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Abstract

Background: Growing evidence suggests that mechanical stimulation modulates substrates in 

the supraspinal central nervous system (CNS) outside the canonical somatosensory circuits.

Objective/Methods: We evaluate mechanical stimulation applied to the cervical spine at the C7-

T1 level (termed “MStim”) on neurons and neurotransmitter release in the mesolimbic dopamine 

(DA) system, an area implicated in reward and motivation, utilizing electrophysiological, 

pharmacological, neurochemical and immunohistochemical techniques in Wistar rats.

Results: Low frequency (45–80 Hz), but not higher frequency (115 Hz), MStim inhibited the 

firing rate of ventral tegmental area (VTA) GABA neurons (52.8% baseline; 450 s) while 

increasing the firing rate of VTA DA neurons (248% baseline; 500 s). Inactivation of the nucleus 

accumbens (NAc), or systemic or in situ antagonism of delta opioid receptors (DORs), blocked 

MStim inhibition of VTA GABA neuron firing rate. MStim enhanced both basal (178.4% peak 

increase at 60 min) and evoked DA release in NAc (135.0% peak increase at 40 min), which was 

blocked by antagonism of DORs or acetylcholine release in the NAc. MStim enhanced c-FOS 

expression in the NAc, but inhibited total expression in the VTA, and induced translocation of 

DORs to neuronal membranes in the NAc.

Conclusion: These findings demonstrate that MStim modulates neuron firing and DA release in 

the mesolimbic DA system through endogenous opioids and acetylcholine in the NAc. These 

findings demonstrate the need to explore more broadly the extra-somatosensory effects of 

peripheral mechanoreceptor activation and the specific role for mechanoreceptor-based therapies 

in the treatment of substance abuse.
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Introduction

The use of mechanoreceptor-based therapies in the treatment of drug-abuse disorders is a 

largely unexplored field. Indeed, the role of mechanoreceptors other than as canonical 

mediators of somatosensation has only become relevant in recent years. Notably, several 

complementary health care approaches are thought to have effects mediated in part by 

activation of mechanoreceptors, including chiropractic medicine, acupuncture, and physical 

therapy. Early understanding of the mechanisms underlying mechanoreceptor-based 

therapies such as WBV centered on peripheral neuro-mechanical alterations. Recent reports 

have included evidence of increased cortical excitability [1], increased motor evoked 

potentials [2], and compelling evidence demonstrating CNS changes in response to 

peripheral mechanical stimulation as measured with fMRI, EEG, heart rate variability, and 

evoked potentials [1,3,4].

Midbrain dopamine (DA) neuron activity is involved in many aspects of reward seeking [5]. 

Although the prevailing dogma is that DA neurons mediate the rewarding and addictive 

properties of drugs of abuse [6], VTA GABA neurons have garnered much interest for their 

role in modulating DA neuronal activity and DA release and perhaps as independent 

substrates mediating reward or aversion [7–10]. We have shown previously that acute 

administration of ethanol, opioids, or cocaine inhibits VTA GABA neurons [7–11], leading 

to a net disinhibition of VTA DA neurons [12,13]. In contrast, during ethanol or opioid 

withdrawal, VTA GABA neurons become hyperactive [7,14] leading to decreased 

mesolimbic DA activity and release in the NAc [15–17], This reduction in mesolimbic DA 

transmission is theorized to be the primary driver of relapse [18].

In this study, we hypothesized that mechanical stimulation of the cervical spine at C7-T1 

(termed “MStim”) is sufficient to modulate neuronal activity in the VTA and 

neurotransmitter release in the NAc. We have recently reported that MStim of the cervical 

spine modifies the activity of VTA GABA neurons [19]. Here we extend these studies to 

include the recording of VTA GABA and DA neurons, DA release, and mechanistic studies 

demonstrating the role of endogenous opioid release in mediating mechanoreceptor 

activation of the mesolimbic DA system.

