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Abstract: Background: We studied the diagnostic properties of the percentage of successive RR
intervals differing by at least x ms (pRRx) as functions of the threshold value x in a range of 7 to
195 ms for the differentiation of atrial fibrillation (AF) from sinus rhythm (SR). Methods: RR intervals
were measured in 60-s electrocardiogram (ECG) segments with either AF (32,141 segments) or SR
(32,769 segments) from the publicly available Physionet Long-Term Atrial Fibrillation Database
(LTAFDB). For validation, we have used ECGs from the Massachusetts Institute of Technology–Beth
Israel Hospital (MIT–BIH) Atrial Fibrillation Database. The pRRx distributions in AF and SR in
relation to x were studied by histograms, along with the mutual association by the nonparametric
Spearman correlations for all pairs of pRRx, and separately for AF or SR. The optimal cutoff values
for all pRRx were determined using the receiver operator curve characteristic. A nonparametric
bootstrap with 5000 samples was used to calculate a 95% confidence interval for several classification
metrics. Results: The distributions of pRRx for x in the 7–195 ms range are significantly different
in AF than in SR. The sensitivity, specificity, accuracy, and diagnostic odds ratios differ for pRRx,
with the highest values for x = 31 ms (pRR31) rather than x = 50 (pRR50), which is most commonly
applied in studies on heart rate variability. For the optimal cutoff of pRR31 (68.79%), the sensitivity is
90.42%, specificity 95.37%, and the diagnostic odds ratio is 194.11. Validation with the ECGs from the
MIT–BIH Atrial Fibrillation Database confirmed our findings. Conclusions: We demonstrate that
the diagnostic properties of pRRx depend on x, and pRR31 outperforms pRR50, at least for ECGs of
60-s duration.

Keywords: atrial fibrillation detection; cardiac arrhythmia; electrocardiography; heart rate variability

1. Introduction

Atrial fibrillation (AF) is a tachyarrhythmia with uncoordinated atrial electrical acti-
vation and ineffective atrial contraction [1–3]. Diagnosis of AF is based on an electrocar-
diogram (ECG) with irregular RR intervals (the distances between the peaks of R waves
of the QRS complexes reflecting the electrical depolarization of ventricles and measuring
the duration of each cardiac cycle), the absence of distinct repeating P waves, and irregular
atrial activation. AF must be documented in an entire 12-lead ECG of a duration of at least
8–10-s. If a single ECG strip is used, an arrhythmic episode is considered AF if it lasts at
least 30 s [1,2].

AF is the most common sustained cardiac arrhythmia, and it is the only available
cardiac rhythm for many people. Heart palpitations, symptoms of irregular pulse, wors-
ened exercise tolerance, dyspnea, and sometimes angina can accompany AF. However,
many individuals are asymptomatic or experience mild or unspecific symptoms easily
related to advancing age, emotions or effort, or other diseases such as hyperthyroidism [4].
Consequently, AF may be undetected or is found accidentally during a routine check-up or
a medical visit for another reason [1,2].
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AF increases the risk of excessive morbidity with debilitating clinical consequences
and premature death. This arrhythmia always increases the risk of severe arterial throm-
boembolism, resulting, for example, in an ischaemic stroke of the brain. Therefore, AF
must be appropriately diagnosed and actively screened for, particularly in high-risk popu-
lations such as older age and patients with hypertension, diabetes, heart failure, or valvular
disease [5,6].

Many systems used for AF screening can record ECGs of various lengths, ranging
from a couple-of-second 12-lead ECG to recordings of several weeks with the long-term
Holter ECGs or ECG bio-patches attached to the skin. Implantable loop recorders are an
invasive option for even more prolonged ECG monitoring lasting up to two years.

