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a b s t r a c t

Membrane proteins mediate a wide spectrum of biological processes, such as signal transduction and cell 
communication. Due to the arduous and costly nature inherent to the experimental process, membrane 
proteins have long been devoid of well-resolved atomic-level tertiary structures and, consequently, the 
understanding of their functional roles underlying a multitude of life activities has been hampered. 
Currently, computational tools dedicated to furthering the structure-function understanding are primarily 
focused on utilizing intelligent algorithms to address a variety of site-wise prediction problems (e.g., to
pology and interaction sites), but are scattered across different computing sources. Moreover, the recent 
advent of deep learning techniques has immensely expedited the development of computational tools for 
membrane protein-related prediction problems. Given the growing number of applications optimized 
particularly by manifold deep neural networks, we herein provide a review on the current status of com
putational strategies mainly in membrane protein type classification, topology identification, interaction 
site detection, and pathogenic effect prediction. Meanwhile, we provide an overview of how the entire 
prediction process proceeds, including database collection, data pre-processing, feature extraction, and 
method selection. This review is expected to be useful for developing more extendable computational tools 
specific to membrane proteins.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative
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1. Introduction

Broadly, membrane proteins are pumps, channels, and carriers 
that regulate the permeability of plasma membranes [1,2]. They 
synergize with one another to ensure the functionality of plasma 
membranes. For example, pumps build electrochemical gradients 
across membranes that are then used for channels to permeate ions 
with maintained gradients taken as energy sources by carriers to 
transport substrates [3–6]. The subclasses within each of the three 
functional groups can possess different roles. For example, several 
types of ligand-gated ion channels are destined for controlling 
changes in membrane potential [7,8] and many voltage-gated 
channels are earmarked for mediating membrane repolarization [9]. 
The precise concentrations of the substrates required for life activ
ities in various sealed cellular compartments necessitate the 
checkpoint role of membrane proteins in the obstruction and 
clearance of external molecules and ions [1]. While membrane 
proteins constitute approximately 20–30% gene coding proteins 
[10–12], the number of their available structures is less than 3% of all 
experimentally determined structures [13,14]. This is largely due to 
their long amino acid sequences and their hydrophobic surfaces, 
which makes experimentally determining their structures incredibly 
challenging compared to soluble proteins [15,16]. For example, ef
forts in resolving the SCN5A-encoded human cardiac voltage-gated 
sodium channel Nav1.5, 2016 amino acids long, have yielded only a 
handful of fragmented structures for a limited number of functional 
regions mostly at its C-terminal domain [17–24]. Crucially, the lack 
of structural information for this large volume of proteins renders 
the study of their functions incredibly challenging. Thus, there is a 
dire need for the development of computational approaches for the 
different types of sequence-, structure-, and function-related ana
lyses of membrane proteins.

There has been a sharp increase in the number of computational 
applications in recent years with a notable acceleration in the de
velopment of new intelligent algorithms [25]. In particular, the im
mense success in predicting highly accurate 3D protein structures by 
AlphaFold2 has given fresh impetus in related fields [26]. The central 
role of deep learning has become indisputable and its use in biolo
gical applications has evolved very quickly. For example, deep re
sidual neural networks in AlphaFold have rapidly turned to much 
deeper and more complex neural networks infested with multiple 
attention-based modules in AlphaFold2 [26,27]. Two important 
findings [28,29] released very recently have made an effort to collect, 
annotate, evaluate, and visualize the topologies and membrane lo
calization of transmembrane (TM) protein structures predicted by 

AlphaFold2. Furthermore, TM protein topology prediction has been 
improved greatly by adopting a nature language processing (NLP) 
advance [30], ProtT5 [31], which is a protein language embedding 
technique pretraining a series of auto-regressive and auto-encoder 
models [32].

In addition to improvements in methodology, informative bio
logical features also play an indispensable role in boosting the per
formance of many kinds of protein-related prediction problems 
[33,34]. A remarkable inroad has been made over the past decade 
into the accurate modelling of relationships between residues by 
taking advantage of the direct coupling analysis (DCA) method to 
validate the phenomenon that evolutionary strengths between re
sidues can be regarded as their spatial proximities [35–37]. It pro
vides a bridge between statistical constraints and residue spatial 
proximities in structures, which makes it highly useful in tackling 
structure-related prediction problems, such as residue contact pre
diction [36] and interaction site prediction [38]. Together with deep 
learning methods, the utility of these coevolutionary features has 
been demonstrated in predicting residue contacts (note that Al
phafold2 is dominant in this area) [39] and interaction sites [38] in 
TM proteins.

Although the methodological improvement continues to leap 
year by year, performing membrane protein-related prediction tasks 
remains challenging due to a variety of issues, such as feature-lim
ited membrane protein databases [40], inadequate structure data 
[13], and additional attention to the establishment of membrane 
proteins in oligomer form compared to soluble proteins [41–44]. 
These also play a crucial role in improving prediction performance. 
Recently, Zaucha et al. [45] and Kulandaisamy et al. [46] compre
hensively reviewed computational databases, tools, and related 
analyses, which improved the understanding of mechanisms of 
disease-causing mutations in membrane protein structures and 
functions but did not expand beyond this biological context. In this 
review, we seek to outline the sweeping changes of both machine 
learning approaches and implications from recent biological findings 
in membrane protein structure-related studies. First, we summarize 
currently available membrane protein databases, residue coevolu
tion in different prediction problems, modelling processes, and 
machine learning method development. Then, we systematically 
investigate the current states of four established membrane protein 
computational problems: 1) membrane protein type classification, 
2) transmembrane protein topology prediction, 3) transmembrane 
protein interaction site prediction, and 4) pathogenic effect predic
tion of mutations in transmembrane protein sites mainly from a 
machine learning perspective. Furthermore, we recapitulate the 
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drug-target interaction prediction given the pharmaceutical sig
nificance of membrane proteins, which are targeted by more than 
50% commercially available drugs. In the meantime, using the 
Drugbank [47] and MutHTP [48] databases, we show several basic 
data analyses to appreciate the knowledge about membrane protein 
distributions and disease-causing mutations in relation to human 
transmembrane protein families, respectively.

2. Data preparation, feature extraction, and methodology

2.1. Membrane proteins

Membrane proteins, comprised of integral and peripheral 
membrane proteins, are replete with intrinsic biochemical and bio
physical properties that are crucial in manifold biological functions 
[49], such as signal transduction [50] and enzymatic activity [51]. 
Integral membrane (IM) proteins, which comprise a substantial 
proportion of the membrane proteome, are permanently embedded 
in lipid bilayers [52–54], while peripheral membrane (PM) proteins 
often bind transiently to the surface and are comparatively rare 
[55–57]. Both types of proteins morphologically interact with 
plasma lipids in many ways [49,58,59]. For example, some IM pro
teins cross the lipid bilayer (i.e., transmembrane (TM) proteins) with 
domains exposed to both the extracellular and intracellular space, 
respectively, while others contain only one exposed domain, with 
the remainder of the protein buried within the bilayer. TM proteins 
are the most common type of IM proteins and a large majority of 
them are characterized by a bundle of α-helices facing one another 
within biological membranes [60,61]. According to the PDBTM da
tabase (version: 09.02.2022) [41], 14/15 TM proteins are formed in 
an α-helical fashion with a small proportion demonstrating β-barrel 
morphology. Given this variety, there have been many methods es
tablished for predicting the different properties of α-helical TM 
proteins.