Materials and methods

Animals and MStim motor implantation

The experiments were carried out in accordance with the Guide for the Care and Use of 

Laboratory Animals. Male rats (250–320 g), housed on a reverse light/dark cycle with ad 
libitum food and water, were implanted with a 1.5 g, 3 V, DC coin vibration motor (10 mm × 

2.7 mm, DC 3V/0.1A, Uxcell, Hong Kong, CN) 19at the C7-T1 levels posteriorly at midline 

or at the ipsilateral biceps femoris muscle. With a S44 Grass Stimulator (Grass Medical 
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Instruments, West Warwick, RI) set at 3 V for 0.1 msec [19], pulses/sec were varied to 

produce 45, 80 and 115 Hz vibrations for 60 or 120 s followed by 15 min of recording. The 

80 Hz, 120 s stimuli resulted in the greatest inhibition of GABA neuron firing rate and was 

used in all subsequent testing.

Single cell electrophysiology

For recordings of VTA GABA and DA neurons, rats were anesthetized using isoflurane 

(1.5%) and body temperature was maintained at 37.4 °C. 3.0 M KCl-filled micropipettes (2–

4 MΩ; 1–2 μm inside diameter) were driven into the VTA with a piezoelectric microdrive 

(EXFO Burleigh 8200 controller and Inchworm, Victor, NY) [from bregma: 5.6 to 6.5 

posterior (P), 0.5 to 1.0 lateral (L), 6.5 to 9.0 ventral (V)]. Potentials were amplified with an 

Multiclamp 700A amplifier (Axon Instruments, Molecular Devices, Union City, CA) and 

filtered at 0.3–10 kHz (3 dB). Potentials were sampled at 20 kHz and discriminated with a 

World Precision Instruments WP-121 Spike Discriminator (Sarasota, FL) and converted to 

computer-level pulses.

Characterization of VTA GABA and DA neurons in vivo

VTA GABA neurons were identified by discharge activity characteristics including: 

relatively fast firing rate (>10 Hz), ON-OFF phasic non-bursting activity, an initially 

negative spike with duration less than 200 μsec [20], and excitation by iontophoretic (+40 

nA) DA [9,10]. Dopamine neurons were identified by relatively slow firing rate (<10 Hz), an 

initially positive-going spike of longer than 200 μsec and inhibition by iontophoretic DA. 

We evaluated only those spikes that had greater than 5:1 signal-to-noise ratio. After positive 

neuron identification, baseline firing rate was measured for 5 min to ensure stability prior to 

MStim.

Fast-Scan Cyclic Voltammetry (FSCV) in vivo

A carbon fiber containing borosilicate glass capillary tube (CFE; 1.2 mm o.d., A-M Systems, 

Sequim, WA, USA) was pulled, cut so that 150–200 μm of fiber was protruding and filled 

with 3 M KCl. The electrode potential was scanned from −0.4 V to 1.3 V and back at 400 

V/s with recordings every 100 msec using Demon Voltammetry [21]. For in vivo 
voltammetry recordings, bipolar, stimulating electrodes were stereotaxically implanted into 

the medial forebrain bundle (MFB; −2.5 AP, +1.9 ML, −8.0 DV), and a CFE in the NAc 

(+1.6 AP, +1.9 ML, −8.0 DV). The MFB was stimulated with 60 pulses at 60 Hz (4 msec 

pulse width) at 2 min intervals until stable for five successive collections, defined as <10% 

variance. Following MStim, recordings were performed for 120 min or until baseline was 

reached.

Microdialysis and high performance liquid chromatography

Microdialysis probes (MD-2200, BASI) were stereotactically inserted into the NAc and 

perfused with artificial cerebrospinal fluid (aCSF) composed of either 150 mM NaCl, 3 mM 

KCl, 1.4 mM CaCl2, and 0.8 mM MgCl2 in 10 mM phosphate buffer alone or, additionally, 

with either 10 nM naltrindole or a combination of 10 μM hexamethonium and 10 μM 

scopolamine (3.0 μl/min). Samples were collected every 20 min for 4 h with MStim 
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occurring after the first 2 h. Samples were analyzed using a HPLC pump (Ultimate 3000, 

Dionex, Sunnyvale, CA, USA) and electrochemical detector (Coulochem III, ESA). The 

detector included a guard cell (5020, ESA) set at +270 mV, a screen electrode (5014B, ESA) 

set at −100 mV, and a detection electrode (5014B, ESA) set at +220 mV. Dopamine was 

separated using a C18 reverse phase column (HR-80, Thermo Fisher Scientific, Waltham, 

MA, USA). Mobile phase included 75 mM H2NaO4P, 1.7 mM sodium octane sulfonate, 25 

μM EDTA, 0.714 mM triethylamine, and 10% acetonitrile at a flow rate of 0.5 ml/min.