Visual inspection and ECG analysis are the gold standards for AF diagnosis. With
technological advancement, the amount of data with long-term ECGs gradually increases,
so a quick analysis of such recordings becomes challenging. New approaches to automatic
or semiautomatic analysis are proposed, many of them based on heart rate variability (HRV)
analysis [7]. HRV uses mathematical analysis of RR interval time series. RR interval is the
cardiac cycle duration measured between two consecutive QRS complexes in a continuous
ECG. HRV was developed many years ago. Its primary use was limited only to RR intervals
of sinus rhythm (SR) origin for either physiological analysis or prediction of mortality in
different diseases.

Due to different distributions of HRV-derived parameters in AF and SR [8], HRV has
gained new interest in AF detection in ECG [9–11], as well as from wearable devices [12,13].
Several authors used feature selection methods to find the most relevant HRV parame-
ters for AF detection [14,15]. Others incorporated HRV to predict future occurrence of
AF [16,17].

The percentage of successive RR intervals differing by at least 50 ms (pRR50) is
a particular form of pRRx parameter. Ewing et al. [18] proposed the total number of
successive RR intervals that differ by at least x ms (RRx count) for monitoring cardiac
parasympathetic activity. They analyzed two threshold values: x = 50 ms and x = 6.25% of
the previous RR interval. The computationally simpler 50 ms threshold was later widely
adopted, and Bigger et al. [19] proposed a relative statistic pNN50 (percentage of normal-
to-normal RR interval differences over 50 ms). The “NN” in the name emphasizes that
the analyzed R-waves are of sinus origin [1,19]. However, the same mathematical analysis
can be conducted for different cardiac rhythms, including AF. RR intervals are not normal
(i.e., of sinus origin) in AF and thus should always be labeled as RR and not as NN.

So far, the threshold values x other than 50 ms have rarely been analyzed. Mi-
etus et al. [20] used pRRx with x ranging from 4 ms to 100 ms to compare various
groups such as healthy people versus patients with heart failure, sleeping vs. awake
states, or young vs. elderly subjects. In all cases, thresholds <50 ms allowed for bet-
ter discrimination between the studied groups. Torres et al. [21] applied pRRx with x
from 10 ms to 50 ms to distinguish healthy subjects from survivors of acute myocardial
infarction, and thresholds <50 ms performed better. Saiz-Vivo et al. [22,23] used HRV
indices, including pRR20 and pRR50, to analyze 500 beats preceding onsets of AF and
distinguish between healthy and AF subjects. In several studies [24–27], various pRRx
indices with x from 5 ms to 500 ms were used to distinguish between four cardiac rhythms
(AF/SR/noisy/other) [28]. Jovic et al. [29] combined various HRV parameters with pRR5,
pRR10, pRR20, and pRR50 to differentiate between nine cardiac rhythms, including AF [30].

We have recently analyzed the diagnostic properties of several HRV parameters,
including the mean of RR intervals (mean RR); the standard deviation of RR intervals
(SDRR); the standard deviation of points perpendicular to the line of identity (SD1) and
along the line of identity (SD2) from the Poincare plot analysis; the power of low-frequency
(LF: 0.04–0.15 Hz) and high-frequency (HF: 0.15–0.4 Hz); and pRR10, pRR30, pRR50, pRR70,
and pRR90 [31] . Among these parameters, pRR30 had the highest area under the curve
(AUC) [32]. Different combinations of the HRV parameters, used as input features for ML
classifiers, showed that the sets with pRR30 outperformed other HRV feature sets, including
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those with pRR50. Conroy et al. [33] used parameters analogous to pRRx to detect AF in
the photoplethysmographic signal (PPG). Instead of RR intervals, interbeat intervals (IBI)
from PPG were used, and the highest AUC was yielded for x = 35 ms. Ramesh et al. [34]
used HRV features, including pRR20, RR20, pRR50, and RR50 (and analogous parameters
from PPG), for AF detection in ECG and PPG.

Altogether, these data strongly suggest that various x threshold values for the differ-
ence between two successive RR intervals might be more helpful in detecting AF. However,
the 50 ms threshold (pRR50) has been used for many years as a commonly accepted practice
in HRV analysis.

