchymal
stem cells. Eur J Vasc Endovasc Surg (2020) 59:834–42. doi: 10.1016/
j.ejvs.2019.11.003

26. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The
STRING database in 2021: customizable protein-protein networks, and functional
characterization of user-uploaded gene/measurement sets. Nucleic Acids Res (2021)
49:D605–D12. doi: 10.1093/nar/gkaa1074

27. Chin CH, Chen SH, Wu SH, Ho CW, Ko MT, Lin CY. cytoHubba:
identifying hub objects and sub-networks from complex interactome. BMC Syst
Biol (2014) 8 Suppl 4:S11. doi: 10.1186/1752-0509-8-S4-S11

28. van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP. Gene co-
expression analysis for functional classification and gene-disease predictions. Brief
Bioinform (2018) 19:575–92. doi: 10.1093/bib/bbw139
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.975848/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.975848/full#supplementary-material
https://doi.org/10.1152/physiolgenomics.00089.2020
https://doi.org/10.1152/physiolgenomics.00089.2020
https://doi.org/10.1016/j.ajem.2022.01.028
https://doi.org/10.7150/ijbs.48400
https://doi.org/10.1016/S2213-2600(20)30217-4
https://doi.org/10.1016/j.redox.2021.102046
https://doi.org/10.1016/j.redox.2021.102046
https://doi.org/10.1038/s41422-021-00523-8
https://doi.org/10.1016/S0140-6736(20)30920-X
https://doi.org/10.1016/S0140-6736(20)30920-X
https://doi.org/10.1007/s00134-020-06022-5
https://doi.org/10.1007/s00134-020-06022-5
https://doi.org/10.1038/d41573-019-00034-7
https://doi.org/10.1016/S0140-6736(18)30696-2
https://doi.org/10.1038/s41467-019-12672-x
https://doi.org/10.3389/fimmu.2021.602848
https://doi.org/10.3389/fimmu.2021.602848
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1001/jama.2020.12839
https://doi.org/10.1016/j.compbiolchem.2021.107599
https://doi.org/10.1139/gen-2020-0131
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1186/s12967-020-02561-z
https://doi.org/10.1128/CMR.00133-20
https://doi.org/10.1093/bib/bbab115
https://doi.org/10.1186/1471-2105-15-293
https://doi.org/10.1186/1471-2105-15-293
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1016/j.ejvs.2019.11.003
https://doi.org/10.1016/j.ejvs.2019.11.003
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.3389/fimmu.2022.975848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lu et al. 10.3389/fimmu.2022.975848
29. Xia J, Chen S, Li Y, Li H, Gan M, Wu J, et al. Immune response is key to
genetic mechanisms of sars-cov-2 infection with psychiatric disorders based on
differential gene expression pattern analysis. Front Immunol (2022) 13:798538.
doi: 10.3389/fimmu.2022.798538

30. Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al. KOBAS-i: intelligent
prioritization and exploratory visualization of biological functions for gene
enrichment analysis. Nucleic Acids Res (2021) 49:W317–W25. doi: 10.1093/nar/
gkab447

31. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015)
12:453–7. doi: 10.1038/nmeth.3337

32. Wang Y, Xia ST, Tang Q, Wu J, Zhu X. A novel consistent random forest
framework: Bernoulli random forests. IEEE Trans Neural Netw Learn Syst (2018)
29:3510–23. doi: 10.1109/TNNLS.2017.2729778

33. Azimi P, Mohammadi HR, Benzel EC, Shahzadi S, Azhari S, Montazeri A.
Artificial neural networks in neurosurgery. J Neurol Neurosurg Psychiatry (2015)
86:251–6. doi: 10.1136/jnnp-2014-307807

34. Huang YT, Kangas LJ, Rasco BA. Applications of artificial neural networks
(ANNs) in food science. Crit Rev Food Sci Nutr (2007) 47:113–26. doi: 10.1080/
10408390600626453

35. Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: A comprehensive
database of experimentally supported animal microRNA targets. RNA (2006)
12:192–7. doi: 10.1261/rna.2239606

36. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, et al.
miRTarBase: a database curates experimentally validated microRNA-target
interactions. Nucleic Acids Res (2011) 39:D163–9. doi: 10.1093/nar/gkq1107

37. Auwul MR, Rahman MR, Gov E, Shahjaman M, Moni MA. Bioinformatics
and machine learning approach identifies potential drug targets and pathways in
COVID-19. Brief Bioinform (2021) 22:bbab120. doi: 10.1093/bib/bbab120