2.2. Structural databases

The structural databases summarized in Table 1, such as PDBTM 
[41,62], OPM [63], and mpstruc, altogether provide a plethora of in
formation regarding different types of membrane proteins, which 
serve as fundamental materials for training machine learning 
models and help to ensure model quality. These databases are often 
constructed with a number of built-in algorithms to automatically 
and exclusively derive membrane protein structures from the pro
tein data bank (PDB) and, possibly, refine the structures thereafter, 
such as by calculating the orientation of membrane planes or filling 
missing atoms. PDBTM is a database of α-helical and β-barrel TM 
protein structures with geometrically localized membrane planes 
determined by the TMDET algorithm [64]. Residues in TM regions of 
each protein are annotated with H or B if this protein belongs to an 
α-helical or β-barrel type. Furthermore, the database provides de
tailed annotations of the remaining protein structure, such as in
terfacial helices (i.e., parallel with the membrane) and membrane 
loops (i.e., re-entrant types with both ends towards the same side of 
the membrane). To provide a comprehensive source of membrane 

proteins, the OPM database developed the PPM 3.0 algorithm [65]
(available at https://opm.phar.umich.edu/ppm_server3) to collect 
both IM and PM proteins by the orientation of membrane planes, 
within which all TM amino acids are annotated and determined by 
minimizing a transfer energy function. Besides, it gives each protein 
its hydrophobic thickness and coordinates of curved membrane 
boundaries and automatically calculates the fit of a protein to a 
planar or spherical bilayer, which has been updated in its latest 
version. Unlike these two databases, mpstruc stores weekly updated 
membrane protein structures collected manually from PDB without 
the calculated membrane orientation but with functional and taxo
nomic information. A statistical comparison of the three databases 
with regards to sequences, structures, and functions was performed 
in a recent study [40]. Furthermore, other membrane protein data
bases have emerged over the past decade, including MemProtMD 
[66,67], PerMemDB [68], and EncoMPASS [69]. MemProtMD is an 
archive of membrane-embedded proteins while PerMemDB is a re
pository of PM proteins. EncoMPASS focuses on symmetries and 
homologue similarities of single-chain-based membrane protein 
structures collected from OPM [65]. In addition, since half of TM 
proteins are single-pass (bitopic) and, themselves, constitute a 
functionally diverse group [70] researchers have started building and 
organizing a further proprietary database exclusive to these: Mem
branome 3.0 [71].

2.3. Datasets

Once raw data are fetched from the membrane protein structural 
databases, a highly stringent pre-processing step is undertaken to 
yield a dataset suitable for training machine learning models [75]. 
This serves to minimize data redundancy, corruption, etc. This pro
cedure is also beneficial for downstream machine-learning optimi
zation processes since it allows for a level of objectivity based on the 
used test datasets and further increases the possibility of an im
proved model generalization ability based on future datasets. This 
pre-processing often encompasses data cleaning to remove cor
rupted data (e.g., delete obsolete protein entries or those lacking 
structural annotations), select proteins satisfying a research goal of 
interest (e.g., the number of interaction or mutation sites per protein 
above a pre-defined cut-off), and reduce protein redundancy based 
on sequence identities or, more stringently, structural similarities, 
and other quality control procedures (e.g., experimental methods or 
resolution). The schematic illustration is shown in Fig. 1.

2.4. Feature preparation

Most features used for characterizing globular proteins can be 
similarly used for membrane proteins as they are commonly seen in 
describing the sequence, structural, physiochemical, positional, and 
evolutionary properties of a protein. However, considering the to
pological difference (i.e., membranous vs. intra- and extra-cellular) 
between membrane proteins and globular proteins, there are still a 
variety of features that need to be considered for the former. For 
example, since TM proteins are anchored to the membrane by α- 
helices and, thereby, interact with lipids [76–78], it is necessary to 

Table 1 
Membrane protein databases. 

Name Source Year (first) Number of structures Version Citation

PDBTM http://pdbtm.enzim.hu 2005 7692 (α-helical: 7123, β-barrel: 509) 09.16.2022 [41,62]
OPM https://opm.phar.umich.edu 2006 6568 03.10.2022 [63,65]
mpstruc https://blanco.biomol.uci.edu/mpstruc 2009 6415 (Coordinate) 09.25.2022 [72,73]
EncoMPASS https://encompass.ninds.nih.gov 2018 2344 06.24.2021 [69]
MemProtMD http://memprotmd.bioch.ox.ac.uk 2018 >  5000 - [66,67]
PerMemDB http://83.212.109.111:8088/permemdb 2020 231770 (UniProt or predicted) v1.3 [68]
Membranome3.0 https://membranome.org 2022 5758 3.0 [70,71,74]
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study a variety of lipid-accessible protein properties in practice, such 
as the helix orientation relative to lipids. We detail a helix orienta
tion prediction process below, employed by the LIPS (lipid-facing 
surface) method [79]. It illustrates the close link between the spe
cialized features and some of the biological processes that the 
membrane proteins perform. Importantly, TM proteins are enriched 
for coiled coils in TM regions [80], which consist of seven periodi
cally occurring amino acid residues, termed heptad repeats, each 
represented by ABCDEFG [81,82] (Fig. 2a). As shown in Fig. 2b, using 
a heptad repeat, seven helical faces are generated if each of the 
seven residues takes turns being thought of as an anchoring residue. 
As illustrated by Adamian and Liang [79], each anchoring residue is 
complemented by two residues (occurring two positions apart from 
the anchoring residue), which together constitute one of the seven 
surfaces. Therefore, starting from the first residue A, the formed 7 
helical faces are ADE, BEF, CFG, DGA, EAB, FBC, and GCD. In the LIPS 
(lipid-facing surface) pipeline, sliding from the first position in a 
given TM protein sequence, each residue is serially partitioned into 

one of the seven helical faces and assigned an entropy and a lipo
philicity score. These scores, for each helical face, are then in
corporated to yield the LIPS score used to estimate its helix 
orientation. As the majority of residues involved in interactions be
tween TM helices can be aligned to the heptad repeats [79], either or 
both the face-level LIPS scores and the residue-level lipophilicity 
scores may be helpful in identifying interaction sites in TM proteins. 
In the MBPred work, the importance of using the helical face-related 
scores for interaction site prediction is partly demonstrated by the 
mean decrease in impurity (i.e., also called Gini importance) and the 
leave-one-out test [38]. We have recently provided a Python inter
face to access the LIPS method, which will shortly be available at 
https://github.com/2003100127/tmkit. Furthermore, the physio
chemical features of residues within transmembrane proteins 
should also be considered important in various TM protein-related 
prediction problems. For example, interactions between buried polar 
inter-helical residues are commonplace in TM regions [83] and hy
drophobic interactions can help to judge the orientations of 

Fig. 1. Schematic illustration of the development of machine learning methods for membrane protein-related prediction problems. It includes database preparation, data pre- 
processing, feature extraction, problem description, and machine learning. The sequence, structural, interaction, mutation, and/or protein family databases will optionally be used 
depending on how to organize a prediction process. For example, the sequence database (UniProt) and/or the structural databases (e.g., PDBTM) are involved in the process of 
predicting structures, interactions, and mutations, while the protein type classification process may only require sequence information from UniProt. During data pre-processing, 
the redundancy between sequences or structures has to be removed based on sequence identity or structural similarity. Prior to model training, protein or residue features, which 
are biologically relevant with a prediction problem and are informative to train machine learning models, can be shortlisted by using feature importance test techniques, such as 
principal component analysis (PCA). The protein features mainly include amino acid compositions, while the residue features mainly include positional, topological, coevolu
tionary, and physiochemical properties. The feature importance test is crucial to improve the performance of the resulting models. The protein type classification task requires 
protein features as input while the topology prediction, interaction site prediction, and mutation effect prediction tasks require residue features as input. After model training, a 
variety of evaluation metrics (e.g., precision and recall) should be adopted for quality control.
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peripheral proteins in membranes [84]. Finally, the different feature 
vectors are concatenated together into one for a residue or a TM 
protein to be taken as input for prediction models (Fig. 1).

