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ABSTRACT
A major bottleneck in the commercialization of plant-based pest management compounds is that
the extraction methods are complex, time-consuming, and even highly expensive. Using
a recently developed inexpensive extraction and quantification methodology to isolate polyphe-
nols (including anthocyanins and condensed tannins) from purple corn pericarp, we examined
their effects on Manduca sexta, a common insect herbivore. Following up on our previous work
which demonstrated the negative impacts of polyphenol-rich extract on larval stages, we further
examined whether there are any cascading effects on subsequent life stages (pupal and adult)
including any possible transgenerational effects. Our results show that polyphenol-rich purple
corn extract-fed caterpillars had significantly lower pupal mass and survival. Moreover, adult
moths also had lower mass when eclosed from caterpillars reared on the extract diet. To test
whether there were any transgenerational effects, we allowed male and female adults fed on
purple corn extract diet and control diet to mate and lay eggs in a full factorial experiment. We
found that purple corn extract-fed adult pair laid a lower number of eggs compared to other
treatments. In addition, we also found that second instar M. sexta caterpillars hatched from eggs
laid by any mating combination with at least one parent reared on purple corn extract gained
significantly lower mass compared to caterpillars with both parents reared on the control diet.
Taken together, our results show that there are cascading negative effects for feeding purple corn
pericarp extract on pupal, adult, and second generation of M. sexta, reaffirming its potential
application as a cost-effective and environmentally friendly pest deterrent.
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Introduction

Globally, insect pests account for ~18% loss of total
crop yield [1]. The use of synthetic insecticides/pesti-
cides to manage these pests while delivering positive
results has also produced a different set of concerns
including resistance development, residue build up,
biomagnification, and toxicity to non-target organisms
[1–3]. Alternatively, a growing body of work has exam-
ined the insecticidal properties of plant-based bioactive
compounds against various insect pests [4]. For exam-
ple, Azadirachtin (C-seco- limotriterpenoid) extracted
from neem plant (Azadirachta indica) has been shown
to exhibit larvicidal effect against horn fly (Haemotobia
irritans, L), stable fly (Stomoxys calcitrans) and house
fly [Musca domestica; 5] as well as fifth instar larvae of
tobacco hornworm [Manduca sexta; 6,7]. Generally,
these compounds act as antifeedant, repellent, anti-
ovipositor and in some cases as toxins that can impede

feeding, negatively affecting growth and development
or even kill insects [6,8].

To test their efficacy against insect pests, these com-
pounds are generally used either as crude extracts or pure
compounds [2,4,6,9,10]. However, due to the presence of
diverse compounds in plant matrices, it becomes tedious
to extract and purify these specific compounds efficiently
and economically [11,12]. In other words, there is
a never-ending quest for sourcing biologically active
compounds that can satisfy the abovementioned proper-
ties to be potentially incorporated into sustainable pest
management practices [4].

Colored corns (purple, blue) – are widely cultivated
and consumed across Argentina, Bolivia, Ecuador, and
Peru [13,14]. Purple corn (Zea mays L.) is considered to
be one of the richest sources of polyphenols including
anthocyanins and tannins [15]. Known for its antioxidant
[16,17], anti-obesity [18,19], anti-cancer [16], as well as
anti-inflammatory properties [20], these compounds
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(especially the combination of anthocyanins, polyphenols,
and tannins) can potentially have multiple pharmacolo-
gical uses. Since a lot of these plant metabolites are
synthesized to boost plants’ defense mechanism, these
also have potential insect deterrent/insecticidal properties
[21–24]. For example, we recently reported that sorghum
3-Deoxyanthocyanidin flavonoids negatively affect feed-
ing preference and reproduction of corn leaf aphid (CLA:
Rhopalosiphum maidis) and provide resistance against
CLA [21]. Although the precise mechanism behind
these effects is less understood, these compounds, in gen-
eral, have been shown to possess some insecticidal prop-
erties in various study systems [25–28].

