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Abstract

Objective—Body mass index (BMI) is commonly used to assess obesity, which is associated 

with numerous diseases and negative health outcomes. BMI has been shown to be a heritable, 

polygenic trait, with close to 100 loci previously identified and replicated in multiple populations. 

We aim to replicate known BMI loci and identify novel associations in a trans-ethnic study 

population.

Subjects—Using eligible participants from the Population Architecture using Genomics and 

Epidemiology (PAGE) consortium, we conducted a trans-ethnic meta-analysis of 102,514 African 

Americans, Hispanics, Asian/Native Hawaiian, Native Americans and European Americans. 

Participants were genotyped on over 200,000 SNPs on the Illumina Metabochip custom array, or 

imputed into the 1000 Genomes Project (Phase I). Linear regression of the natural log of BMI, 

adjusting for age, sex, study site (if applicable), and ancestry principal components, was conducted 

for each race/ethnicity within each study cohort. Race/ethnicity-specific, and combined meta-

analyses using fixed-effects models.

Results—We replicated 15 of 21 BMI loci included in the Metabochip, and identified two novel 

BMI loci at 1q41 (rs2820436) and 2q31.1 (rs10930502) at the Metabochip-wide significance 

threshold (p<2.5x10−7). Bioinformatic functional investigation of SNPs at these loci suggests a 

possible impact on pathways that regulate metabolism and adipose tissue.
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Conclusion—Conducting studies in genetically diverse populations continues to be a valuable 

strategy for replicating known loci and uncovering novel BMI associations.

Introduction

Obesity is a heritable risk factor for a large number of serious health conditions(1–4). It 

already imposes an enormous burden on the public health system and will continue to 

impact the cost of medical care through the predicted rise in diseases linked to chronic 

obesity(5–7). In US ethnicities, obesity rates vary in African Americans (36.2%), Hispanics/

Latinos (31.5%), Native Americans (41.2%), European Americans (27.9%), and Asians 

(9.9%)(8). Body mass index (BMI) heritability studies estimate that up to 70% of BMI 

variability may be attributed to genetic factors(9–11). While this might suggest that genetic 

traits contribute to racial/ethnic differences in rates of obesity, the relative importance of 

genetics compared with diet, behavior, and socioeconomic factors is under continued 

investigation(12). However, it is indisputable that many minority groups have been 

disproportionately affected by the obesity epidemic and obesity research in minorities must 

remain a public health priority.

Genome-wide association studies (GWAS) in European ancestry populations have 

successfully identified numerous genetic variants associated with BMI, firmly establishing 

the importance of genetic factors on obesity(13–15). However, examining genetic 

associations in minority groups may reveal previously unidentified BMI loci and help to 

pinpoint causal variants. Conducting analyses in underrepresented minority populations has 

been shown to improve the statistical power to detect novel loci by increasing allele 

frequency and the variance of allele counts for some genetic variants(16–18). A recent fine-

mapping study in African Americans benefitted from the lower linkage disequilibrium (LD) 

patterns when identifying independent signals in known BMI loci, and also found two novel 

loci, presumably aided by the gain in power due to the higher minor allele frequencies of 

these variants in those with African genetic ancestry(16). GWAS restricted to minority 

populations have had similar successes, uncovering additional BMI loci previously 

unidentified in studies of exclusively European ancestry(19–23). To date, the largest and 

most comprehensive BMI GWAS included individuals of both European and non-European 

descent, confirmed 41 known and found 56 novel BMI-associated loci(24). The results from 

these studies highlights the feasibility and benefits of using diverse human populations as a 

strategy to broaden our knowledge of BMI genetics.

To identify additional BMI loci, we leveraged the multi-ethnic design of the Population 

Architecture using Genomics and Epidemiology (PAGE) consortium to conduct a discovery 

meta-analysis in up to 102,514 individuals. Using this approach, we identified two novel 

BMI-associated loci, rs2820436 (1q41) and rs10930502 (2q31.1).

Materials and Methods

Study Population

The Population Architecture using Genomics and Epidemiology (PAGE) consortium is 

funded by the National Human Genome Research Institute to investigate the epidemiologic 
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architecture of well-replicated genetic variants associated with human diseases or traits(25). 