2.5. Coevolution

Direct coupling analysis (DCA) is a statistical inference technique, 
which has notably improved the identification of residue contacts by 
differentiating, both directly and indirectly, coupled residues, 
making use of residue coevolution [85–87]. It starts with the pre
mise that residues in spatial contact are often co-evolved [88,89]. 
When a residue is mutated, its contacting partner will also be mu
tated in order to compensate for alterations of the raw evolutionary 
pressure between them [33]. Such a phenomenon is recorded in 
multiple sequence alignment (MSA) and can, historically, be ob
served through their paired MSA columns [36]. This underlies the 
statistical deduction of spatially closed acids, with high correlation 
values to be used as constraints for folding, for example, TM proteins 
[90,91]. To our knowledge, the research in which the DCA approach 
was first formulated and applied to achieve a marked improvement 
in the residue contact prediction should date back to 2009 [92], 
followed by an updated version in 2011 [93]. Since then, other si
milar methods, but with various refinements, have been proposed in 
close succession, e.g., PSICOV [94], GREMLIN [95], and plmDCA [96]. 
The progress observed for coevolution-based inference techniques 
(note that we specially refer to those methods based on the DCA 
approach), which has occurred within less than fifteen years, has 
greatly benefitted the current computation-assisted research in 
structural biology [97–99]. For instance, it is well-believed that the 
incorporation of coevolutionary information into features used for 
training deep learning models plays a predominant role in highly 
accurate protein structure prediction [26,27], and doubtless, im
proved TM protein modelling [100]. In addition to the success in 
deducing spatial proximities between residue pairs, the coevolution 
technique also allows the estimation of the likelihood of a single 
residue to be involved in a contact [101], thus starting to be applied 
in single-site-related prediction problems [38,102]. The MBPred 

work made the first attempt to verify its usefulness in TM protein 
interaction site prediction in which the above-threshold evolu
tionary coupling strengths of a residue are prioritized and ag
gregated to evaluate the potential coevolution with multiple 
residues in interaction interfaces or rare residues in non-interaction 
interfaces [38]. This has built a link between a residue’s coevolu
tionary property and its structural/functional importance. Our re
cently developed TMKit tool (available shortly at https://github.com/ 
2003100127/tmkit) provides the corresponding module for ex
tracting the coevolutionary information of residue pairs or single 
residues.

2.6. Machine learning methodology

In addition to choosing a set of informative features to improve 
prediction performance, methodological improvement is commonly 
seen as another driving force in a number of biological fields that 
require computational modelling techniques [103–109]. In parti
cular, the frontier of 3D structural prediction has recently witnessed 
a rapid transition from conventional machine learning to deep 
learning methods [110,111]. An immense amount of effort in ap
plying deep learning has been applied to structure prediction due to 
its crucial importance in promoting the understanding of biological 
mechanisms. For example, all of the top best-performing tools in 
structure-related prediction tasks, as presented at recent CASP 
events, were developed by utilizing deep neural networks [112,113], 
such as the deep-learning-powered AlphaFold2 method, which has 
achieved stunning performance in predicting protein structures 
[26,114]. However, structure-related prediction tasks with regards to 
TM proteins were not given its own category at previous CASP events 
due to their scarcity. For example, there have been only 3 TM pro
teins (T1024, T1058 and T1098) identified using the TMHMM tool 
compared to roughly one hundred non-TM targets, as demonstrated 
at CASP14. Also, deep learning has been applied for addressing many 
other prediction problems specialized for TM proteins at a com
paratively slow speed. However, in the past two years, deep learning 

Fig. 2. Schematic illustration of helical surfaces generated using the LIPS method. (a) shows the representations of the heptad repeat (seven residues ABCDEFG) in sequence and 
structural contexts. (b) shows the seven canonical surfaces of transmembrane α-helices, which are generated by taking each of the seven residues as an anchoring residue. Each 
surface consists of an anchoring residue and two residues complementing the anchoring residue. The seven surfaces are ADE, BEF, CFG, DGA, EAB, FBC, and GCD.
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methods have started to further enhance the TM protein topology 
prediction, showing a pronounced improvement [115,116].

As an important category in machine learning, deep learning 
methods have adopted several special neural network architectures, 
primarily including convolutional neural layers, recurrent neural 
layers, and graph convolutional neural layers (Fig. 3) [117,118]. A 
unique feature to distinguish deep learning methods from conven
tional machine learning methods is the automatic feature extraction 
ability from raw input data [117], which efficiently reduces the re
liance on feature selection by domain experts [119]. Convolutional 
neural networks (CNNs) are the most commonly-used deep learning 
methods for a wide range of biological problems. A typical CNN ar
chitecture usually comprises a stack of multiple convolutional neural 
layers where the input data are required to be converted to image- 
like objects [120]. Compared with fully-connected networks with 
the size of parameters equal to the size of input data, a CNN allows 
for fast training through its parameter sharing setting [121] where 
the size of all kernels (i.e., parameters) in a layer is usually sig
nificantly smaller than the size of input data in this layer [122]. 
However, it remains computationally arduous to train CNNs with 
deep layers. Recent work has sought to address this with the de
velopment of the residual neural Network (ResNet), a variant version 
of CNNs, which has demonstrated the feasibility of training 

ultradeep neural networks [123]. The increased training speed lies in 
the use of a residual building block (ResBB) with a unique connec
tion to allow the addition of the current output through the ResBB 
while enabling the previous input to bypass the ResBB, which reg
ularly alternates between every several convolutional neural layers 
[124]. Given its transformative potential, we previously applied a 29- 
layer ResNet and a 38-layer ResNet for two-stage learning of inter- 
helical residue contacts in TM proteins [39] and a 59-layer ResNet for 
learning interaction sites in TM proteins [102]. The ResNet approach 
has been widely applied to a wide range of modelling problems in 
structure biology. Moreover, graph neural networks (GNNs) have 
emerged as a useful tool to learn the characterization of geome
trically structured data that can be represented by graphs [125]. The 
connection strengths between edges in the graphs are usually me
trics for evaluating the similarity between nodes [126]. Therefore, 
the biological application of the GNN method is more often seen in 
the inference of associations between molecules, e.g., drugs [127], 
but rarely seen in membrane protein studies. More recently, deep 
learning-based structural biology fields have started to benefit from 
using transfer learning to improve prediction accuracy. The idea is 
that language models are first trained on vast amounts of protein 
sequences to comprehend and learn their biological features (also 
called protein embeddings) usually in an unsupervised manner and, 