The primary aim of this study was to systematically explore the diagnostic properties
of the pRRx as a function of the different x thresholds for differentiating AF from SR in
60-s ECG segments. The secondary aim was to compare the diagnostic properties of the
pRR50 with the pRRx found to have the optimal diagnostic properties for AF detection in
the same 60-s ECG segments. This part of the study is presented separately in Appendix A.

2. Materials and Methods
2.1. Data

For this study, we used anonymized data from the Long-Term Atrial Fibrillation
Database (LTAFDB) [35,36]. It contains 84 long 24-h Holter electrocardiographic (ECG)
recordings sampled at a rate of 128 Hz, the information about locations of R-waves, and the
type of corresponding cardiac beats (normal, supraventricular, ventricular, atrial fibrillation,
and technical artifact). The LTAFDB database contains ECG recordings from patients with
paroxysmal AF and other arrhythmias. We selected only uninterrupted ECG fragments
with either AF or SR of at least 60-s duration for further analysis. We discarded the segments
labelled as different rhythms.

The data-preprocessing scheme is presented in Figure 1. The RR interval time series
were cut into 60-s separate, neighboring segments. For a segment to be labeled SR, each
RR interval had to be of SR origin. If it was not, for example, it was a atrial or ventricular
beat, the segment was removed from further analysis . For AF segments, each cardiac beat
needed to be AF, and if a ventricular beat was found, such a segment was also excluded.

Figure 1. Data preprocessing scheme. RR—interval between peaks of consecutive R-waves;
ECG—electrocardiogram; AF—atrial fibrillation; SR—sinus rhythm; and pRRx—percentage of suc-
cessive RR intervals differing by at least x ms.
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For SR and AF, to limit the number of potentially unidentified technical artifacts, RR
intervals shorter than 240 ms or longer than 3000 ms were removed. Additionally, RR
intervals corresponding to ventricular premature beats were also removed from both SR
and AF ECGs. For SR only, premature supraventricular beats were removed too. Segments
with a total length of excluded RR intervals exceeding 6 s were also discarded from the
analysis. The total number of 60-s RR series after preprocessing was 64,910 (32,141 AF,
32,769 SR).

As the sampling rate of 128 Hz corresponds to the precision of 7.8125 ms, we quantized
pRRx thresholds x into 7.8125 ms bins. The absolute values of the differences between
consecutive RR intervals were measured and used to calculate pRRx for the x ranging from
7.8125 to 195.3125 ms in 7.8125 ms steps for both SR and AF 60-s segments. To improve
the paper’s readability, we use only the integer part of x in ms in the names of parameters,
e.g., pRR7 instead of pRR7.8125.

2.2. Software Tools

We used Python programming language (version 3.9, Python Software Foundation,
Wilmington, DE, USA) for all the analyses.

2.3. Statistical Analysis

First, we analyzed the distributions of pRRx obtained for different x values separately
for SR and AF using histograms. Based on the histograms and Shapiro–Wilk test results, we
concluded that pRRx do not have normal distributions either in AF or in SR. Consequently,
we used a percentile scale to describe the distributions and mostly applied nonparametric
statistical techniques for data analysis.

Next, using the Wilcoxon test [37], we made paired comparisons for pRRx with
different x (separately for SR and AF). We conducted the unpaired analysis comparing
pRRx for the same x between SR and AF using the Mann–Whitney test [38]. The associations
between pRRx values for different x were analyzed with the Spearman correlation [39]
and presented as heatmaps with rho correlation coefficients. To analyze the differences
between two pRRx with different x, we calculated the mean difference for quantifying
bias, and the standard deviation (SD) of the differences for each pair of pRRx. As the
data distribution was not normal, we defined the limits of agreement (LoA) as the range
between the 2.5th and 97.5th percentile of the distribution of the differences. To analyze
the diagnostic properties of pRRx with different x, the area under the curve (AUC) from
the receiver operator curve (ROC) characteristics was calculated [32]. We identified the
optimal cutoff values for each x using Youden’s Index [40], which maximizes the sum of
sensitivity and specificity of AF/SR differentiation.