The PAGE-I study, initiated in 2008, consists of a coordinating center and four consortia, 

each with access to large, diverse population-based studies. The four consortia are: 

Epidemiologic Architecture for Genes Linked to Environment (EAGLE), which is based on 

data from Vanderbilt University Medical Center’s biorepository linked to de-identified 

electronic health records (EAGLE-BioVU); the Multiethnic Cohort Study (MEC); the 

Women’s Health Initiative (WHI); and Causal Variants Across the Life Course (CALiCO), a 

consortium of five cohort studies: the Atherosclerosis Risk in Communities (ARIC) study, 

Coronary Artery Risk Development in Young Adults (CARDIA), the Cardiovascular Health 

Study (CHS), the Hispanic Community Health Study/Study of Latinos (SOL), and the 

Strong Heart Study(25). The PAGE-II study, initiated in 2013, added the Charles Bronfman 

Institute for Personalized Medicine at Mount Sinai Medical Center, BioMe™ BioBank 

(MSSM). For specific analyses in this paper, PAGE reached out to additional studies, 

including GenNet and the Hypertension Genetic Epidemiology Network (HyperGen) to 

increase the African American sample size. The Supporting Information includes detailed 

descriptions of each study.

African American, Hispanic, Asian/Native Hawaiian, Native American and European 

participants from the ARIC, EAGLE-BioVU, CHS, CARDIA, MEC, SOL, WHI, GenNet, 

and HyperGen were eligible for inclusion in this study (S1 Table). Race/ethnicity was self-

reported in most studies except for EAGLE-BioVU, where race/ethnicity was 

administratively-reported and recorded in the electronic health record(26, 27). All studies 

were approved by Institutional Review Boards at their respective sites, and all study 

participants save EAGLE-BioVU provided informed consent. The Vanderbilt University 

Internal Review Board has determined that data contained within EAGLE-BioVU are 

considered limited datasets as defined by the Health Insurance Portability and 

Accountability Act (HIPAA) and are in accordance with provisions of Title 45, Code of 

Federal Regulations, part 46 (45 CFR 46) that define criteria for “non-human subjects” 

research.

The final sample of minorities from PAGE included 35,606 African American, 26,048 

Hispanic/Latino, 22,466 Asian/Native Hawaiian, 17,859 European American, and 535 

Native American participants (S1 Table).

Anthropometric measurements

BMI was calculated by taking the ratio of the weight (kg) and height squared (m2). For 

ARIC, CHS, CARDIA, HyperGEN, GenNet and WHI, BMI was calculated from height and 

weight measured at the time of study enrollment. In EAGLE-BioVU and MSSM, the median 

height and weight was calculated across all complete medical histories. MEC used self-

reported height and weight. A validation study within MEC was conducted to assess the 

validity of these measures and showed that self-reported BMI was sometimes 

underestimated, but the difference was small (<1 BMI unit) compared to the findings from 

national surveys(28). To reduce the influence of outliers on the analysis, individuals who 

were underweight (BMI<18.5 kg/m2) and extremely overweight (BMI>70 kg/m2) were 
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excluded, and BMI values were natural log transformed to correct for the right-skewed 

distribution of BMI.

Genotyping and Imputation

Genotyping was performed using the Metabochip, whose design has been described 

elsewhere(29). In brief, the Metabochip is a custom Illumina iSelect genotyping array of 

nearly 200,000 SNP markers and was designed to cost-effectively analyze putative 

association signals identified through GWAS meta-analyses of many obesity-related 

metabolic and cardiovascular traits. Imputation of Metabochip SNPs was conducted in MEC 

African Americans and Hispanics, MSSM African Americans and Hispanics, and WHI 

African Americans (SHARe) and Europeans. Study-specific reference samples(30), or 

reference samples from 1000 Genomes Phase I(31) were used. The programs MaCH and 

minimac were used for phasing and imputation, respectively(32–34). A summary of 

genotyping and imputation performance for each participating study has been published 

previously (35) and reproduced in S2 Table.

Within each race/ethnicity, related participants were identified within and between studies 

using PLINK(36). Identity by descent was estimated and when apparent first-degree relative 

pairs were identified, the member with the lower call rate was excluded from further 

analyses, with the exception of GenNet, SOL, and HyperGen. These studies accounted for 

family structure using linear mixed models (GenNet, HyperGen) or with generalized 

estimated equations which incorporate clusters of first degree relative pairs/household 

members (SOL)(37). In the remaining studies, participants with an inbreeding coefficient 

F>0.15 were excluded. Ancestry principal components were generated using the Eigensoft 

software(38, 39) using either an unrelated subset, or in the 1000 Genomes reference 

populations, which were then projected into the study sample. Ancestral outliers were 

excluded from further analyses, as described previously(40). Additional information is 

included in the Supporting Information.