Fig. 3. Deep learning architectures. (a) Fully-connected neural networks. (b) Convolutional neural networks. (c) Residual units of residual neural networks. (d) Long short-term 
memory (LSTM) neural networks. (e) Bidirectional neural networks. (f) Graph convolutional neural networks. NN: neural network. Typically, a neural network consists of multiple 
neural layers, each set to extract features from input data. Blue circles represent neurons in neural layers. In a fully-connected neural network, neurons in one neural layer are 
needed to connect to every neuron in its adjacent neural layer. The edges between neurons are the weights required to be estimated during training. A convolutional neural layer 
is a layer in which multiple filters (i.e., weights required to be estimated) are placed to perform convolutional operations on input data that are image-like. A residual neural 
network consists of linearly connected residual units. But within each residual unit, every two convolutional layers are connected in a residual manner, where the final output of 
the residual unit is the sum of the output of the second convolutional layer and the raw input. This allows training a residual neural network at a much faster speed than training a 
convolutional neural network with the equal number of convolutional neural layers. The LSTM and bidirectional neural networks are two types of recurrent neural networks. In a 
recurrent neural layer, the input at the current time step is combined with the output from the previous time step(s). One main difference between the LSTM and bidirectional 
neural networks is that the former is trained in forward time directions while the latter is trained in both forward and backward time directions. Graph convolutional neural 
networks take as input the data that are represented by graphs and allow applying convolutional operations on the graph-based data to extract features. Taking the protein-ligand 
binding as an example, the structure of a ligand can be represented by a graph and the residues binding to the ligand at the binding pocket can also be conceived as being in a 
graph, which are together taken as input into a graph convolutional neural network.
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based on the learned information, the pretrained models are then 
transferred to perform other prediction tasks [31]. Current language 
models that are able to complete the above tasks at high accuracy 
are transformers [128], which are mainly constructed using atten
tion-based modules that enhance the extraction ability of in
formative features [129]. For example, a recent study has shown the 
improved performance in membrane protein topology prediction, 
which is achieved by using the ProtT5 transformer model [116].

2.7. Human transmembrane protein families

Using the GtoPdb database (https://www.guidetopharmacolo
gy.org), human transmembrane proteins are categorized into eight 
functional groups: transporter, G-protein-coupled receptor (GPCR), 
enzyme, catalytic receptor, ligand-gated ion channel (LGIC), voltage- 
gated ion channel (VGIC), other ion channel (other IC), and other 
protein, which we used to analyse disease-causing mutations in 
Sections 6.2 and 6.3.

3. Membrane protein type classification

There are eight types of membrane proteins documented in the 
literature, comprising type I, type II, type III, type IV, multi-pass, 
lipid-chain-anchored, GPI-anchored, and peripheral proteins [130]. 
Among them, type I, type II, type III, type IV are single-pass proteins 
and together with multi-pass proteins they are categorized as TM 
proteins. The remaining types are surface-bound membrane pro
teins. From a functional perspective, one difference between these 
two groups is that TM proteins can function in cytoplasmic, extra
cellular, and/or membrane regions, whereas surface-bound proteins 
mainly function on one side of the lipid bilayer. To be able to readily 
determine functional groups from the vast array of membrane pro
teins, for which only protein sequences are available, computational 
techniques are crucial. Apart from two classical algorithms, ProtLock 
[131] and MemType-2 L [130], methods published in the past decade 
have been summarized in Table 2. Note that several methods have 
not been made available for use but still provide information about 
the development of methodologies over time. These techniques 
primarily phase this classification problem by detecting membrane 
proteins first and, then, applying an eight-label classification pro
cedure for the eight protein types [132–134].

As shown in Table 2, the salient feature that almost all methods 
have in common is the incorporation of the pseudo position‑specific 
scoring matrix (PSSM) [130] and/or the pseudo amino acid compo
sition (AAC) [135–137] into the classification of membrane protein 
types. Most machine learning methods require a fixed-length vector 
as input. However, if features of individual residues are used, pro
teins of different lengths are described as feature vectors of different 
lengths, which is due to the different number of residues within the 
proteins. In comparison, the PSSM- and AAC-based features address 
this by encoding proteins of different lengths as fixed-length feature 
vectors. This is advantageous when training classifiers that take as 
input the protein sequences of different lengths. Importantly, most 
classifiers were developed using conventional machine learning al
gorithms. Therefore, it would be interesting for future studies to 
explore the utility of deep learning in improving current classifica
tion techniques.

4. Transmembrane protein topology prediction

Annotations of membrane protein topology can be used to assist 
structure-function studies [145–147] but experimentally de
termining these has long been a mammoth task [148]. Therefore, the 
development of computational identification approaches has gained 
great popularity in the past few decades [149]. Topology prediction 
enables differentiation of TM proteins but detailed protein types 

(e.g., type I or type III) cannot be ascertained. Nevertheless, it can 
determine other biologically relevant information including locali
zation, number of protein segments relative to the membrane in 
cytoplasmic/intracellular, transmembrane and extracellular regions. 
Moreover, predicted topology profiles have been suggested to refine 
the computational design of membrane proteins [150–154].

With substantial recent progress, there are now extensive web
servers and standalone packages available across an assortment of 
computational techniques (Table 3). In particular, the past two years 
have seen an increase in the number of predictors developed by 
deep learning, including Li’s work [155], Membrain3.0 [156], 
DeepTMHMM [115], DeepTMpred [157], and TMbed [116]. It is worth 
noting that many of these were developed by transfer learning ap
proaches where transformer-based pretrained models were trans
ferred from nature language processing (NLP) modelling [30,128,158]
to topology prediction. For example, both DeepTMHMM and 
DeepTMpred adopted the pretrained ESM model [159], while TMbed 
took advantage of the ProtT5 model pretrained on a number of auto- 
regressive and auto-encoder models [31]. These three methods re
present the current state-of-the-art in this field, with TMbed having 
demonstrated the lowest false positive values. Nevertheless, the two 
canonical methods TMHMM2.0 [160] and PolyPhobius [161] devel
oped early in the 2000 s remain programs-of-choice for topology 
prediction, which were widely adopted by topology-assisted studies 
[39,102] and public databases such as UniProt [162,163]. Current 
available computational approaches are generally used for de
termining the topology of α-helical TM proteins since the vast ma
jority of membrane proteins are α-helix-bundled and are criss- 
crossed through membranes. According to PDBTM (version: 
2022–08–26), α-helical TM proteins account for 92.6% of TM pro
teins. More recently, a few methods have begun to extend to predict 
the topology of β-barrel TM proteins in addition to the α-helical 
topology prediction. Example methods are HMM-TMv2-HNN [164], 
DeepTMHMM [115], and TMbed [116]. The integration of available 
topology information is helpful in performing multi-factor analyses; 
for example, it has been used to understand the biological en
vironment in which disease-causing mutations or interaction sites 
are located.

5. Membrane protein interactions

Biophysical interactions between proteins are essential for a wide 
variety of biological processes. However, a clear understanding of 
the interactions at an intermolecular level has been encumbered due 
to high costs and the time-consuming nature of protein structure 
determination techniques. It is particularly difficult regarding 
membrane proteins as many of them are large and lipid-anchored 
assemblies. Computational techniques are therefore much-needed 
for the annotation of functionally important sites in membrane 
proteins [179].

5.1. Experimentally resolved binary PPI interactome maps

PPIs determined experimentally by high-throughput techniques 
are binary, pairing, and structure-free to allow for the analysis of the 
interconnections between disease-related proteins in the patholo
gical cellular context [180,181]. Typical methods for conducting 
these high-throughput experiments include yeast two-hybrid (Y2H) 
assays and affinity purification mass spectrometry (AP-MS). The Y2H 
assay identifies PPIs through the activation of a transcription factor 
(TF) in living yeast cells once a protein of interest residing in the TF 
DNA-binding domain comes in physical contact with a bait protein 
in the activation domain [182,183]. Alternatively, AP-MS involves 
purifying protein complexes formed by a tag-fused bait protein (e.g., 
antibody) and its interaction partners, which then undergo mass 
spectrometry for refined characterization [184–186]. Compared to 
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AP-MS, the Y2H assay is more affordable and inexpensive as it averts 
high resource consumption such as that required for protein pur
ification (their advantages and disadvantages are discussed in 
[187,188]). It is noted that the classical Y2H system is not suitable for 
determining those interactions involving TM proteins since it re
quires interacting proteins to be present in the nucleus but TM 
proteins cannot fold without the lipid bilayer [189]. The human 
binary PPI interactome map maintained by the Center for Cancer 
Systems Biology (CCSB) is mainly based on results of Y2H assays, 
with the first version possibly backdated to 2005 [190,191]. In the 
most recent version, HuRI, this quantity has grown to >  60,000 
binary PPIs that are enriched for TM protein interactions [181]. It is 
estimated that human PPIs in HuRI that involve at least one TM 
protein make up around 40% of the whole human interactome [102].