Preparation of brain slices for imaging and confocal microscopy

Mechanical stimulation animals were implanted and given 120 s of 80 Hz stimulation. 

Control animals were implanted but not stimulated. After 2 h brains were removed and 

placed in 4% PFA for 24 h, 30% sucrose in 1X PBS for 24–48 h and then flash frozen in dry 

ice for slicing. Slices were washed 3 times in 1x PBS, blocked with 4% normal goat serum, 

0.1% Triton-X 100 and 1x PBS and then washed 3 times in 0.2% PBST. Primary antibodies 

incubated for 20 h and were washed 3 times. Secondary antibodies incubated for 2 h and 

were washed 3 times. Slices were mounted and kept at 4 °C until imaging. An Olympus 

FluoView FV1000 confocal microscope was used to image mounted slices at 40X.

Data collection and statistical analysis

All statistical tests were performed in JMP13 (SAS, Cary, NC). Extracellularly recorded 

single-unit action potentials were processed with a spike analyzer, digitized with National 

Instruments hardware and analyzed with National Instruments LabVIEW and IGOR Pro 

software (Wavemetrics, Lake Oswego, OR). Firing rate was averaged and binned in 50 s 

intervals and compared to unstimulated neurons using a one-way ANOVA then bins were 

compared with a Student’s t-test. Average depression or excitation was calculated as time 

firing deviated >10% from baseline. The results were expressed as means ± SEM.

For microdialysis and FSCV data was binned and compared to the baseline control using a 

Dunnett’s analysis. Reverse microdialysis and VTA injection experiments were compared to 

the MStim group using a Student’s t-test at the 60 min time point.

Brain slice images were loaded into FIJI software. Brightness and contrast were adjusted 

and regions of interest (ROI) were created. To determine relative density of DORs, the ratio 

of mean fluorescence to area was determined. This process was performed by three blinded 

independent raters and averaged.

Results

MStim modulation of VTA neurons

The effects of MStim on VTA GABA neuron firing rate were tested across multiple stimulus 

frequencies and durations (Fig. 1). MStim at 45 Hz (60 s) significantly inhibited GABA 

neuron firing rate when compared to unstimulated baseline firing (F(1,277) = 24.9997, p < 

0.0001; Fig. 1A). GABA neuron firing rate was significantly reduced from 50 s to 250 s 

post-stimulus when compared to baseline (n = 4; 50 s, p = .0216; 100 s, p = .0460; 150 and 

200 s, p < .0001; 250 s, p = .0222). Stimulation at 80 Hz (60 s) (F(1,272) = 10.1423, p = 
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0.0016; Fig. 1B) produced GABA inhibition similar to that produced by 45 Hz, with 

significant depression from 100 to 250 s post-stimulus (n = 5; 100 s, p = .0186; 150 and 200 

s, p < .0001; 250 s, p = .0101). MStim effects with the same frequencies at a duration of 120 

s are shown in Fig. 1D–F. A 45 Hz stimulation (120 s) significantly inhibited VTA GABA 

neurons (F(1,282) = 15.2029, p = 0.0001; Fig. 1D) similar to that observed with 60 s MStim 

(n = 5, 250 s, p = .0032; 300 s, p < .0001; 350 s, p = .0434). The greatest inhibition to 

GABA neuron firing rate occurred following application of 80 Hz (120 s) MStim (F(1,296) = 

114.0478, p < 0.0001; Fig. 1E) which produced significant inhibition from 50 to 450 s post-

stimulus (n = 7, 50–350 s and 450 s, p < .0001; 400 s, p = .0028). In contrast, both 60 and 

120 s of 115 Hz stimulation (Fig. 1C,F) did not produce a significant depression to GABA 

neuron firing rate. Thus, GABA neuron firing was inhibited by MStim in a differential and 

frequency-dependent manner.