A total of 88,505 individuals were genotyped with the Metabochip, and an additional 14,009 

with GWAS data were imputed into the 1000 Genomes Project(31) or study-specific 

reference samples(30). For individuals with imputed data, only the Metabochip genetic 

variants were included. Genotype data was cleaned by standard quality control procedures as 

described in the Supporting Information.

Analysis

As has been done in previous publications (16, 41), BMI values were natural log 

transformed to account for the right-skewed distribution. Extreme BMI values less than 18.5 

kg/m2 or greater than 70 kg/m2 were excluded from the analysis, with the assumption that 

these outliers could be attributable to data coding errors or an underlying rare condition 

outside the scope of this investigation. Given that CARDIA participants were generally 

younger, and young adults may have naturally low BMI measurements, the 18.5 kg/m2 

exclusion criteria was waived for this cohort. The analyses were restricted to adults 20 years 

or older.
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The population was stratified by study and self-identified race/ethnicity, with each subgroup 

analyzed separately. Multivariable linear regressions for each study-specific minority group 

were adjusted for age, sex, study site (if applicable), and ancestry principal components (S2 

Table). A sex*age interaction term was included in all models (except WHI, which only 

includes women) to account for possible effect modification by sex. The sex*age interaction 

term was intended to account for potential sex-specific effects on BMI that vary by age, 

given that obesity risk and body composition are known to vary by age, and our study 

population includes both elderly participants and young adults older than 20 years of age. 

The results from each ethnicity, and for all ethnicities combined, were meta-analyzed using 

an inverse-variance weighted fixed-effects model in METAL(42). No inflation was observed 

in this meta-analysis (inflation factor λ=0.97).

The SNP with the smallest p-value within a locus was considered the lead SNP. BMI 

associations were considered statistically significant if the p-value surpassed the Bonferroni 

corrected threshold of significance (p<2.5×10−7), correcting for approximately 200,000 

SNPs included on the Metabochip array. The locus was considered novel if the lead SNP 

was not in LD (r2<0.1 in any 1000 Genomes population) of a previously published known 

BMI loci. The list of known BMI loci was obtained by extracting records from the GWAS 

Catalog of the National Human Genome Research Institute (http://www.ebi.ac.uk/gwas/, 

accessed 4/26/2016), and through a literature search (April 2017) identifying publications 

based on high-throughput genotyping arrays that are not genome-wide (and thus, excluded 

from the GWAS Catalog)(16), BMI studies examining GxE associations(43, 44), and 

internal publications from collaborators that we expect to be published within the next year 

(Turcot V, in progress). Bioinformatic functional follow-up was performed for the most 

significant index SNP and all SNPs in high LD with the index (r2>=0.8 in African 1000 

Genomes Population) at the four loci. HaploReg v4(45) and the UCSC Genome Browser 

from the Roadmap epigenomics project were used to assess whether variants in each of these 

loci were positioned in a putative enhancer or promoter specific to adipose tissue. GTEx 

expression data was also used to assess whether any of the loci overlapped eQTL results.

Results

The Metabochip array contains high density genetic variants at 21 previously published 

GWAS-identified BMI loci. We first assessed these known loci to evaluate the 

reproducibility of these loci in a multi-ethnic study population. Our study confirmed 15 of 

the 21 previously known BMI loci, significant at p<5.8×10−5, an approximate Bonferroni 

multiple testing correction for the average 866 SNPs at each BMI locus (S3 Table). Among 

the Metabochip previously known BMI loci that failed to replicate, the meta-analysis p-

values approached significance, with most in the 10−4 range.