5.2. Experimentally resolved interaction sites

Interaction sites residing at protein interfaces are key to under
standing molecular mechanisms and cellular functions of a protein 
[192]. Details of interactions between inter-protein residues in pro
tein complexes can be solved experimentally by X-ray crystal
lography, nuclear magnetic resonance (NMR) spectroscopy, and 
cryogenic electron microscopy (cryo-EM) [193,194]. X-ray crystal
lography is currently the most prevailing method for structure de
termination [195]. Comparatively, high sensitivity to the nuances of 
local structural changes makes NMR spectroscopy powerful in de
termining protein-ligand binding, showing promise for drug dis
covery [196]. The biggest advantage of using Cryo-EM over both 
methods is that Cryo-EM is more suited for determining membrane 
protein complexes that are large [16,193,197,198], e.g., the ACE2 
protein in complex with the spike glycoprotein of SARS-CoV-2 [199].

5.3. Prediction of TM protein interaction sites

5.3.1. Definition of interaction sites in membrane proteins
Cocooned by 3D protein structures consisting of multiple sub

units (i.e., chains), interaction interfaces at the inter-protein level are 
characterized by tightly packed regions. Interaction sites residing in 
the interaction interfaces are spatially close residues that can be 
derived computationally from the structures by setting a distance- 
based cut-off (e.g., below 5.5 Å or 6 Å). To further restrict the number 
of interaction sites identified and, thus, filter potential false posi
tives, the relative solvent accessibility value of a residue in an in
teraction in the unbound state can be restricted to fluctuate within a 
predefined range (e.g., at least above 0.2). Subsequently, interaction 
and noninteraction sites can be partitioned and taken as ground 
truth for model training. It is noted that since TM proteins are often 
co-crystallized with antibodies in order to increase their solubility in 
the aqueous phase, the light and/or heavy chains need to be removed 
before the interaction sites are calculated [102,200].

5.3.2. Biological assembly
The structure of a protein deposited in a PDB file downloaded 

from https://www.rcsb.org/ is only a representation of 3D co
ordinates, which provides the structure as an asymmetric unit [42]. 
The actual biological unit of the protein (i.e., the biological assembly 
or biomolecule), which functions in oligomer form in the cellular 
context, is required for functional studies (https://pdbj.org/help/ 
about-aubu) [201], for example, protein-protein interactions. Such a 
structure can be generated by applying symmetry operations (e.g., 
axes of rotations, translations, or a combination of both) to the 
asymmetric unit (https://pdb101.rcsb.org/learn/guide-to-under
standing-pdb-data/biological-assemblies) [41]. Symmetry opera
tions necessary for this type of transformation can be accessed via 
the BIOMOLECULE records aligned to REMARK 350 in the PDB file 
[43]. However, biological assemblies of TM proteins generated by Ta
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directly applying these operations may be inaccurate because the 
BIOMOLECULE records generated by the PISA algorithm are specia
lized for globular proteins. To address this, the TMDET algorithm has 
developed a refined calculation process specialized for TM proteins 
based on the BIOMOLECULE records. In Bordner’s work, MBPred, and 
DeepTMInter, all interaction sites of a protein chain are scanned and 
detected through their biological assemblies generated using TMDET 
or through manual calibration.

5.3.3. Quality control of datasets
A high-quality dataset is instrumental for generating high-perfor

mance machine learning models. Prediction of structure-derived inter
action sites involves a complex data pre-processing procedure as the 
data used for training cannot be directly fetched from databases sup
plying functional site annotations. Generating such a dataset normally 
starts from collecting an initial database of protein structures and re
quires several preliminary procedures. Firstly, only well-resolved pro
tein structures are retained by applying a few experimental 
determination parameters (e.g., a 3.5 resolution and the X-ray crystal
lography method). Secondly, the biological assemblies of the retained 
protein structures are generated according to the procedures mentioned 
in the above section. Thirdly, within each biological assembly, calcu
lating all interacting chains with at least one interaction site is per
formed to ensure that computing resources necessary in other quality 
control steps will not be invested in protein chains that have never been 
used. Further data quality control processes may vary depending on 
downstream analyses but involve several required steps, including re
dundancy removal by setting sequence-identity or structure-similarity 
thresholds. Once these various steps are completed, interaction sites of 
interacting chains can then be calculated.

5.3.4. Learning algorithms
Prediction of interaction sites specific to membrane proteins is 

currently in its infancy and there are only a handful of methods 
available for use (Table 4). Bordner made the first attempt in 2009 to 
predict membrane protein interaction sites with a random forest 
algorithm based on a combination of multimeric membrane pro
teins. Using almost the same tree-based approach, the MBPred 
method developed in 2019 improved the prediction performance by 
comparing itself with a reimplementation of the Bordner work. The 
utility of introducing co-evolutionary features to interaction site 
prediction was first demonstrated in the MBPred work. Thereafter, a 
follow-up study, DeepTMInter, continued the adoption of the co- 
evolution strategy but offered a reinforced version by adding an 
additional co-evolutionary feature and learning the co-evolution 
representation of a residue in sequence context in which a sliding 
window was applied. The ResNet method has been well tried in 
protein structure-related prediction fields [27,202,203]. DeepT
MInter is a deep learning implementation, which utilizes a hand
picked ResNet architecture prevalent in image recognition, thereby 
boosting its performance. The ResNet model used for building 
DeepTMInter has a 59-layer architecture and is assembled by fol
lowing conventional practice where residual units alternate between 
every two max-pooling operations, similar to that used in [123]. 
DeepTMInter had a pronounced improvement in its performance in 
predicting interaction sites in full-length sequences, TM, extra
cellular, and intracellular regions, which might be attributed to the 
methodological approach, the increased size of training samples, 
and/or the features used. In Fig. 4 we provide the interaction sites of 
two example TM proteins (PDB id: 6T0B chain m and PDB id: 5B0W 
chain A) predicted by two TM protein-specific predictors, DeepT
MInter and MBPred, and two soluble protein-specific predictors, 
DELPHI and GraphPPIS. As TM proteins are large biomolecular as
semblies consisting of multiple subunits, the predicted interaction 
sites between subunits are extremely useful for the oligomerization 
of their quaternary structures [204–207]. Given that deep learning Ta
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continues to make sweeping changes to the landscape of structural 
prediction fields, the future development of protein interaction site 
prediction should take advantage of deep learning models that will 
likely be more powerful in representation learning and provide 
improved feature extraction from the intrinsic surroundings of the 
protein sequence and the structural elements of interaction sites.