Because somatosensory mechanoreceptor density varies by topography [22,23] a location 

with a relatively smaller concentration of mechanoreceptors was tested. Mechanical 

stimulation of 80 Hz (120 s) at the belly of the right biceps femoris muscle produced a small 

decrease in GABA neuron firing rate when compared to C7-T1 (F(1,421) = 146.4646, p 
< .0001; Fig. 2A). The two were significantly different at 100–200 and 300 s post-stimulus 

(n = 4; 100 s, p = .0137; 150 s, p = .0021), suggesting that MStim-dependent inhibition of 

VTA GABA firing is greatest at areas of high mechanoreceptor density. Next, the effects of 

paired MStim was tested on VTA GABA firing rate (Fig. 2B). Compared to the second 

stimulation, the first typically produced greater inhibition (F(1,411) = 29.2118, p < .0001). 

Significant differences were noted at 100–200 s and 300 s (n = 5; 100 s, p = .0137; 150 s, p 

= .0021; 200 s, .0078; 300 s, p = .0033). Thus, MStim-dependent inhibition of firing rate 

was repeatable, but sensitive to desensitization-dependent processes.

Since the dogma is that VTA GABA neurons provide inhibitory input onto local DA 

neurons, the effects of MStim on VTA DA neuron firing was tested. Dopamine neuron firing 

rate increased significantly post-stimulus (F(1,429) = 246.4261, p < 0.0001; Fig. 3A) reaching 

an average maximum increase of 286% of baseline at 150 s post-stimulus. Firing rate 

increased significantly within the first 50 s and stayed elevated to 500 s post-stimulus. These 

times points (50–500 s post-stimulus) were all significant when compared to unstimulated 

baseline DA neuron firing rate over time (n = 5; 50–250 and 350–400 s, p < .0001; 300 s, p 
= .0026; 450 s, p = .0145; 500 s, p = .0389; Fig. 3B). On average, following MStim, DA 

neurons increased firing rate to 247% of baseline compared to 52.8% inhibition observed in 

GABA neurons (Fig. 3C). The increase in DA neuron firing rate occurred in parallel to the 

reported decrease in GABA neuron firing rate noted from the same stimulation paradigm, 

suggesting disinhibition of DA neurons from decreased GABA neuron firing.

MStim modulation of VTA neurons: role of NAc projections and endogenous opioids

We have previously demonstrated that stimulation of the NAc inhibits VTA GABA neurons 

[20], via direct pathway GABAergic medium spiny neurons, and that opiate effects on VTA 

GABA neuron firing rate are mediated, in part, via GABA input to the VTA from the NAc 

[11]. To determine if MStim modulation of VTA GABA neurons was in the VTA or via NAc 

input to the VTA we evaluated the effects of in situ administration of the sodium channel 
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blocker lidocaine into the NAc on MStim effects on VTA GABA neuron firing rate. 

Inactivation of NAc neurons by perfusion of lidocaine into the NAc via reverse microdialysis 

blocked MStim-induced depression of VTA GABA firing (F(1,416) = 264.9918, p < .0001; n 

= 5; Fig. 4A). All time points from 50 to 500 s were significantly different (80 Hz 120 s w/

lidocaine injection in NAc, n = 5; 80 Hz 120 s, n = 7; 50 s, p < .0001; 100 s, p < .0001; 150 

s, p < .0001; 200 s, p < .0001; 250 s, p < .0001; 300 s, p < .0001; 350 s, p = .0005; 400 s, p 
< .0001; 450 s, p < .0001; 500 s, p < .0001). Next, systemic pretreatment with naltrindole (1 

mg/kg IP), 15 min prior to MStim was administered to determine the role of DORs. 

Naltrindole precluded the depression of GABA neuron firing rate (F(1,487) = 190.4457, p 
< .0001; n = 4; Fig. 4A and B). The depression was blocked at every time point that was 

previously significant when comparing the 80 Hz stimulus to unstimulated baseline 

recordings in GABA neurons. The differences between 80 Hz w/naltrindole and 80 Hz alone 

were pronounced and noted at all time points from 50 to 500 s (80 Hz 120 s w/naltrindole, n 

= 4; 80 Hz 120 s, n = 7; 50 s, p < .0001; 100 s, p < .0001; 150 s, p < .0001; 200 s, p < .0001; 

250 s, p < .0001; 300 s, p < .0001; 350 s, p = .0017; 400 s, p = .0101; 450 s, p = .0002; 500 

s, p < .0001).