38. Pinero P, Ramirez-Anguita JM, Sauch-Pitarch J, Ronzano F, Centeno E,
Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019
update. Nucleic Acids Res (2020) 48:D845–D55. doi: 10.1093/nar/gkz1021

39. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z,
et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016
update. Nucleic Acids Res (2016) 44:W90–7. doi: 10.1093/nar/gkw377

40. Hu H, Tang N, Zhang F, Li L, Li L. Bioinformatics and system biology
approach to identify the influences of COVID-19 on rheumatoid arthritis. Front
Immunol (2022) 13:860676. doi: 10.3389/fimmu.2022.860676

41. Pinzi P, Rastelli G. Molecular docking: Shifting paradigms in drug discovery.
Int J Mol Sci (2019) 20:4331. doi: 10.3390/ijms20184331

42. Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune
system. Cell (2021) 184:1671–92. doi: 10.1016/j.cell.2021.02.029

43. Cassatella MA, Ostberg NK, Tamassia N, Soehnlein O. Biological roles of
neutrophil-derived granule proteins and cytokines. Trends Immunol (2019)
40:648–64. doi: 10.1016/j.it.2019.05.003

44. Segel GB, Halterman MW, Lichtman MA. The paradox of the neutrophil’s
role in tissue injury. J Leukoc Biol (2011) 89:359–72. doi: 10.1189/jlb.0910538

45. Chen B, Fan W, Liu J, Wu FX. Identifying protein complexes and functional
modules–from static PPI networks to dynamic PPI networks. Brief Bioinform
(2014) 15:177–94. doi: 10.1093/bib/bbt039

46. Zhou M, Wang X, Shi Y, Ding Y, Li X, Xie T, et al. Deficiency of ITGAM
attenuates experimental abdominal aortic aneurysm in mice. J Am Heart Assoc
(2021) 10:e019900. doi: 10.1161/JAHA.120.019900

47. Kocak Tufan Z, Kayaaslan B, Mer M. COVID-19 and sepsis. Turk J Med Sci
(2021) 51:3301–11. doi: 10.3906/sag-2108-239

48. Rello J, Valenzuela-Sanchez F, Ruiz-Rodriguez M, Moyano S. Sepsis: A
review of advances in management. Adv Ther (2017) 34:2393–411. doi: 10.1007/
s12325-017-0622-8

49. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol
(2021) 93:250–56. doi: 10.1002/jmv.26232

50. Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their
endogenous negative regulators as future immunomodulatory targets. Int
Immunopharmacol (2020) 89:107087. doi: 10.1016/j.intimp.2020.107087

51. Yu X, Li L, Chan MTV, Wu WKK. Bioinformatic analyses suggest
augmented interleukin-17 signaling as the mechanism of COVID-19-associated
herpes zoster. Environ Sci pollut Res Int (2021) 28:65769–75. doi: 10.1007/s11356-
021-15567-x

52. Cusumano JA, Dupper AC, Malik Y, Gavioli EM, Banga J, Berbel Caban A,
et al. Staphylococcus aureus bacteremia in patients infected with COVID-19: A
case series. Forum Infect Dis (2020) 7:ofaa518. doi: 10.1093/ofid/ofaa518

53. Monteleone G, Ardizzone S. Are patients with inflammatory bowel disease
at increased risk for covid-19 infection? J Crohns Colitis (2020) 14:1334–36.
doi: 10.1093/ecco-jcc/jjaa061
Frontiers in Immunology 19
54. Sultan K, Mone A, Durbin L, Khuwaja S, Swaminath A. Review of
inflammatory bowel disease and COVID-19. World J Gastroenterol (2020)
26:5534–42. doi: 10.3748/wjg.v26.i37.5534

55. Rosales C. Neutrophils at the crossroads of innate and adaptive immunity.
J Leukoc Biol (2020) 108:377–96. doi: 10.1002/JLB.4MIR0220-574RR

56. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of
patients infected with 2019 novel coronavirus in wuhan, China. Lancet (2020)
395:497–506. doi: 10.1016/S0140-6736(20)30183-5

57. Sun S, Cai X, Wang H, He G, Lin Y, Lu B, et al. Abnormalities of peripheral
blood system in patients with COVID-19 in wenzhou, China. Clin Chim Acta
(2020) 507:174–80. doi: 10.1016/j.cca.2020.04.024

58. Masso-Silva JA, Moshensky A, Lam MTY, Odish MF, Patel A, Xu L, et al.
Increased peripheral blood neutrophil activation phenotypes and neutrophil
extracellular trap formation in critically ill coronavirus disease 2019 (COVID-19)
patients: A case series and review of the literature. Clin Infect Dis (2022) 74:479–89.
doi: 10.1093/cid/ciab437