Having longer storage life and the presence of sig-
nificant amounts of such compounds [15], these pig-
mented corn varieties can potentially be explored as
a source of inexpensive polyphenolic compounds for
utilization as bioinsecticides. In addition, Somavat et al.
[29] developed an efficient and inexpensive patent-
pending [30] methodology to isolate them from corn
pericarp, which is essentially a waste product in corn
processing. This is indeed a significant step since, most
of the current compound recovery methods from nat-
ural sources are plagued by complicated and expensive
extraction methods, lower recovery of active ingredi-
ents, and also tend to be time-consuming [11,12,31].

In a previous study, we documented the negative
effects of purple corn pericarp extract on growth and
development of different larval stages of Manduca
sexta [tobacco hornworm; Sphingidae; Lepidoptera;
egg hatching, caterpillar mass, caterpillar mass gain,
and time to pupation; 32]. We found that the purple
corn pericarp extract added diet significantly decreased
egg hatching percentage and lowered the mass and
mass gain compared to control diets. Moreover, the
purple corn pericarp extract-fed larvae showed signifi-
cantly lower preference to feed on that diet compared
to control diets, and took longer to pupate. We used
M. sexta as a study system because of its size, rapid
growth, ease of laboratory rearing, and their longtime
use as a study system for physiological, developmental,
and behavioral studies [33–38].

Although the larval stage of herbivorous insects such
as M. sexta is very critical from crop husbandry per-
spective (caterpillars cause damage and adults are
usually pollinators), it is imperative that other growth
stages are also investigated to examine the possible
lingering or cascading effects of feeding bioactive com-
pounds to them. This is especially important since adult
females can lay over 200 eggs in M. sexta [33], and
oviposition is considered as the first sign of herbivory
[39]. Moreover, it has been shown that the diet and
energy requirements for holometabolous insects change

between life stages [40]. In addition, the life cycle
modularity and rapid compensation also allow insects
to uncouple the effects of environmental disturbances
on their physiology in one step to the next [41–44]. For
example, the food impoverished individuals of Glanville
fritillary butterfly (Melitaea cinxia) maintained their
high fecundity rate through compensatory increased
developmental time [45]. It has also been reported
that insect maternal effects on second-generation off-
spring in response to parent diet quality are critical for
their growth [40,46–50]. For example, in Drosophila
melanogaster, the parents reared on poor larval food
laid heavier but smaller eggs than control parents
showing adaptive and maladaptive effects of parental
stress [51]. In other words, it is plausible to expect that
adults emerging from stressed caterpillars (in this case,
the purple corn extract-fed specimen) when allowed to
mate can possibly produce offspring that are compro-
mised in their growth and development.

Keeping this in mind, we designed a set of experi-
ments where we continued to examine the effects of
feeding purple corn pericarp extract on different pupal
(pupal mass, pupal survival, pupal duration) and adult
(adult mass, adult wingspan) parameters. We also had
two control diets; a regular artificial diet with no extract
added, and an additional control diet with yellow corn
extract added. To study whether there are any transge-
nerational effects of feeding polyphenol-rich pericarp
extract on M. sexta, we allowed the controlled mating
of adult moths on purple corn extract diet and control
diet (artificial diet without extract) treatments in a full
factorial design (see Figure 1 for details), allowed them
to lay eggs, and their offsprings to grow.

Material and methods

Insect colony

The pupae and adult moths used in this study were
collected from our previous experiment in which their
respective larvae were allowed to feed on different
treatments (purple corn pericarp extract: N = 58, yellow
corn pericarp extract: N = 28, control: N = 51) at room
temperature. At fifth instar stage, when the caterpillars
stopped eating and started to wander in petri dishes
with the dark black pulsating vein on dorsal side clearly
visible (Supplementary video S1), they were transferred
to plastic containers (23.19 cm × 15.24 cm × 16.84 cm;
Aquaculture pet carrier: # 564356887, Walmart) with
wood shavings (Natural Aspen small animal bedding:
Petco Animal Supplies, Inc., San Diego, CA, USA) for
pupation. Once pupated, measurements were taken,
and the pupal containers were then moved to lab
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cabinets and kept under dark conditions at room tem-
perature of 27°C and RH of 65%.