MStim enhancement of dopamine release: role of endogenous opioids

To determine if MStim-induced changes in DA firing translate to an increase in DA 

neurotransmission, microdialysis and voltammetry experiments were performed. 

Microdialysis revealed an increase in basal release, with greatest release occurring from 40 

to 60 min (178.43 ± 26.24% of baseline), after MStim (n = 15; 60 min, Dunnett’s, p = .016; 

Fig. 5A). From 80 to 120 min post-stimulus, DA levels returned to baseline levels and 

stabilized. Next, voltammetry experiments were used to measure electrically evoked DA 

release. Evoked DA release rose slightly faster than basal release with significant increases 

10 min post-stimulus (Fig. 5B). Increased levels of evoked DA release were significantly 

maintained from 10 to 50 min, peaking at 40 min (135.03 ± 23.13% of baseline), with a 

return to baseline levels at 60 min (n = 4; Dunnett’s 10 min, p = .0176; 20 min, p = .0053; 30 

min, p = .0781; 40 min, p = .0006; 50 min, p = .0023). Thus, MStim produces increases in 

DA levels.

We then evaluated the role of endogenous opioids in mediating MStim-induced 

enhancement of DA release in the NAc. To determine the site specificity of the DORs 

involved in the effect (VTA versus NAc) we administered an ipsilateral injection of 

naltrindole into the VTA 15 min prior to stimulation and found unexpectedly that it did not 

attenuate MStim-induced DA release in the NAc (n = 15, MStim alone; n = 4, VTA 

naltrindole; p = 0.570). Next, to determine whether local antagonism of NAc DORs 

contribute to MStim induced increases in DA release, we applied naltrindole via reverse 

microdialysis (10 nM) in the NAc prior to MStim at the cervical spine (Fig. 6A). Local 

application of naltrindole blocked the MStim-induced increase in DA release in the NAc at 

the 60 min time point from 178.43 ± 26.24% of baseline in the MStim alone group to 88.0 ± 

9.31% of baseline (n = 15, MStim alone; n = 8, naltrindole NAc; p = .0096; Fig. 6B). As 

sensory-driven cholinergic interneurons (CINs) in the NAc express DORs and have been 

shown to influence local DA release [24,25], a combination of hexamethonium (10 μM) and 

scopolamine (10 μM) was then administered to the NAc via reverse microdialysis to evaluate 
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the role of local acetylcholine (ACh) release on MStim induced DA release (Fig. 6A). At the 

60 min time point DA release increased to 107.62 ± 3.4% of baseline which represents 

significant attenuation of the MStim induced DA increase when compared to the MStim 

alone group (n = 15, MStim alone; n = 8, Hex/Scop NAc; p = .0311; Fig. 6B). These data 

suggest that the MStim-induced increase in DA release in the NAc is mediated through 

endogenous activation of DORs in the NAc and not the VTA and that the effect is in part 

influenced by local release of Ach from CINs.

MStim activation of NAc neurons

To further evaluate neuronal activation changes in the NAc and VTA and alterations in DOR 

expression in the NAc following MStim, post-MStim brain slices were stained to evaluate 

changes in relative expression of DORs and c-FOS. The number of cells per slide expressing 

DORs in the NAc was significantly increased in the MStim group when compared to control 

(F(1,11) = 10.6, p = 0.008; n = 6; Fig. 7A,B,E). Expression of c-FOS in the NAc and VTA 

was analyzed for cell count and mean fluorescent intensity (MFI). The number of cells 

expressing c-FOS in the NAc increased following MStim (53.0 ± 6.29) when compared to 

control (33.83 ± 6.79; p = 0.0314, n = 6), but not in the VTA (50.50 ± 2.94 vs 65.83 ± 9.36 

cells; p = 0.0847; Fig. 7C). However, when considering c-FOS MFI, there was a decrease in 

c-FOS expression in the VTA with MStim (109.6 ± 0.9% vs 116.8 ± 1.2%; p = 0.0071, n = 

6; Fig. 7D), but not in the NAc. Together, these data suggest that the decrease in VTA c-FOS 

expression following MStim is likely due to enhanced inhibitory projections from the NAc.