When we examined the remaining Metabochip content, we found an additional 14 loci 

associated with BMI, which achieved a Metabochip-wide significance level of p<2.5×10−7, 

correcting for approximately 200,000 SNPs on the Metabochip array (S4 Table). Eleven of 

these loci (or SNPs in high LD, r2>0.8, with these loci) were in LD (r2>0.1 in any 1000 

Genomes population) with BMI loci previously identified since the development of the 

Metabochip (14, 21–24, 46–49). A twelfth SNP (rs11927381) no longer achieved 
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Metabochip-wide significance after conditioning on a nearby SNP (rs1516725) that had 

previously been associated with BMI (24). Thus, we discovered two novel BMI-associated 

loci: 1q41 (rs2820436) and 2q31.1 (rs10930502) (Table 1). No evidence of heterogeneity 

was observed across studies at these two loci, with Cochran’s Q heterogeneity p-values of 

0.65 and 0.94, for rs2820436 and rs10930502, respectively (Table 1, Fig 1).

The minor allele frequencies of these SNPs differed across the different ethnic groups (Table 

1). rs2820436 was most frequent among PAGE African Americans (CAF=0.48), and least 

frequent in Asians (CAF=0.20), with the strongest association seen in the African 

Americans (p=8.34E-04) and Hispanic/Latinos (p=1.61E-04). While rs10930502 was also 

most frequent among African Americans (CAF=0.70) and European Americans 

(CAF=0.70), and least frequent among Asians (CAF=0.33), the association was strongest 

among the Asians (p=1.45E-03) and European Americans (p=8.89E-03). Generally, the 

observed allele frequencies in our own study population were similar to those from the same 

ethnic groups in the 1000 Genomes populations. Both of these SNPs were analyzed in the 

most recent and largest BMI GWAS study to date (p(rs2820436)=1.02E-02; 

p(rs10930502)=2.91E-04) (24), and were directionally consistent with our own results, 

providing additional support for these variants.

The variant rs10930502 was included on the Metabochip to follow-up on significant and 

suggestive signals from the largest available GWAS meta-analysis on BMI, while rs2820436 

was included on the array for fine-mapping regions associated with waist-to-hip ratio 

(WHR). Given that rs2820436 was included on the Metabochip due to its previously 

published association with a non-BMI trait, we evaluated whether the associations with BMI 

were independent using individuals where WHR data was available (n=53,481). When the 

association between rs2820436 and BMI was adjusted by WHR, the overall association did 

not noticeably change. Conversely, when the association between rs2820436 and WHR was 

examined, adjusting for BMI, this p-value also achieved Metabochip-wide Bonferroni 

significance (p=3.09E-10). These findings suggest that this loci may influence multiple 

phenotypes related to body composition.

Functional investigation of the SNPs supports their likely involvement in lipid metabolism. 

We found that rs2820436 strongly tagged (r2=0.94 in 1000 Genomes Phase I Africans) a 

putative enhancer variant, rs2605096, positioned in an eQTL for the gene 

lysophospholipase-like 1 (LYPLAL1) previously associated with adiponectin(50), 

adiposity(51), cholesterol, T2D, and WHR(52).

Although rs10930502 was positioned in an eQTL for a lincRNA in adipose tissue, it did not 

strongly tag a putative regulatory variant. However, it was in moderate LD (r2=0.48, D

′=0.85 in 1000 Genomes Phase I Africans) with variant rs34636594 at 2q31.1, which was 

positioned in a transcription factor binding enhancer in adipose tissue. LincRNAs are highly 

tissue specific and typically co-expressed with neighboring genes and thus we hypothesize 

that the 2q31.1 association may exert its effects on the candidate gene SLC25A12, through 

regulation of lincRNA.
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Discussion

This trans-ethnic meta-analysis replicated 15 of 21 previously known BMI loci included on 

the Metabochip. Of the six loci that did not reach statistical significance in our own study, 

two of these had lead SNPs that were very rare, with CAF<0.01 in 1000 Genomes 

populations and PAGE racial/ethnic subgroups. Since most of these loci were originally 

discovered in GWAS studies with much larger sample sizes (13–15, 24, 53–55), our smaller 

study was likely insufficiently powered to replicate the rarer variants (Supporting 

Information). Other loci that we failed to replicate had lead SNPs that were more frequent in 

Europeans than in non-Europeans. Given that only 17% of our study sample consisted of 

those with European ancestry, insufficient power may also have contributed to our inability 

to replicate some of these loci, especially if these were European-specific associations.