For each threshold x with the optimal cutoff value for differentiating between AF
and SR, we calculated several classification metrics [41], namely, accuracy, specificity,
sensitivity, F1-score [42], positive predictive value (PPV), negative predictive value (NPV),
and diagnostic odds ratio (DOR) [43]. For the estimation of classification metrics’ 95%
confidence interval (CI), we used a nonparametric bootstrap with 5000 samples [44]. We
analyzed all measures as functions of the threshold value x of pRRx in the range of 7 to
195 ms.

As the use of the pRR50 parameter is a de facto standard, we decided to compare
its diagnostic properties against the optimal pRRx for AF detection. The optimal cutoff
values for both parameters were estimated with the Youden criterion [40], and we used
a nonparametric bootstrap to compare the distributions of the classification metrics with
optimal cutoffs to verify whether the diagnostic properties of different thresholds are not
random. For the sampling frequency of 128 Hz in the LTAFDB, the threshold x = 54 ms is
equivalent to x = 50 ms, so pRR54 was used as an equivalent of pRR50.
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3. Results
3.1. Data Distribution Analysis

Figure 2 shows pRRx histograms for SR and AF for different x threshold values be-
tween 7 and 195 ms. The histograms for SR and AF partially overlap—for the same x, the left
part of the SR distribution covers the right part of the AF distribution. The overlap is notable
for very low (pRR7, pRR15) and very high values of the threshold x (pRR101–pRR195),
but the distributions are better separated between these extremes.

Figure 2. Histograms of percentages of successive RR intervals differing by at least x ms (pRRx) for
sinus rhythm (SR) and atrial fibrillation (AF) for different x thresholds.

Figure 3 presents medians (bolder line), the 25th to 75th percentile range (darker band),
and the 10th to 90th percentile range (lighter band) for AF (orange) and SR (blue). Median
values of SR and AF never cross or overlap in the whole range of studied x. Interestingly,
there is also no overlap between the 75th percentiles of pRRx for SR and the 25th percentiles
of pRRx for AF. Additionally, the 90th percentile of pRRx for SR does not cross with the
10th percentile for AF in the range of x from 15 to 85 ms. It suggests that the optimal value
of threshold x for differentiating between AF and SR lies within this range.
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Figure 3. Medians (bolder line), interquartile ranges (darker band), and 10th to 90th percentile ranges
(lighter band) of the percentages of successive RR intervals differing by at least x ms (pRRx) for sinus
rhythm (SR) and atrial fibrillation (AF) for different x thresholds.

3.2. Correlation

Figure 4 shows two heatmaps with rho coefficients of Spearman correlations between
pRRx for the different x thresholds in SR (the upper panel) and AF (the lower panel). For
most x thresholds, particularly for lower values, the correlation coefficients are higher for
SR than for AF. For the highest values of x, these correlations are above 0.95, both for SR
and AF.

The rho coefficients decrease for SR and AF as the distance between two pRRx increases.
Interestingly, this effect is more pronounced for lower x. For instance, in AF recordings,
the rho coefficient drops from 0.7 for the pair (pRR7, pRR15) to 0.63 for (pRR7, pRR23). In
contrast, rho is 1 for two pairs (pRR195, pRR187) and (pRR195, pRR179).

In AF, the pRRx with the lowest x (pRR7) has the strongest correlation with pRR15
(0.7), which is lower than in SR (0.92). However, the weakest correlation (between pRR7
and pRR195) is higher in AF (0.42) than in SR (0.38). It shows that for the lower values of
x, the range of correlations is much wider for SR than for AF. Additionally, it suggests
that the strength of correlations between various pRRx changes non-linearly for SR
and AF.
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Figure 4. Heatmaps of Spearman correlation with rho coefficients between the percentages of
successive RR intervals differing by at least x ms (pRRx parameters) for different x thresh-
olds for sinus rhythm (SR, top panel) and atrial fibrillation (AF, bottom panel) segments of
60-s electrocardiograms.