Discussion

Low to high frequency (45–80 Hz) MStim produced robust inhibition of VTA GABA 

neurons. This was not surprising given our previous reports regarding mechanoreceptor-

mediated inhibition of VTA GABA neurons [19,26]. However, here we demonstrated that 

decreases in VTA GABA neuron firing by MStim are frequency, location, and time-

dependent, and are accompanied by concomitant increases in VTA DA cell firing, increases 

in DA release in the NAc and mediation by endogenous opioid and local ACh release in the 

NAc. The three frequencies tested were chosen to provide clarity as to the mechanoreceptors 

responsible for the effect. Of those chosen, 45 Hz enlists mostly Meissner’s corpuscles [27], 

115 Hz is more selective for Pacinian corpuscles [28,29] and 80 Hz likely activates both 

receptors. All three frequencies activate Ruffini endings and Golgi tendon organs which are 

morphologically similar and are important joint mechanoreceptors [30,31]. The 50 and 80 

Hz MStim produced a transient depression of GABA neurons in the VTA, with 80 Hz (120 

s) producing the largest and longest lasting effect. Importantly, 80 Hz MStim failed to 

achieve a meaningful depression in VTA GABA neuron firing rate when applied at the 

biceps femoris muscle. This mid-muscle location was chosen because of its distance from 

joints and subsequent lower concentration of mechanoreceptors relative to the cervical spine 

[22,23,29], Given that 80 Hz produced the greatest inhibition, 115 Hz failed to elicit a 

response and that the mid-muscle stimulation was ineffective at 80 Hz, suggesting a role for 

deep joint mechanoreceptors and Meissner’s corpuscle dependent pathways as main 

mediators of the resultant GABA depression. Taken together, these data suggest that the 

effects are only anatomically specific insomuch as anatomical location relates to the 
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potential for mechanoreceptor recruitment. Even dorsal root ganglion cell bodies have been 

shown to depolarize in response to mechanical stimulation [32], perhaps enhancing the 

effects from stimulation to spine. Further, the subcutaneous stimulation provided to the 

cervical spine is likely to have impacted most of the cervical and some of the thoracic spine, 

increasing the number of cutaneous and joint receptors activated. Mechanical stimulation at 

80 Hz (120 s) elicited DA neuron firing of 247% baseline that occurred simultaneous to the 

average depression of GABA neurons to 52.8% of baseline (Fig. 3C). This relationship 

suggests a disinhibition of DA neurons by way of GABA neuron depression.

The present results suggest that mechanoreceptor stimulation results in increases in 

endogenous opioid release leading to transient modulation to the mesolimbic circuitry. There 

is a precedence for frequency-dependent release of endogenous opioids. For instance, in rats 

tolerant to morphine, low frequency (1–15 Hz) transcutaneous electrical nerve stimulation 

(TENS) was less effective than placebo controls at reducing joint inflammation, suggesting 

that TENS-alleviated joint inflammation is opioid dependent [33,34]. Also, the effects of 

low frequency, but not high frequency, TENS are blocked by application of naloxone at 

doses selective for mu opioid receptors (MORs) and sparing of DORs and KORs [35]. 

Conversely, administration of the selective DOR antagonist naltrindole blocks the effects of 

high frequency TENS but spares those of a similar low frequency stimulation, though this 

effect appears to be isolated to spinal circuits [35]. Further, transcutaneous vagus nerve 

stimulation at the ear has been shown to alter functional connectivity of the NAc [36]. Taken 

together, transcutaneous electrical stimulation, which likely depolarizes a broad selection of 

neuronal structures including local subcutaneous mechanoreceptors, provides greater 

rationale for the current studies. Delta opioid receptors are located on synaptic terminals of 

GABA neurons in the VTA and NAc [37] and, of particular relevance to this study, on CINs 

in the NAc [38]. Additionally, DORs are located in both the VTA and NAc [39,40] and 

systemic (IP) administration of naltrindole blocked MStim effects on VTA neuron firing rate 

and DA release in the NAc. Interestingly, MStim-induced increase in NAc DA release was 

attenuated by selective blockade of DORs with naltrindole in the NAc but not the VTA. 