Interestingly, both of the novel loci we identified, rs2820436 (1q41) and rs10930502 

(2q31.1), are common in those with European ancestry, with a frequency of 0.68 and 0.31 in 

1000 Genomes Europeans, respectively. Previous large, European-based BMI GWAS studies 

may have failed to detect these associations due to population-specific GxG interactions, or 

GxE interactions linked to cultural, socioeconomic, or behavior risk factors, resulting in a 

more pronounced effect on BMI in minority groups compared to Europeans. For both novel 

SNPs reported here, the largest betas in our study occurred in a non-European subgroup, 

suggesting that the genotypes might have a greater effect on BMI among non-Europeans. 

Should non-European population-specific effects exist, our large sample of minority subjects 

may have yielded more power to detect those associations compared to previous GWAS 

studies that may have been underpowered to detect population-specific effects related to a 

certain minority group.

Another possible explanation for why these associations were not detected in previous 

GWAS efforts is that these SNPs may be a poor proxy for the underlying causal SNP in 

European populations, but are a better proxy for the causal SNP in non-European 

populations. LD patterns are known to differ by genetic ancestry. It is possible that these 

SNP are in poor LD with the causal SNP in those with European ancestry, but in high LD 

with the causal SNPs in those with non-European ancestry. This would cause the association 

to be weaker or non-significant in Europeans due to exposure misclassification, where the 

tag SNP is an inaccurate indicator for the presence of the causal SNP. Given that the 

Metabochip was designed to facilitate fine-mapping in non-Europeans, it is not surprising 

that some of the Metabochip tag SNPs may perform better at estimating causal genotype-

phenotype associations in a predominantly non-European study population.

Our findings demonstrate the value of conducting GWAS in non-European populations, both 

when replicating findings previously discovered in large, often European-centric GWAS, and 

for discovering novel associations which may be population-specific, or have stronger 

effects in those with non-European ancestry. Finally, the functional findings provide 

additional evidence for the biological relevance of these new loci in the BMI phenotype, 

which warrant further investigation. While these results are intriguing, additional replication 

is needed, especially using study populations that include underrepresented individuals. Both 
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of these SNPs are most frequent in those with African ancestry, and our association in 

rs10930502 appears to be the strong in those with Asian ancestry.

Many genetic studies of BMI with larger sample sizes have been published and 

comparatively, we were underpowered to detect and replicate weaker associations, especially 

in less frequent variants. It is possible that additional novel, or population-specific loci may 

be found in a larger, trans-ethnic study population. However, we assembled one of the 

largest and most diverse non-European study populations and were still able to confirm 15 of 

the 21 known BMI loci included on the Metabochip. While the Metabochip was designed to 

replicate and fine-map loci known to be associated with 23 disease-related traits, its content 

is not genome-wide and non-Metabochip loci were not evaluated in this study. Yet, the 

inclusion of strong and well-established metabolically-related loci allowed us to identify a 

potential pleiotropic association with WHR. Studies that replicate our findings are advised to 

isolate the association that contributes specifically to BMI, given that our associations with 

BMI remain significant after adjusting for WHR. Through accompanying research efforts, 

we will benefit from the Metabochip’s increased marker density to fine-map these 

associations and further describe the relationship between these loci, BMI, and related 

phenotypes(35).

Certainly there are challenges associated with multi-ethnic genetic studies, but there are also 

legitimate benefits which may help explain more of the BMI heritability. The dearth of 

studies that include underrepresented populations only sustains disparities in genetic 

research, inhibits our ability to identify population-specific genetic risk factors, and hinders 

the development and application of genetic findings in real-world clinical settings(56–58). 

Our findings are promising and perhaps more importantly, demonstrate the need to conduct 

additional genetic studies of complex traits in non-European individuals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Combined and Study-Specific Associations in Novel BMI-Associated Loci
AA=African American, HA=Hispanic American, PI=Pacific Islander, 

ARIC=Atherosclerosis Risk in Communities Study, WHI=Women’s Health Initiative, 

MEC=Multiethnic Cohort, CHS=Cardiovascular Health Study, SHARe=WHI SNP Health 

Association Resource, GenNET=GenNet study, HyperGEN=Hypertension Genetic 

Epidemiology Network, CARDIA=Coronary Artery Risk Development in Young Adults 

study, EAG-BioVUE=Epidemiologic Architecture for Genes Linked to Environment 

accessing Vanderbilt University Medical Center BioVU, MSSM= The Charles Bronfman 

Institute for Personalized Medicine at Mount Sinai Medical Center, BioMe™ BioBank, 

SOL= The Hispanic Community Health Study / Study of Latinos.
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