3.3. Difference Analysis

Figure 5 separately summarizes the differences between all pairs of pRRx parameters
for AF and SR. For each pair of pRRx parameters, e.g., pRR7 and pRR46, the mean difference
(bias) and LoA (the range between 2.5th and 97.5th percentile of the differences’ distribution)
were computed.

There are visible differences in the relations of biases or LoAs of the differences for all
possible pairs of pRRx with various x values. The bias distributions for different x resemble
one of the reciprocal functions and are non-linear for SR and nearly linear with a negative
slope for AF. In SR, for the x thresholds starting from 78 ms onward, the LoA values of the
differences between different pairs of pRRx initially increase to their peak and then decline
reciprocally. No similar early increase in such LoA is present for AF, in which these lines
nearly linearly decrease from the maximal values for the closest to minimal values for the
most distant pRRx pairs.
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Figure 5. Summary of the analysis of the differences between the pairs of the percentages of successive
RR intervals differing by at least x ms (pRRx parameters). Mean difference (bias) and 95% limits of
agreement (LoA) range in sinus rhythm (SR, top) and atrial fibrillation (AF, bottom).

3.4. Area under ROC Curve (AUC)

The AUCs for the differentiation of AF from SR, shown in Figure 6, have their peak
values exceeding 0.94 for the range of x from 15 ms to 85 ms (identical with the no overlap-
ping zone between the 90th percentile of the pRRx distribution of SR and 10th percentile
for AF as visible in Figure 3). AUCs gradually decrease to 0.87 for the highest x thresholds.
In other words, pRRx for lower x values has a much better AUC for distinguishing the SR
from AF recordings. The maximal AUC value can be one of the criteria for selecting the
optimal x threshold for differentiating SR from AF with pRRx. In our study, the maximal
AUC value (0.958) was for x = 31 ms, i.e., pRR31.

Figure 6. Area under curve (AUC) of the percentages of successive RR intervals differing by at least x
ms (pRRx parameters) for the differentiation of AF from SR as a function of the x threshold.
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3.5. Determining Optimal Cutoff Values for Different pRRx

Using Youden’s index, we selected optimal cutoff values for all pRRx (Figure 7).
Notably, the cutoff values for pRRx strongly and negatively depended on their x threshold.

Figure 7. Optimal cutoff values based on Youden Index the percentages of successive RR intervals
differing by at least x ms (pRRx parameters) as a function of the x threshold.

Next, the nonparametric bootstrap estimated the statistical metrics of AF detection
using pRRx parameters with the optimal cutoffs. Figure 8 shows the median values and
95% CI of the classification metrics for optimal cutoffs of pRRx in relation to the x threshold.
Although there is a gradual slow decline in the sensitivity of pRRx, its median exceeds
0.9 in the whole studied range of x. For the NPV, this relation is similar, with the lowest
values above 0.89 for the largest x = 195 ms. Gradual decline with the increasing x values is
also visible for both PPV and specificity. However, the decline is more rapid and deeper,
from 0.89 to 0.77 (PPV), and from 0.88 to 0.72 (specificity) for x thresholds above 50 ms.

Figure 8. Medians and 95% confidence intervals of diagnostic classification metrics for optimum cut-
off values for the percentages of successive RR intervals differing by at least x ms (pRRx parameters)
as a function of the x threshold. PPV—positive predictive value, NPV—negative predictive value.



J. Clin. Med. 2022, 11, 5702 10 of 17

3.6. The Diagnostic Odds Ratios for Optimal Cutoffs for Different pRRx

Figure 9 presents median values of DOR with 95% CI for optimal cutoffs for different
pRRx in relation to the x value. The highest DOR of 194.01 is observed for pRR31. In other
words, the odds of pRR31 being greater or equal to the cutoff = 68.79% (Figure 7) is nearly
200 higher for the AF presence than in its absence. The next highest DORs are for pRR39,
pRR46, and pRR25, all exceeding 175. DORs for pRRx for x up to 81 ms are at least 125, then
gradually decline with increasing x values, reaching a minimum of 32.68 for x = 195 ms.