Corroboration of the VTA effects being driven by activity in the NAc was confirmed when 

MStim-induced VTA GABA neuron depression was blocked by local administration of 

lidocaine into the NAc. In light of the receptor distribution, the site-specific effect of DOR 

antagonists, the attenuation by NAc lidocaine application, the disparate expression of c-FOS 

in the NAc and VTA and the congruity of GABA depression and DA excitation (Fig. 4C), 

these data suggest that VTA effects are mainly resultant from NAc to VTA projections.

Evoked DA release returned to baseline within 60 min while microdialysis showed a more 

gradual increase, peaking around 60 min post-stimulus (Fig. 5A and B). Interestingly, 

because GABA and DA neuron firing rates returned to baseline after 464.3 and 366.7 s post-

stimulus, respectively, other factors influence the elevation in DA release. This coupled with 

the fact that DA release was attenuated by blockade of both cholinergic and DORs in the 

NAc but not the VTA suggests that local factors related to DA terminals are the main drivers 

of MStim-induced DA release. Dopamine terminals can be modulated independently of 

activity in cell body regions [24]. Specifically, sensory thalamic projections activate striatal 

CINs, which drive DA release through nicotinic acetylcholine (ACh) receptor activation 

(Fig. 8). Further, accumbal DA release has been shown to increase with administration of 
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DPDPE, a DOR agonist, in a dose-dependent manner with the effects lasting around 60 min 

in vivo when measured with microdialysis [41]. Therefore, it is also possible that MStim 

induces striatal release onto local DORs to further enhance DA release, as suggested by the 

near total blockage of MStim-induced DA release with NAc application of naltrindole. In the 

striatum, DORs exhibit increased levels of membrane translocation on CINs in response to 

acute cocaine administration, learning events and by activation of D1 receptors [42], This is 

particularly relevant considering the increased DOR translocation caused by MStim in the 

NAc. Activation of DORs on striatal CINs can induce hyperpolarization-activated currents 

that results in burst firing of CINs [42,43], which can, in turn, lead to further release of DA 

by activation of ACh receptors located on DA terminals. As previously noted, MStim effects 

on VTA GABA neurons are likely secondary to MStim effects in the NAc and changes in 

DA release are likely through changes in CIN circuit effects, local activation of DORs and 

reciprocal projections from the NAc to VTA. It is also unknown if other non-GABA effects 

are contributing to MStim-induced increases in DA release.

Mechanoreceptors are among the least understood receptors, including their extra-

somatosensory activation effects and even some basic aspects of their signal transduction. In 

spite of this, it is becoming increasingly evident that mechanoreceptors play a broader role 

than simply as somatosensory relay devices [44,45]. Here we begin exploration of their 

effects on mesolimbic circuitry. The mesolimbic DA system is a therapeutic target of 

treatments for a myriad of conditions including depression, ADHD, eating disorders, 

Parkinson’s and addiction and there is a pressing need for new treatment approaches. Future 

studies should explore the possibility that practitioners of manual medicine, chiropractic 

physicians, acupuncturists, and physical therapists, might play in the development and 

implementation of adjunctive treatments for drug-abuse disorders. Further, though these 

findings are specific to neurons in one circuit, they open the possibility that translational 

findings in other brain regions could lead to novel applications for mechanoreceptor-based 

therapies.
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Fig. 1. 
Frequency and duration-dependent effects of MStim on VTA GABA neuron firing rate. (A–

C) Summarized time course data for 45 (A), 80 (B) and 115 Hz (C) stimulation at 60 s 

duration. Representative ratemeter recordings of VTA GABA neurons are shown on the left 

and summarized data on the right. Note that 45 and 80 Hz MStim significantly inhibited the 

firing rate of VTA GABA neurons while 115 Hz had no effect. (D–F) The same set of 

frequency responses, but with a 120 s stimulation. Note that 45 and 80 Hz MStim 

significantly inhibited VTA GABA neuron firing rate while 115 Hz had no effect, and that 

the inhibition was more pronounced with longer MStim durations. Asterisks *,**,*** 

indicate significance levels p < 0.05, 0.01 and 0.001, respectively.
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Fig. 2. 
Spatiotemporal variation in MStim-induced effects on VTA GABA neuron firing rate. (A) 

VTA GABA neuron response to MStim (80 Hz; 120 s) at the right biceps femoris muscle 

belly compared to cervical spine at C7-T1. Note that MStim at the biceps femoris was 

without effect on VTA GABA neuron firing rate. (B) VTA GABA neuron response to 

MStim at the C7-T1 vertebral level by two subsequent stimuli. Note the diminution in VTA 

GABA neuron firing rate with the second 80 Hz, 120 s stimulation compared to the first. 