59. Li CH, Chiou HYC, Lin MH, Kuo CH, Lin YC, Lin YC, et al. Immunological
map in COVID-19. J Microbiol Immunol Infect (2021) 54:547–56. doi: 10.1016/
j.jmii.2021.04.006

60. Lamichhane PP, Samarasinghe AE. The role of innate leukocytes during
influenza virus infection. J Immunol Res (2019) 2019:8028725. doi: 10.1155/2019/
8028725

61. Barr FD, Ochsenbauer C, Wira CR, Rodriguez-Garcia M. Neutrophil
extracellular traps prevent HIV infection in the female genital tract. Mucosal
Immunol (2018) 11:1420–28. doi: 10.1038/s41385-018-0045-0

62. Jenne CN, Wong CHY, Zemp FJ, McDonald B, Rahman MM, Forsyth PA,
et al. Neutrophils recruited to sites of infection protect from virus challenge by
releasing neutrophil extracellular traps. Cell Host Microbe (2013) 13:169–80.
doi: 10.1016/j.chom.2013.01.005

63. Lim CH, Adav SS, Sze SK, Choong YK, Saravanan R, Schmidtchen A.
Thrombin and plasmin alter the proteome of neutrophil extracellular traps. Front
Immunol (2018) 9:1554. doi: 10.3389/fimmu.2018.01554

64. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W,
et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein
complex involved in host defense against candida albicans. PloS Pathog (2009) 5:
e1000639. doi: 10.1371/journal.ppat.1000639

65. Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S,
Rafailidis P, et al. Complement and tissue factor-enriched neutrophil extracellular
traps are key drivers in COVID-19 immunothrombosis. J Clin Invest (2020)
130:6151–57. doi: 10.1172/JCI141374

66. Nicolai L, Leunig A, Brambs S, Kaiser R, Weinberger T, Weigand M, et al.
Immunothrombotic dysregulation in covid-19 pneumonia is associated with
respiratory failure and coagulopathy. Circulation (2020) 142:1176–89.
doi: 10.1161/CIRCULATIONAHA.120.048488

67. Li Z, Huang Z, Li X, Huang C, Shen J, Li S, et al. Bioinformatic analyses
hinted at augmented T helper 17 cell differentiation and cytokine response as the
central mechanism of COVID-19-associated Guillain-barre syndrome. Cell Prolif
(2021) 54:e13024. doi: 10.1111/cpr.13024

68. Freire PP, Marques AH, Baiocchi GC, Schimke LF, Fonseca DL, Salgado RC,
et al. The relationship between cytokine and neutrophil gene network distinguishes
SARS-CoV-2-infected patients by sex and age. JCI Insight (2021) 6:e147535.
doi: 10.1172/jci.insight.147535

69. Sim H, Jeong D, Kim HY, Pak S, Thapa B, Kwon HJ, et al. CD11b deficiency
exacerbates methicillin-resistant staphylococcus aureus-induced sepsis by
upregulating inflammatory responses of macrophages. Immune Netw (2021) 21:
e13. doi: 10.4110/in.2021.21.e13

70. Das D, Podder S. Unraveling the molecular crosstalk between
atherosclerosis and COVID-19 comorbidity. Comput Biol Med (2021)
134:104459. doi: 10.1016/j.compbiomed.2021.104459

71. Liang T, Chen J, Xu G, Zhang H, Xue J, Zeng H, et al. TYROBP, TLR4 and
ITGAM regulated macrophages polarization and immune checkpoints expression
in osteosarcoma. Sci Rep (2021) 11:19315. doi: 10.1038/s41598-021-98637-x

72. Ahmed FF, Reza MS, Sarker MS, Islam MS, Mosharaf MP, Hasan S, et al.
Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1
infections and their validation with SARS-CoV-2 infections by using the integrated
bioinformatics approaches. PloS One (2022) 17:e0266124. doi: 10.1371/
journal.pone.0266124

73. Islam T, Rahman MR, Aydin B, Beklen H, Arga KY, Shahjaman M.
Integrative transcriptomics analysis of lung epithelial cells and identification of
repurposable drug candidates for COVID-19. Eur J Pharmacol (2020) 887:173594.
doi: 10.1016/j.ejphar.2020.173594