Figure 9. Medians and 95% confidence intervals of diagnostic odds ratio (DOR) for optimum cutoff
values for the percentages of successive RR intervals differing by at least x ms (pRRx parameters) as a
function of the x threshold.

3.7. Comparison of pRR50 and pRR31

The threshold x = 50 ms of pRRx is most broadly used and analyzed in HRV literature,
including HRV-based AF detection methods. On the other hand, in our study, pRR31
achieved the highest accuracy (Figure 8) and DOR (Figure 9). We used a nonparamet-
ric bootstrap to compare the distributions of classification metrics obtained by pRR31
and pRR50 with optimal cutoffs to verify whether better diagnostic properties of differ-
ent thresholds are not random. For the sampling frequency of 128 Hz in the LTAFDB,
the threshold x = 54 ms is equivalent to x = 50 ms, so pRR54 was used as an equivalent of
pRR50. Figure 10 shows the histograms of accuracy, sensitivity, specificity, and DOR for
pRR50 and pRR31. All the metrics are visibly higher for pRR31 than for pRR50, except for
sensitivity, which is only slightly higher for pRR31. The Shapiro–Wilk test verified that
accuracy, sensitivity, and specificity have normal distributions and DOR does not. The his-
tograms and the results of paired t-test (accuracy, sensitivity, and specificity) and Wilcoxon
test (DOR) demonstrate that better performance of pRR31 is not random.
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Figure 10. Histograms of classification metrics for optimum cutoff values for pRR31 and pRR50
(the percentages of successive RR intervals differing by at least 31 ms and 50 ms, respectively).
DOR—diagnostic odds ratio.

4. Discussion

In this study, we summarize various statistical properties of pRRx as functions of the
x threshold both for AF and SR. All possible pairs of pRRx, regardless of the x distance
separating them, are well correlated (Figure 4). Good correlations with rho at least 0.7 were
present for all pRRx starting from x = 46 ms and most for x = 39 ms in SR recordings. In AF,
all pairs of pRRx are well correlated, starting from x = 31 ms and then for most x = 23 ms.
For higher x, pairs of pRRx are perfectly correlated. Lower pRRx values provide more
information than higher pRRx. For instance, compared to pRR100, the pRR31 informs
about the percentage of neighboring RR intervals, which differ not only from 100 ms but
also in the lower range between 31 and 100 ms. In other words, using pRRx with higher x
thresholds is more aggressive as it filters out much important information in the lower x
ranges. Another issue is that good correlation does not mean that all pRRx parameters are
the same and thus replaceable. Besides, caution should be exercised for the lowest x = 7 ms,
for which the rho values drop to 0.38 and 0.42 for SR and AF, respectively. This analysis
shows that various pRRx provide different information, particularly those with lower x.

The analysis of differences between different pRRx (Figure 5) reveals that their mean
difference (bias) and the 95% limits of agreement range have distinct properties in AF and
in SR. It shows that the decline of pRRx differences is more dynamic for SR than AF, even
for the neighboring x. This analysis also demonstrates that pRRx with different x, even for
the closest pairs of pRRx, do not provide identical information.

The optimal cutoffs for pRRx depended differently on the threshold x in a wide range
from 7 ms to 195 ms. The best diagnostic features for AF detection are for the x range
between 15 and 85 ms. It was repeatedly indicated by comparing pRRx 90th percentile for
SR and 10th percentile for AF (Figure 3), then AUC over 0.94 (Figure 6), and finally with
odds ratios exceeding 110 for specific cutoffs (Figure 9). Out of several possible x values
within this range, x = 31 ms appears to be the best.

pRR50 is the most broadly studied pRRx parameter in physiological and clinical
studies with ECG with sinus rhythm and for the differentiation of AF from SR [45–48].
Only a few studies explored pRRx with threshold values x different than 50 ms in AF
detection [22,23,25–27,29,31,33]. Among them, only one study contained an analysis of
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the distribution of pRRx in AF and SR [26], and two had AUCs of the parameters [31,33].
However, neither analysis was in-depth.