Pericarp extract and its quantification

Pericarp extracts used in different caterpillar diet treat-
ments (purple corn, yellow corn) were obtained by
steeping 5 gm of respective pericarps in 100 ml of deio-
nized water followed by stirring and centrifugation at
5000 rpm for 5 minutes [29]. The resultant filtrate was
used for mixing in caterpillar food. A pH differential
method using 96-well microplate reader (Multiskan Sky
Microplate Spectrophotometer: #51119600, Thermo
Fisher Scientific, MA, USA) was used to quantify the
amount of total monomeric anthocyanins, polyphenols,
and total tannins present in extracts. It was found that
purple corn pericarp extract contained greater amounts
of total monomeric anthocyanins, total polyphenols, and
tannins compared to yellow corn pericarp extract which
contained no anthocyanins and lower amounts of total
polyphenols and tannins [52].

Experiment methodology

All healthy pupae from the three different treatments
(purple corn pericarp extract, yellow corn pericarp
extract, and control) were allowed to develop and
eclose. Mass of each pupae was recorded by weighing
them on a digital balance (Accuris Series Dx, Model:
W3100-210, Benchmark Scientific, NJ, USA). Once
they eclosed, we calculated the days from pupation
to eclosion, recorded as pupal duration (all data were
collected at the same time to be consistent). Pupae
that did not eclose after 45 days and stopped moving
were considered as dead and were used to calculate
the pupal survival. Once eclosed, we recorded the
adult mass as well as wingspan. While adult mass
was calculated by using a digital balance (Accuris
Series Dx, Model: W3100-210, Benchmark Scientific,
NJ, USA), adult wingspan, i.e., length from the tip of
one wing to the tip of other wing when fully
expanded, was measured with a ruler (Ruler, White
Vinyl: # 70260, North Carolina Biological Supply Co.,
NC, USA).

a)                                 b)         c)        d) 

Figure 1. Schematic representation of the experimental design to study the effects of pericarp extract on fecundity and mass of first
and second instar offspring larvae. Adult moths were crossed in all possible combinations (a) Control female × Purple male, (b)
Purple female × Purple male, (c) Control female × Control male, and d) Purple female × Control male. All the collected eggs were
counted and placed on an artificial control diet and were allowed to hatch. Caterpillar mass at first and second instar was measured
and used to compute mass gain.
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To examine the transgenerational effects of pericarp
extract, we mated adult moths from purple corn peri-
carp extract and control treatments to each other in all
possible combinations (Purple female × Purple male;
Purple female × Control male; Control female × Purple
male; Control female × Control male; Figure 1
(N = 5-7/treatment), for mating details see [33].
Following the mating design, adult moths (one newly
eclosed male and female each) were placed in popup
cages (Popup rearing cage: #1466AB, BioQuip
Products, Inc., CA, USA) along with orange-flavored
Gatorade [33] as their food and a 6 weeks old tomato
plant (Variety: Valley Girl, Product ID 741, Johnny’s
Selected Seeds, ME, USA) as a host for oviposition [33].
Cages of different crosses were monitored every day for
eggs until the females died. Collected eggs were moved
to regular artificial control diet at room temperature
[35]. Once the larvae hatched, we recorded larval mass
to observe any transgenerational effects.

Statistical analysis

We used Analysis of variance as well as the non-
parametric Kruskal–Wallis tests depending upon the
nature of data (normal or non-normal) for analysis.
Since pupal duration followed normal distribution, we
ran one-way Anova (diets as a factor) for analysis.
However, non-normal data of pupal survival, adult
wingspan, were analyzed with non-parametric
Kruskal–Wallis test. Post-hoc pairwise comparisons of
all treatments were obtained with Tukey’s HSD and
Dunn’s multiple comparison tests, respectively. We
also collected data on larval mass at two-time intervals –
corresponding to first and second instars. Larval mass
data were analyzed using Generalized regression with
maximum likelihood estimation and Dunnett’s post-
hoc tests were used to compare all pairwise combina-
tions with control. For pupal and adult mass, we ran
two-way Anova where both treatment (diets) and sex

(male and female) were considered as factors and their
interaction term was also added into the model. Data
sets were analyzed using the statistical software, JMP
(SAS institute, NC, USA), and plots were built using
GraphPad PRISM software (La Jolla, CA, USA).
Detailed statistics are described in Table 1.