74. Wang WX, Zhang YR, Luo SY, Zhang YS, Zhang Y, Tang C. Chlorogenic
acid, a natural product as potential inhibitor of COVID-19: virtual screening
experiment based on network pharmacology and molecular docking. Nat Prod Res
(2022) 36:2580–84. doi: 10.1080/14786419.2021.1904923
frontiersin.org

https://doi.org/10.3389/fimmu.2022.798538
https://doi.org/10.1093/nar/gkab447
https://doi.org/10.1093/nar/gkab447
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1109/TNNLS.2017.2729778
https://doi.org/10.1136/jnnp-2014-307807
https://doi.org/10.1080/10408390600626453
https://doi.org/10.1080/10408390600626453
https://doi.org/10.1261/rna.2239606
https://doi.org/10.1093/nar/gkq1107
https://doi.org/10.1093/bib/bbab120
https://doi.org/10.1093/nar/gkz1021
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.3389/fimmu.2022.860676
https://doi.org/10.3390/ijms20184331
https://doi.org/10.1016/j.cell.2021.02.029
https://doi.org/10.1016/j.it.2019.05.003
https://doi.org/10.1189/jlb.0910538
https://doi.org/10.1093/bib/bbt039
https://doi.org/10.1161/JAHA.120.019900
https://doi.org/10.3906/sag-2108-239
https://doi.org/10.1007/s12325-017-0622-8
https://doi.org/10.1007/s12325-017-0622-8
https://doi.org/10.1002/jmv.26232
https://doi.org/10.1016/j.intimp.2020.107087
https://doi.org/10.1007/s11356-021-15567-x
https://doi.org/10.1007/s11356-021-15567-x
https://doi.org/10.1093/ofid/ofaa518
https://doi.org/10.1093/ecco-jcc/jjaa061
https://doi.org/10.3748/wjg.v26.i37.5534
https://doi.org/10.1002/JLB.4MIR0220-574RR
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1016/j.cca.2020.04.024
https://doi.org/10.1093/cid/ciab437
https://doi.org/10.1016/j.jmii.2021.04.006
https://doi.org/10.1016/j.jmii.2021.04.006
https://doi.org/10.1155/2019/8028725
https://doi.org/10.1155/2019/8028725
https://doi.org/10.1038/s41385-018-0045-0
https://doi.org/10.1016/j.chom.2013.01.005
https://doi.org/10.3389/fimmu.2018.01554
https://doi.org/10.1371/journal.ppat.1000639
https://doi.org/10.1172/JCI141374
https://doi.org/10.1161/CIRCULATIONAHA.120.048488
https://doi.org/10.1111/cpr.13024
https://doi.org/10.1172/jci.insight.147535
https://doi.org/10.4110/in.2021.21.e13
https://doi.org/10.1016/j.compbiomed.2021.104459
https://doi.org/10.1038/s41598-021-98637-x
https://doi.org/10.1371/journal.pone.0266124
https://doi.org/10.1371/journal.pone.0266124
https://doi.org/10.1016/j.ejphar.2020.173594
https://doi.org/10.1080/14786419.2021.1904923
https://doi.org/10.3389/fimmu.2022.975848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lu et al. 10.3389/fimmu.2022.975848
75. Li H, You J, Yang X, Wei Y, Zheng L, Zhao Y, et al. Glycyrrhetinic acid: A
potential drug for the treatment of COVID-19 cytokine storm. Phytomedicine
(2022) 102:154153. doi: 10.1016/j.phymed.2022.154153

76. Chen Q, Wang W, Wu Z, Chen S, Chen X, Zhuang S, et al. Over-expression
of lncRNA TMEM161B-AS1 promotes the malignant biological behavior of glioma
cells and the resistance to temozolomide via up-regulating the expression of
multiple ferroptosis-related genes by sponging hsa-miR-27a-3p. Cell Death
Discovery (2021) 7:311. doi: 10.1038/s41420-021-00709-4

77. Lu M, Li J, Fan X, Xie F, Fan J, Xiong Y. Novel immune-related ferroptosis
signature in esophageal cancer: An informatics exploration of biological processes
related to the TMEM161B-AS1/hsa-miR-27a-3p/GCH1 regulatory network. Front
Genet (2022) 13:829384. doi: 10.3389/fgene.2022.829384

78. Frorup C, Mirza AH, Yarani R, Nielsen LB, Mathiesen ER, Damm P, et al.
Plasma exosome-enriched extracellular vesicles from lactating mothers with type 1
diabetes contain aberrant levels of miRNAs during the postpartum period. Front
Immunol (2021) 12:744509. doi: 10.3389/fimmu.2021.744509