6. Mutation effect prediction

6.1. Membrane protein mutation databases and mutation-effect 
predictors

In the absence of databases comprised of experimentally-derived 
data, the prediction of mutation/variant effects becomes key to 
filling the gap between millions of mutations in proteins and their 

impact on human diseases (i.e., pathogenicity) [208–212]. Given that 
disease-causing/pathogenic mutations occur more frequently in 
membrane proteins than in other types of proteins [45,213], com
putational strategies are needed to accelerate the development of 
prediction tools that are able to accurately evaluate the effects of 
pathogenic mutations in the former [214,215]. There have been a few 
tools developed, and presently available for this purpose, including 
Pred-MutHTP[215], BorodaTM [216], mCSM-membrane[217], and 
MutTMPredictor [218], but this ultimately far less than the number 
developed for globular proteins [209,210,219–221]. Indeed, various 
deep learning strategies have been developed to predict the func
tional impact of mutations occurring in globular proteins [222–225]
but have yet to be applied for membrane proteins. Most of the tools 
specialized for membrane proteins are made by tree-based machine 
learning strategies (e.g., random forest). It is unknown as to whether 

Fig. 4. Prediction of interaction sites of two example TM proteins, (a) the 11-cis isomer of pharaonis halorhodopsin (PDB id: 5B0W chain A) and (b) the hypoxic isoforms of mature 
mitochondrial III-IV supercomplexes (PDB id: 6T0B chain m). DeepTMInter and MBPred are two methods specialized for TM proteins, while DELPHI and GraphPPIS are two 
methods specialized for globular proteins. Using the GraphPPIS webserver, the prediction results can be generated in two modes. The fast mode allows predicting interaction sites 
based on the BLOSUM62 matrix and the DSSP secondary structures of an input amino acid sequence while the slow mode allows predicting interaction sites based on the position- 
specific scoring matrix, the hidden Markov model profile, and the DSSP secondary structures of the input amino acid sequence. The two protein chains 5B0WA and 6T0Bm are 
presented in surface form while their interacting protein chains are presented in cartoon form. In more detail, non-interaction sites in 5B0WA and 6T0Bm are shown using white 
surfaces while their interaction sites predicted by these tools are highlighted using red surfaces.

Table 5 
Mutation effect databases and prediction tools. 

Database

Name Source Year Citation

MutHTP http://www.iitm.ac.in/bioinfo/MutHTP 2018 [48]
TMSNP http://lmc.uab.es/tmsnp 2021 [213]
Predictor
Method Source Year Algorithm Category Citation
Pred‐MutHTP https://www.iitm.ac.in/bioinfo/PredMutHTP 2019 Voting with neural networks, naïve bayes, tree decision methods, 

random forests, and/or logistic regression
ML [215]

BorodaTM https://www.iitm.ac.in/bioinfo/MutHTP/ 
boroda.php

2019 XGBoost ML [216]

mCSM-membrane http://biosig.unimelb.edu.au/ 
mcsm_membrane

2020 Random forests and regression ML [217]

MutTMPredictor http://csbio.njust.edu.cn/bioinf/ 
muttmpredictor

2021 Cascade XGBoost ML [218]

TMSNP-predictor https://github.com/adriangarciarecio/ 
TMSNP

2021 Random forests, XGBoost, and SVM ML [213]
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deep learning is conducive to a better prediction ability. Never
theless, with the available methods, it is possible to gain knowledge 
about the pathogenicity of amino acid substitutions in many mem
brane proteins with mutations highly related to a variety of human 
diseases. For example, twelve tools were systematically bench
marked for evaluating the pathogenic impact of the variants of a 
voltage-gated sodium channel, hNav1.5 [226], and determined more 
than 70 potential pathogenic variants in both TM and extracellular 
regions. In another study, several tools (e.g., Rhapsody and EVmu
tation) were employed to determine deleterious mutations in the 
renal outer medullary potassium channel [227]. Crucially, training 
these tools with high prediction capacity depends heavily upon the 
availability of high-confidence experimental data. Two presently 
available databases, MutHTP [48] and TMSNP [213], provide an ex
tensive repertoire of experimentally verified membrane protein 
disease-causing and neutral mutations (Table 5), which opens up the 
possibility of developing different kinds of predictors. The MutHTP 
database is an exhaustive collection of pathogenic and neutral 

missense, insertion, and deletion mutations specific to human TM 
proteins [48]. These mutations were derived from the Humsavar, 
SwissVar, 1000 Genomes, COSMIC and ClinVar databases. TMSNP is a 
more recently developed database maintaining pathogenic and 
neutral missense mutations with information on structural and 
environment features, which enables their differentiation from 
globular proteins. Compared to MutHTP, the mutations in TMSNP 
appear only in TM regions.

Based on these two databases, a variety of prediction tools have 
been developed to assist in determining pathogenicity for various 
missense mutations (Table 5). Pred-MutHTP was the first work to 
use MutHTP to predict variant effects of missense mutation sites. To 
ensure high quality, all methods available in WEKA [228], such as the 
Bayesian network, the logistic regression model, the multilayer 
perceptron and the random forest were extracted to train their in
dividual models, and perform membrane topology-wise evaluation. 
It then prioritized the predictions of the voting algorithm for use. 
Compared to Pred-MutHTP, a subsequent effort, MutTMPredictor, 

Fig. 5. Disease patterns in pathogenic mutations across eight human transmembrane protein families: transporter, G-protein-coupled receptor (GPCR), enzyme, catalytic receptor, 
ligand-gated ion channel (LGIC), voltage-gated ion channel (VGIC), other ion channel (other IC), and other protein. Proteins are annotated as one of the above protein families based on 
the GtoPdb databases (see Section 2.7). The number on the plots represents one of the following disease types appearing in the MutHTP databases: 1: cancers, 2: cardiovascular 
diseases, 3: congenital disorders of metabolism, 4: digestive system diseases, 5: endocrine and metabolic diseases, 6: immune system diseases, 7: musculoskeletal diseases, 8: 
nervous system diseases, 9: other congenital disorders, 10: urinary system diseases, 11: reproductive system diseases, 12: respiratory diseases, 13: skin diseases, and 14: other 
types. The confidence score is produced by the Apriori algorithm (see Section 6.2) and is used to show how confidently a disease type occurs or multiple disease types co-occur in 
a protein family when mutations are pathogenic.
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demonstrated improved AUC values in mutations located in the 
extracellular regions [218]. The utility of considering evolutionary 
information as features was demonstrated in these two methods. 
Additionally, an in-house predictor was constructed alongside the 
simultaneous establishment of the TMSNP database, which was 
trained by distilling pathogenic mutations from 358 proteins and 
non-pathogenic mutations from 2420 proteins. It demonstrated 
higher accuracy, specificity, and MCC performance but lower sensi
tivity and coverage performance than Pred-MutHTP [213]. Built 
without relying on the aforementioned two databases, two other 
predictors, BorodaTM [216] and mCSM-membrane [217] also em
ployed tree-based methods to quantify the mutation effects for 
which protein 3D structures were available. BorodaTM demon
strated high performance in mutation effect prediction specific to 
TM regions using known protein structures. In order to characterize 
the structural signature of a mutation residue, mCSM-membrane 
exploited a graph-based strategy to assign a graph containing the 
residue of focus and their adjacent residues with features inclusive 
of pharmacophores and interactions. mCSM-membrane performed 
significantly better than a number of tools developed for globular 
soluble proteins.