Results

Effects of pericarp extract on pupal stage of
M. sexta

Both pupal and adult mass results showed similar
trends. Results from the Two-Way Anova for pupal
mass showed that all the main effects were significant;
diet treatment (F = 23.88, p < 0.0001), sex (F = 7.65,
p = 0.0067), and interaction (sex × treatment; F = 4.53,
p = 0.01) (Table 1). Pairwise comparisons showed that
pupae from caterpillars reared on yellow corn diet were
significantly heavier than both control and purple corn
(Figure 2(a)). We also found that regardless of the
treatments, male pupae from yellow corn and control
diets were heavier than purple corn and control female
pupae, which was surprising (Figure 2(b)).

Pupal survival was significantly low (F = 9.885,
p = 0.0105) for purple corn reared pupae compared to
control (Figure 2(c)). However, yellow corn reared
pupal survival was similar to purple corn and control
pupae (F = 9.885, p = 0.0852). Interestingly, we found
that pupae reared on purple and yellow corn diet had
significantly low pupal duration (in days) (F = 5.665,
p = 0.0047) and eclosed earlier compared to control
pupae (Figure 2(d)).

Effects of pericarp extract on adult stage of
M. sexta

For adult mass, we found that both treatments (diets;
F = 14.15, p < 0.0001 and sex; F = 6.971, p = 0.010)

Table 1. Statistical test details used to analyze the effect of different pericarp extracts on pupal, adult, and
transgenerational traits. Significant results with p < 0.05 are in bold.
Parameter Test Df/groups Test Statistics p-value

Pupal mass Two Way ANOVA 2 Treatment (diet) F = 23.88 <0.0001
1 Sex (male and female) F = 7.65 0.0067
2 Interaction F = 4.53 0.013

Adult mass Two Way ANOVA 2 Treatment (diet) F = 14.58 <0.0001
1 Sex (male and female) F = 6.97 0.010
2 Interaction F = 1.73 0.183

Pupal survival Kruskal-Wallis Test 3 Kruskal-Wallis Statistic = 9.88 0.0071
Pupal duration One Way ANOVA 2 F statistic = 5.665 0.0047
Adult wingspan Kruskal-Wallis Test 3 Kruskal-Wallis Statistic = 2.38 0.3037
Eggs laid Kruskal-Wallis Test 4 Kruskal-Wallis Statistic = 4.83 0.1847
First instar larval mass Generalized Regression 3 Wald Chi-Square = 9.56 0.0226
Second instar larval mass Generalized Regression 3 Wald Chi-Square = 35.32 <0.0001
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significantly affected the mass, while their interaction
was non-significant (F = 1.73, p = 0.183) (Table 1).
Upon close examination with pairwise comparisons,
we found that adults emerged from caterpillars fed on
yellow corn diet and control diet were significantly
heavier than the ones from purple corn diet (Figure 3
(a)). In addition, we also found that regardless of the
treatments, male moths were heavier compared to
females (Figure 3(b)). However, there was no signifi-
cant difference in wingspan (F value = 2.38, p < 0.3037)
across the treatments (Figure 3(c)).

Effect of pericarp extract on adult fecundity and
offspring mass

Although there were no significant differences
(F value = 4.83, p = 0.1847) in mean number of eggs
laid by different crosses, a pattern of lower number of
eggs laid was observed when both the parents were fed
on purple corn pericarp extract diet (Figure 4(a)).
More interestingly, when we examined the larval

mass in the second generation, we found that for
first instar, the treatment was statistically significant
(Wald Chi-Square = 9.56, p = 0.0226), but when we
used Dunnett’s post-hoc comparison tests to compare
the male-female combinations with Control
female × Control male, none of the combinations
were statistically significant (Figure 4(b)). However,
once the caterpillars became second instar, these dif-
ferences were amplified. Again, the treatment was
significant (Wald Chi-Square = 35.32, p < 0.0001).
More interestingly, Dunnett’s pairwise comparisons
revealed that all pairwise combinations, when com-
pared to Control female × Control male were statisti-
cally significant, clearly demonstrating that the
presence of any of the parents reared on purple corn
pericarp extract diet affected the offspring (Purple
female Control male with Control male Control
female; p = 0.002; Purple male Purple female with
Control male Control female; p = 0.025; and Control
female Purple male Control male Control female;
p <.0001). (Figure 4(c))