79. Wicik Z, Eyileten C, Jakubik D, Simoes SN, Martins DC, Pavao R, et al.
ACE2 interaction networks in COVID-19: A physiological framework for
prediction of outcome in patients with cardiovascular risk factors. J Clin Med
(2020) 9:3743. doi: 10.3390/jcm9113743

80. Prasad K, Alasmari AF, Ali N, Khan R, Alghamdi A, Kumar V. Insights into
the SARS-CoV-2-Mediated alteration in the stress granule protein regulatory
networks in humans. Pathogens (2021) 10:1459. doi: 10.3390/pathogens10111459

81. Li C, Hu X, Li L, Li JH. Differential microRNA expression in the peripheral
blood from human patients with COVID-19. J Clin Lab Anal (2020) 34:e23590.
doi: 10.1002/jcla.23590
Frontiers in Immunology 20
82. Sardar R, Satish D, Gupta D. Identification of novel SARS-CoV-2 drug
targets by host MicroRNAs and transcription factors Co-regulatory
interaction network analysis. Front Genet (2020) 11:571274. doi: 10.3389/
fgene.2020.571274

83. Sansoe G, Aragno M, Wong F. COVID-19 and liver cirrhosis: Focus on the
nonclassical renin-angiotensin system and implications for therapy. Hepatology
(2021) 74:1074–80. doi: 10.1002/hep.31728

84. D’Silva KM, Wallace ZS. COVID-19 and rheumatoid arthritis. Curr Opin
Rheumatol (2021) 33:255–61. doi: 10.1097/BOR.0000000000000786

85. Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin
Rheumatol (2021) 33:155–62. doi: 10.1097/BOR.0000000000000776

86. Fan S, Zhen Q, Chen C, Wang W, Wu Q, Ma H, et al. Clinical efficacy of
low-dose emetine for patients with COVID-19: a real-world study. J BioX Res
(2021) 4:53–9. doi: 10.1097/JBR.0000000000000076

87. Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen K, Hui KPY, et al.
Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2
replication in vitro. Antiviral Res (2020) 178:104786. doi: 10.1016/
j.antiviral.2020.104786

88. Valipour M. Different aspects of emetine’s capabilities as a highly potent
SARS-CoV-2 inhibitor against COVID-19. ACS Pharmacol Transl Sci (2022)
5:387–99. doi: 10.1021/acsptsci.2c00045

89. Shah SB. COVID-19 and progesterone: Part 1. SARS-CoV-2, progesterone
and its potential clinical use. Endocrine and Metabolic Science (2021) 5:100109.
doi: 10.1016/j.endmts.2021.100109
frontiersin.org

https://doi.org/10.1016/j.phymed.2022.154153
https://doi.org/10.1038/s41420-021-00709-4
https://doi.org/10.3389/fgene.2022.829384
https://doi.org/10.3389/fimmu.2021.744509
https://doi.org/10.3390/jcm9113743
https://doi.org/10.3390/pathogens10111459
https://doi.org/10.1002/jcla.23590
https://doi.org/10.3389/fgene.2020.571274
https://doi.org/10.3389/fgene.2020.571274
https://doi.org/10.1002/hep.31728
https://doi.org/10.1097/BOR.0000000000000786
https://doi.org/10.1097/BOR.0000000000000776
https://doi.org/10.1097/JBR.0000000000000076
https://doi.org/10.1016/j.antiviral.2020.104786
https://doi.org/10.1016/j.antiviral.2020.104786
https://doi.org/10.1021/acsptsci.2c00045
https://doi.org/10.1016/j.endmts.2021.100109
https://doi.org/10.3389/fimmu.2022.975848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Discovering common pathogenetic processes between COVID-19 and sepsis by bioinformatics and system biology approach
	Introduction
	Materials and methods
	Transcriptomic data acquisition
	Differential gene expression analysis
	Functional insights into the differentially 
expressed genes
	Protein–protein interaction analysis and hub genes extraction
	Regulatory analysis of the key gene
	Developing diagnostic signature and risk model for COVID-19
	Identification of transcription factors and miRNAs
	Gene–disease association analysis
	Evaluation of applicant drugs
	Molecular docking simulation

	Results
	Identification of common transcriptional signatures between COVID-19 and sepsis
	Pathway enrichment and gene ontology analysis
	Protein–protein interaction network analysis and identification of hub genes
	Construction of disease diagnosis and risk model based on common DEGs
	Construction of regulatory networks at transcriptional level
	Identification of disease association
	Identification of candidate drugs and target–chemical interaction in COVID-19

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