6.2. Family-specific disease patterns in MutHTP

To better understand disease patterns resulting from pathogenic 
mutations specific to human transmembrane protein families, we 
applied the Apriori algorithm [229,230] to perform an association 
rule learning analysis based on the latest version of the MutHTP 
database, leading to a preferred order of diseases or disease com
binations. Considering the overrepresentation of cancer-type pa
thogenic mutations in MutHTP, we removed this type when mining 
the disease patterns from the database. As can be seen in Fig. 5, 
single diseases appear in each family more frequently than a com
bination of multiple diseases. Using a confidence score threshold 
above 0.5, we identified the two most frequently co-occurring dis
ease combinations in the other IC and other protein families, re
spectively. As scanned by the Apriori algorithm, disease-causing 
mutations in the other protein families can bring about the co
morbidity of cardiovascular diseases and nervous system diseases, as 
pointed out in [231,232]. In terms of the occurrence of only single 
diseases, the four most frequently occurring types of diseases are 
congenital disorders of metabolism, endocrine and metabolic dis
eases, nervous system diseases, and other congenital disorders, 

Fig. 6. Top-ranked wild-to-variant types across eight human transmembrane protein families: transporter, G-protein-coupled receptor (GPCR), enzyme, catalytic receptor, ligand- 
gated ion channel (LGIC), voltage-gated ion channel (VGIC), other ion channel (other IC), and other protein. E- > K, for example, represents a mutation from amino acid E (wild-type) to 
amino acid K (variant-type) in TM proteins. Black bars represent disease-causing/pathogenic mutations while red bars represent neutral mutations.

J. Sun, A. Kulandaisamy, J. Liu et al. Computational and Structural Biotechnology Journal 21 (2023) 1205–1226

1217



which top the ranking lists of the majority of the 8 protein families. 
Most of the relatively high-confidence scores from Apriori to support 
the credibility of the discovered disease patterns are seen in the 
three ion channel families, typically between 0.6 and 0.8. Diseases 
(e.g., hyperinsulinemic hypoglycemia of infancy [233]) caused by 
disorders of metabolism or nervous systems has been previously 
documented [234–238].

6.3. Family-specific amino acid substitutions in MutHTP

A missense mutation can result in 19 types of substitutions at a 
single amino acid position. The different types of amino acid sub
stitutions that are pathogenic or benign may help to better under
stand differences between diseases and healthy systems across 
human transmembrane protein families. To explore this, we in
vestigated the substitution types of all pathogenic or benign muta
tions from wild to variant types in the MutHTP database. As shown 
in Fig. 6, ‘A- > T′ and ‘E- > K′ are the most common types of sub
stitutions as a result of disease-causing mutations, with the former 
one detected in the transporter and GPCR families and the latter 
detected in the rest of the protein families. The ‘E- > K′ type is also 
confirmed as the most frequently seen substitutions in TM regions as 
reported in [214]. By contrast, the ‘V- > I′ and ‘R- > Q′ types are most 
frequently observed as a result of benign mutations. Note that sev
eral most common types of substitutions as a result of benign mu
tations, such as ‘V- > I′, are more likely to be pathogenic. In addition, 
the ‘A- > V′ and ‘D- > N′ types may be worth attention as they appear 
as similarly frequent as the above listed types.

7. Prediction of membrane protein stability

Kulandaisamy et al. have developed a multiple linear regression- 
based machine learning method to predict the thermostability of 
membrane proteins upon the occurrence of missense mutations 
[239]. First, a non-redundant dataset of 929 mutations in relation to 
experimental thermostability was constructed based on the 
MPTherm database [240]. Next, these mutations were grouped ac
cording to membrane-spanning or aqueous regions and further 
classified by their functions, secondary structures, and the locations 
of mutations in protein structures, respectively. For each mutation, 
various sequence- and structure-based features such as conservation 
scores, physiochemical properties, neighboring residues, contact 
potentials, atomic contacts, residue depths, and topologies were 
then computed to predict thermostability. As reported, after 10-fold 
cross validation, MPTherm-pred achieved a correlation of 0.72 with a 
mean absolute error of 2.85 °C for mutations located in membrane- 
spanning regions and a correlation of 0.73 with a mean absolute 
error of 3.72 °C for those located in aqueous regions. The method is 
available as a web server at https://web.iitm.ac.in/bioinfo2/ 
mpthermpred/.

Other than predicting pathogenicity (described in Section 6.1), 
mCSM-membrane can also be used to predict membrane protein 
stability upon the occurrence of missense mutations. Using 223 
mutations from 7 proteins of known structures [241], the difference 
in the Gibbs free energy of folding [217] between wild and mutant 
types was calculated to be indicative of protein stability. This study 
showed a correlation of 0.72 between experimental and predicted 
values.

8. Prediction of multiple properties with metamethods

Rather than focusing on single property prediction, a few studies 
have sought to predict a number of properties in combination, such 
as solvent accessibility, secondary structures, and torsion angles. 
These methods include AllesTM [242], MASSP [243], and Top
Property [244], which all use deep learning methods to keep abreast Ta
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of any possible advances in prediction performance (Table 6). For 
example, in the AllesTM work, the ensemble of conventional ma
chine learning methods (random forest) and deep learning methods 
(CNNs and bidirectional LSTM NNs) leads to superior performance in 
predicting Z-coordinates, flexibility, and topology, and its perfor
mance in predicting torsion angles, secondary structures, and 
monomer relative solvent accessibility is roughly similar to that of 
SPOT-1D. The ability to predict more than one property is particu
larly beneficial when being used for membrane protein design 
[150–152].

9. Membrane proteins and drug target interaction

The permeability of plasma membranes regulated by membrane 
proteins ensures control of the flow of ions, ligands, and other 
macromolecules from the extracellular to the intracellular environ
ment. As such, membrane proteins are the targets of a variety of 
therapeutics [1245,246]. For example, many small molecules are 
used to target protein-protein interactions (discussed in [247–249]) 
between membrane proteins [250] or cell membrane-protein inter
action interfaces [251]. It has been reported in extensive studies that 
membrane proteins are targeted by more than 50% of commercially 
available small molecule drugs [172,252–256]. Based on the Drug
bank database (version: 01.04.2022) [47], we employed the TMHMM 
tool to identify the fraction of TM proteins, which are targeted by 
small molecule therapeutics and found that this comprises around 
half of the targets for all FDA-approved therapeutics (Fig. 7). The 
distribution of membrane proteins with respect to the number of 

helices identified bitopic proteins as the predominant target subtype 
across FDA-approved, experimental or all therapeutics. Polytopic 
proteins of 7, 2, and 4 helices were also found to be prevalent targets.

Small molecules therapeutics serve as inhibitors upon binding 
with aberrant membrane proteins, thus mitigating potential patho
genic effects. Therefore, the identification of drug-target interactions 
(DTIs) can be useful in the discovery and design of drugs. With the 
plethora of available sequence information and the accumulation of 
evidence-supporting DTI pairs, machine learning approaches have 
been applied for DTI prediction [257–259]. In recent years, the 
number of deep learning applications in this aspect has increased 
sharply [260], especially graph neural network applications thanks 
to the seamless integration of graph representation and drug 
structures [261]. More recently, GraphDTA, which was built using an 
attention-based graph neural network [262], has substantially im
proved prediction ability. Given that membrane proteins are greatly 
involved in DTIs, as indicated above, we assume that these tools will 
also have an acceptable ability to predict DTIs when the drug target 
is a membrane protein, even though the precise ratio of membrane 
proteins vs. globular proteins was not made clear by these afore
mentioned studies in their training datasets. This has been sug
gested in the DRUIDom work [263]. However, compared with 
sequence-based prediction of DTIs, the field is greatly devoid of 
prediction tools developed based on 3D protein structures [264]. 
With the increasing availability of Alphafold2-predicted structures 
for various membrane proteins, potential improvements in DTI 
prediction ability, through the incorporation of 3D structural fea
tures, will be of particular interest in the future.