a)                                                              b) 

c)          d)  

a

bc

c

a 

ab 

bc 

Figure 2. Results of one-way ANOVA, two-way ANOVA, Kruskal–Wallis tests, and the post-hoc Tukey’s HSD and Dunn’s multiple
comparisons (p < 0.05) for the effects of pericarp extract diet on mean (a) pupal mass, (b) pupal mass: treatment × sex, (c) pupal
survival, and (d) pupal duration. Means followed by different letters are significantly different at p < 0.05.
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Discussion

In continuation of our recent study demonstrating the
negative effects of purple corn pericarp extract on differ-
ent larval stages (egg hatching, larval mass, mass gain and
feeding preference, etc.) of M. sexta [52], current study
clearly demonstrates similar effects cascading through
pupal, adult, and next-generation offsprings. The lower
mass observed in purple corn pericarp pupae is a direct
result of purple corn pericarp-fed larvae that had gained
lower larval mass, clearly indicating larval nutritional
stress had negative effects on subsequent life stages.
Similar results have been reported on lower pupal mass
of starved caterpillars, for example, in Squinting bush
brown (Bicyclus anynana), which signifies the importance
of diet on their post-larval life history traits [32,40,53–56].

The significant decline in pupal survival and devel-
opmental time of purple corn pupae directly affected
adult mass and fecundity similar to predictioned by
life-history models [40,57–60]. It is well documented
that juvenile and ecdysteroid hormone levels direct
postembryonic insect development [61], we speculate
that purple corn pericarp extract might have affected

the interendocrine regulation, resulting in possible low
survival rates. In our recent work, we found a large
number of larvae stayed away from pericarp extract diet
[52] and were reluctant to feed on it compared to
control diets. It is possible that polyphenol-rich diet
may have antifeedant properties which resulted in star-
vation (or reduced intake) and consequently decreased
larval and pupal mass.

In addition, the findings of decreased pupal duration
are consistent with previous studies which have also
documented reduced lifespan in Glanville fritillary but-
terfly (Melitaea cinxia) due to early larval food stress
[45]. On the other hand, reduced lifespan and faster
development may also result in poor growth which can
affect subsequent stages. Parallel to this assumption, we
found significantly lower mass for adults of purple
pericarp extract group compared to control diet and
yellow corn pericarp extract group, reflecting their
inability to compensate. These findings are also in
agreement with [62] and many others, who reported
a strong correlation between pupal mass and adult mass
at eclosion. The presence of reduced mass pattern in

a)                                                              b) 

c)  

bc
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abc 
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Figure 3. Results of one-way ANOVA, two-way ANOVA, Kruskal–Wallis tests, Post-hoc Tukey’s HSD test (p < 0.05) for the effect of
pericarp extract diet on mean (a) adult mass, (b) adult mass: treatment × sex, and (c) adult wingspan. Means followed by different
letters are significantly different at p < 0.05.
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larval, pupal, and adult mass show cascading negative
effects of early larval food stress on subsequent stages
[32,40,52].

While examining the sex-specific effects of pericarp
extract on male and female individual masses, lack of
any significant differences among treatment × sex
interaction indicates that these effects are sex-
independent. In 2005, Bauerfeind & Fischer also did
not find any significant interactions among larval food
stress treatments and sex in Squinting bush brown
(Bicyclus anynana) although, the female pupae had
higher mass than male pupae. Previous studies have
reported that the adverse effects of poor diet quality
are more severe if both the parents and earlier genera-
tions experience them, as demonstrated in this study
[50,63,64]. Having a strong correlation of pupal mass
on female longevity, fecundity, and egg size [56], it is
understandable that low female pupal mass would
directly affect their reproductive ability.

Moreover, in relation to the individual size and
mass, we also expected that polyphenol-rich pericarp
extract-fed adults may have smaller wings and hence

lower wingspan [65] although, the results were not on
expected lines. However, since wings are an important
part for foraging, dispersal, and mate searching [66], it
would be interesting to study these effects on molecular
level, i.e., muscle molecular composition and their
flight capacity [67,68]. We speculate that there could
be possible effects of polyphenol-rich pericarp extract
on the alternate splice forms of Troponin T [67].’