Asterisks *,**,*** indicate significance levels p < 0.05, 0.01 and 0.001, respectively.
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Fig. 3. 
Dopamine neuron response to MStim. (A) Representative trace of DA neuron firing rate in 

response to MStim (80 Hz; 120 s). Note that MStim markedly increased the firing rate of 

this VTA DA neuron. (B) Summarized time course comparing VTA DA neuron firing rate to 

MStim vs an unstimulated baseline. (C) Dopamine neuron firing rate changes compared to 

time-equivalent GABA neuron firing rate changes in response to MStim. (D) Summarized 

data comparing average firing rate changes in VTA neurons by MStim. Values in 

parentheses are n values. Asterisks *,**,*** indicate significance levels p < 0.05, 0.01 and 

0.001, respectively.
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Fig. 4. 
Role of NAc inputs to the VTA and endogenous opioids in MStim-induced inhibition of 

VTA GABA neuron firing rate. (A,B) Local injection of lidocaine into the NAc and IP 

administration of the DOR antagonist naltrindole blocked MStim-induced inhibition of VTA 

GABA neuron firing rate (80 Hz; 120 s). Values in parentheses are n values. Asterisks 

*,**,*** indicate significance levels p < 0.05, 0.01 and 0.001, respectively.
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Fig. 5. 
MStim effects on basal and evoked DA release in the NAc. (A) MStim enhanced basal DA 

release in the NAc. as measured by microdialysis. (B) Representative, superimposed 

voltammograms showing oxidation/reduction current vs voltage plots comparing DA release 

during baseline vs MStim. (C) Representative, superimposed current vs time plots showing 

DA release associated with local electrical stimulation. Calibration bars are nA and seconds. 

(D) MStim also enhanced evoked DA release in the NAc, as measured by voltammetry. 

Asterisks *,**,*** indicate significance levels p < 0.05, 0.01 and 0.001, respectively.
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Fig. 6. 
Role of DORs and CINs in MStim-induced enhancement of DA release in the NAc. (A) 

Summarized time course of in situ NAc naltrindole or hexamethonium/scopolamine effects 

on MStim-induced enhancement of basal DA release in the NAc (80 Hz; 120 s). Note that 

naltrindole or hexamethonium/scopolamine infusion into the NAc blocked MStim-induced 

enhancement of basal DA release. (B) Summarized data at the 60-min time point. Values in 

parentheses are n values. Asterisks *,**,*** indicate significance levels p < 0.05, 0.01, and 

0.001, respectively.
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Fig. 7. 
MStim activates neurons and induces translocation of DORs in the NAc. (A,B) Increased 

expression of DORs (red; TH is blue) in the NAc 2-h post MStim compared to control. 

Insets show magnified views at point on 40X image indicated by the *. Note the 

translocation of DORs to the cell membrane. (C) Increased number of neurons in the NAc, 

but not the VTA, expressing c-FOS 2 h post MStim. (D) Decreased expression of c-FOS 

mean fluorescent intensity (MFI) in the VTA, but not in the NAc, 2 h post MStim. (E) Total 

number of NAc cells expressing DORs 2 h post MStim. Values in parentheses are n values. 

Asterisks *,** indicate significance levels p < 0.05 and 0.01, respectively.
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Fig. 8. 
Proposed model for MStim effects on striatal neurons. (A,B) DA neurons in the VTA project 

to the NAc. Dopamine release is also modulated independent of cell body firing at DA 

terminals in the NAc by CINs. Mechanical stimulation is believed to activate sensory 

thalamic projections that excite NAc MSNs in both the direct and indirect pathways. D2 

MSNs co-release enkephalin and GABA and are thought to be responsible for driving 

increased NAc C1N activity by hyperpolarization rebound firing via activation of DORs 

which results in increased DA release. Higher DA release results in increased translocation 

of DORs to CIN cell membranes creating a longer lasting cycle of MStim-induced DA 

release. D2 MSNs also project to VTA GABA neurons causing their depression and 

subsequent disinhibition of VTA DA cell bodies.
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