Fig. 7. Distributions of transmembrane protein targets using data from the Drugbank database. (a) Bar plots showing the number of transmembrane (TM) and non-TM proteins, 
which are targeted by FDA-approved, experimental, and all therapeutics in Drugbank. A TM protein target is identified from non-TM protein targets using the TMHMM tool (see 
Section 9) if at least one TM helix is detected in this protein target. (b) and (c) Bar and violin plots showing the number of TM proteins with respect to different TM helices, which 
are targeted by FDA-approved, experimental, and all therapeutics in Drugbank, respectively.
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10. Conclusion

In this review, we systematically evaluated the current status of 
machine learning applications being used to address four important 
membrane protein-related prediction problems: type classification, 
topology identification, interaction site prediction, and pathogenic 
effect prediction, followed by a summary of membrane proteins in 
drug-target interactions. We also summarized several key steps to 
perform such prediction tasks, including database collection, data 
pre-processing, feature extraction, co-evolution application, and 
method construction.

Membrane proteins comprise a major component of the human 
proteome and play significant biological roles, including that of cell 
gatekeepers to control the permeability of external particles as well 
as themselves having pharmacological potential. Ongoing progress 
has yielded a number of recently developed deep learning programs, 
which have shown potential in predicting accurate topological sites 
and interaction sites that are able to mirror experimental data, 
which open up opportunities for functional studies. Thus, building 
on these advances, this review can assist the development of com
putational strategies for future membrane protein modelling pro
blems, which are the same or similar to the tasks discussed. 
Moreover, it is worth closely watching whether and how the per
formance of many kinds of membrane protein-related prediction 
tasks potentially benefits from the addition of predicted structural 
data in the future.
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Appendix A. Glossary of technical terms used

Term Description Note

Deep learning mo
dels

Deep learning models are neural networks that can automatically extract 
features and learn representations from input data. To achieve this purpose, 
the neural networks need to be constructed with several special architec
tures, which mainly include convolutional neural networks, recurrent neural 
networks, and graph neural networks.

Deep learning models are generally applied for addressing image and 
speech recognition and those issues involving graph data.

Machine learning 
models

Machine learning models are algorithms that are used to handle classifica
tion and regression problems in an unsupervised (for unlabelled data 
samples) or a supervised (for labelled data samples) learning manner. All 
machine learning models discussed in this review are supervised learning 
models, which rely on a process of iteratively learning useful information 
from labelled input data to increase their prediction accuracy.

Deep learning models are included in machine learning models. Other 
commonly-seen machine learning models include the random forest and 
the supporting vector machine.

Feature extraction Feature extraction is used to describe the process of capturing distinguished 
information from input data. For example, for classification problems, the 
extracted features are able to distinguish between different labels/categories 
of data samples.

-

Optimization pro
cesses

Training machine learning models to be intelligent to perform classification 
tasks relies on an optimization process in which the models iteratively learn 
useful information from input data. In each iteration, the models manage to 
minimize the difference between predicted labels and ground-truth labels, 
in order to improve its prediction performance.

-

Deep neural net
works

Deep neural networks refer to those neural networks that belong to the deep 
learning models as discussed above.

The number of neural layers in deep neural networks is empirically 
greater than 2.

Convolutional neu
ral networks/l
ayers

A neural network consists of multiple neural layers, with each set to extract 
features from input data. A convolutional neural layer is a layer in which 
multiple weight matrices (or filters) are placed to perform convolutional 
operations on input image-like data.

-

Recurrent neural 
networks/laye
rs

A recurrent neural network consists of multiple recurrent neural layers in 
which the input at the current time step is combined with the output from 
the previous time steps with feedback connections, which is suitable for 
modelling problems involving sequential data.

Recurrent neural networks are commonly used for speech recognition 
and natural language modelling.

Graph neural net
works/layers

A graph neural layer in a graph neural network is the representation of a 
graph with nodes connected with edges, which feeds graph-structured data 
as input.

A typical example is that the structure of a small molecule can be 
converted to be a graph.

Residual neural n
etworks

A residual neural network is a type of convolutional neural network, with 
every two convolutional layers connected residually, i.e., the final output of a 
residual neural layer is the addition of the output in the second convolu
tional layer and the raw input to the first convolutional layer.

The residually connected setting allows training deep neural networks at 
a fast speed.

Ultradeep neural 
networks

Ultradeep neural networks refer to those neural networks that consist of 
multiple neural layers. Although the number of neural layers required for 
this type of network is not well-defined in related fields, we empirically 
estimate that it should have more than 10 layers, or usually, tens or 
hundreds of layers.

-
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Graph convolu
tional neural l
ayers

A graph convolutional neural layer is a layer that allows extracting features 
from graph-structured data using convolutional operations.

-

Max-pooling op
erations

A subsampling strategy to reduce the dimension of input data This operation is often used between convolutional layers.

Domain experts In the context of machine learning applications in biology, domain experts 
are those that possess the knowledge about which biological features are 
informative to better perform a classification problem, without relying on 
the feature extraction by deep learning methods.

-

Auto-regressive a
nd auto-en
coder models

The auto-regressive model is a type of regression method to analyse a 
variable changing over time using time series data. The auto-encoder model 
is a type of neural network that learn informative features from unlabelled 
input data.

Auto-encoder models are widely used for image restoration.

Attention-based 
modules

Attention-based modules are those settings in neural layers, which can 
enhance the ability of extracting features from some particular parts of input 
data while weakening the ability in the remaining parts of the input data.

-

Tree-based ap
proaches

The tree-based approach leverages a decision tree(s) to learn features from 
input data, which continuously split tree leaves to evaluate the possible 
consequences.

In each tree, leaves (i.e., nodes) represent the labels of training data 
samples and branches represent features corresponding to the labels.

Random forest al
gorithm

The random forest algorithm is a type of tree-based approach as discussed 
above.

A random forest consists of multiple decision trees to yield the final 
prediction result.

Mean decrease in 
impurity

The mean decrease in impurity, also called Gini importance, measures the 
total decrease in the impurity of nodes in a random forest, which is roughly 
calculated as the sum over the number of splits across all trees in the forest.

It helps to gauge the importance of a feature of interest in a predic
tion task.

Association rule l
earning ana
lysis

The association rule learning analysis method is used to find associations 
between different data items.

It is used to make decisions about the co-occurrence of data items in a 
certain condition (e.g., associations between different diseases caused by 
pathogenic mutations).

Apriori algorithm The Apriori algorithm is a type of association rule learning analysis method 
as described above.

-

Direct coupling a
nalysis

The direct coupling analysis method is used to disentangle directly coupled 
residues (i.e., two residues are in physical contact) from indirectly coupled 
ones (i.e., the statistically associated contact of two residues but not the 
physical contact).

This method only takes as input a multiple sequence alignment of a 
protein to detect whether two residues in the protein are in physical 
contact.

Evolutionary cou
pling values

The evolutionary coupling values are yielded by the direct coupling analysis 
method to indicate whether two residues are in physical contact.

-

CASP events The event of the critical assessment of techniques for protein structure 
prediction (CASP). The most recent CASP event is CASP15 (https://predic
tioncenter.org/casp15/index.cgi).

It is organized to evaluate the performance of protein structure prediction 
tools every two years.

Alpha helix-bundl
ed

It is used to describe the morphology of α-helical transmembrane proteins, 
which are characterized by a bundle of α-helices facing one another within 
biological membranes.

-

Spatially close re
sidues

A pair of residues are considered spatially close if the distance between them 
is within a predefined angstrom (e.g., 5.5 angstrom).

-

Biological assem
blies

The biological assembly of a protein represents the actual biological unit 
functioning in oligomer form in the cellular context.

The structure of a protein complex downloaded from the protein data 
bank is an asymmetric unit of the protein complex.

TM protein inter
actions

A TM protein interaction refers to a physical interaction between a pair of 
TM proteins.

-
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