Although we did not find any significant differences in
mean number of eggs laid among different crosses, when
both parents belonged to purple corn pericarp extract diet,
they indeed had the lowest number of eggs. Number of
eggs (123 out of total 905, ~13%) demonstrated the effects
of early larval stress on fecundity – possibly due to poor
food quality that affected insect physiology and fitness for
reproductive investment, coupled with short pupal devel-
opment [40,48–50]. Reduced sample size per treatment
(~24 mating pairs) and high variability in egg laying (ran-
ging 0 to 447) might explain the reasons we could not
resolvemany possible pairwise differences for egg laying in
this study. Since oviposition is the first step in future
herbivory and herbivory-related defense induction

Figure 4. Results of the Kruskal–Wallis tests, Dunn’s multiple comparison test (p < 0.05) for the effect of pericarp extract diet on (a)
mean number of eggs, (b) first instar offspring larval mass, and (c) second instar offspring larval mass. Means followed by different
letters are significantly different at p < 0.05.
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[69,70–72], a reduction in fecundity of adults could be
a management strategy against herbivory [73,74].

Interestingly, the low second instar larval mass of
offsprings from a mating where at least one parent was
from pericarp extract diet confirms the transgenera-
tional effects of purple corn pericarp extract. In the
past, different studies have shown the role of quality
nutrition in female reproduction and indirectly, its
negative transgenerational effects [40,75–79]. In con-
trast, the fitness buffering ability of individuals may
also result in adaptive responses against sensitive envir-
onmental stresses [50,65,80–82]. For example, it has
been reported that mothers exposed to stress through
natural enemies may produce more resistant offsprings
[45,80]. However, our results are in contrast to this
response and demonstrated decreased offspring mass
of nutritionally stressed parents. Also, as neonates have
to cope with different factors such as plant surfaces,
plant defenses, predators, pathogens, and parasitoids to
establishing themselves on food plant [34,83,84], we
speculate that the reduction in early instar larval masses
makes them more susceptible. Future studies should be
focused to identify whether any adaptive effects (any
resistant individuals) of pericarp nutritional stress are
transmitted to next generations.

Plants produce a variety of secondary metabolites
(alkaloids, terpenes, phenolics, nitrogen, and sulfur-
containing compounds) for defending themselves against
herbivores either by direct toxicity or by indirectly attract-
ing their parasites and predators [36,85–90]. It has also
been shown that these defenses are upregulated in
response to chemical elicitors present in herbivore and
pathogen oral secretions [91]. For example, Cai et al. [92]
reported an increased level of anthocyanins and resvera-
trol in Vitis vinifera cell suspension cultures in response to
M. sexta saliva, suggesting the possibility that anthocya-
nins are also a part of herbivore defense mechanism, and
are inducible, suggesting an evolutionary history of such
compounds in plant defense, further supporting the
merits in our exploration of these extracts for pest
management.

Conclusions and future studies

It was found that polyphenol-rich purple corn extract, an
inexpensive byproduct of corn processing has negative
impact on pupal and adult fitness and these effects can
cascade through transgenerational stages of M. sexta. In
previous work, we found the negative effects of this
extract on egg hatching, caterpillar mass, developmental
time [52], suggesting anti-herbivore effects of polypheno-
lic compounds and its overall suitability as a biopesticide.
Associated complexities and difficulties in bioactive

compound extraction mainly limit their commercializa-
tion potential. However, polyphenol-rich purple corn
extract can prove to be an economically viable insect
deterrent/biopesticide. In addition, since purple corn peri-
carp extract is a diverse mix of anthocyanins, tannins, and
other polyphenols, additional research is needed to ascer-
tain whether these effects are due to a specific bioactive
compound or due to a synergistic effect of all these
compounds. In addition, apart from lepidoptera pests, it
would be interesting to test the efficacy of polyphenol-rich
purple corn extract against pests with different feeding
habits, i.e., aphids, white flies, etc. Finally, future studies
are required to identify the mechanisms/mode of action
of polyphenol-rich pericarp extract at molecular levels, an
area we are currently exploring.
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