Our study is more detailed, systematic, and focused on the whole pRRx family in a
broad range of x thresholds. It is probably the first analysis investigating various statistical
properties of pRRx exclusively as a function of x for the differentiation of AF from SR.

This study provides practical consequences for distinguishing AF from SR in 60-s ECG
segments. First, although pRR50 is within the range of x values with very good diagnostic
properties, it is not the best. Second, for the 60-s ECG segments, the x = 31 ms outperforms
other pRRx (including pRR50), particularly when comparing DORs. The odds of pRR31
exceeding 68.79% (Figure 9) is nearly 200 times higher in the presence of AF than in the
absence of AF. Third, we demonstrate how distinct the statistical properties of pRRx are in
SR and AF. Fourth, if HRV parameters are used to differentiate AF from SR, for example,
in the machine learning algorithms, pRRx with x shorter than 50 should be applied.

In SR, the differences between the duration of successive RR intervals are much more
limited than in AF. The RR interval for SR usually falls within 80 to 120% of the previous
RR interval. For AF, no such limit exists. It results from a couple of physiological regulatory
mechanisms controlling SR, which have weaker or no effect on the heart rate during AF.

SR originates in the sinus node, where pacemaker depolarization activity is regulated
by several controlling mechanisms. The electrical depolarization from the sinus nodes
travels across the right atrium and reaches the atrioventricular node. The atrioventricular
conduction undergoes additional controlling regulations. During AF, thousands of cells
from the border of pulmonary veins and the left atrium or both atria depolarize sponta-
neously in a relatively uncontrolled way. Atrial depolarizations reach the atrioventricular
node in a more or less random order, which may or may not conduct them through the His
system to both ventricles. The refractory period is probably the most important physio-
logical mechanism that is still functioning; it may control the ventricle rate in AF. All cells
of the atrioventricular node, His system, and ventricles have various refractory periods.
During this period, cardiac cells below the atria cannot respond to electrical depolarization.
The refractory period, particularly in the atrioventricular node, is under the strong control
of the autonomic nervous system during SR. This control is less effective but is still present
during AF. In other words, less controlling mechanisms over the ventricular rate in AF
introduce some randomness to RR intervals and thus higher values of pRRx than in SR.

The limitations of the study must be recognized. It is an observational and retrospec-
tive study using ECG recordings from a single (Long-Term AF Database) database. To
verify whether the results are not database-specific, we used optimal cutoffs of pRRx from
LTAFDB and employed them to classify 60-s segments from MIT–BIH Atrial Fibrillation
Database (250 Hz sampling frequency) [35,49]. The highest DOR (median 276) and accu-
racy (median 0.944) were obtained for pRR31 (in LTAFDB 194 and 0.928, respectively—the
detailed results are shown in Appendix A). Moreover, these public databases have been
used in several studies, and others can easily replicate our results. Other limitations are
the arbitrary use of 60-ss ECG segments and the application of additional filters removing
too short (<240 ms) or too long (>3000 ms) RR intervals to select ECG segments that might
result in “too perfect” results. Thus, the interpretation of our findings must be limited only
to the specific settings of the filters and ECG recording of 60-s duration.

Comparison of different methods and parameters is always complex and should
never be based on a single approach or descriptor. As demonstrated, visual inspection
is always essential—such a simple approach as the distribution analysis clearly shows
how pRRx changes for various x, both for SR and AF. Unfortunately, presenting the
actual data distribution is not a common approach. Next, correlation analysis is the most
popular in many studies to present how well some parameters are correlated. Presented
correlation heatmaps also show strong correlations for pRRx in a wide range of x values.
Many studies stop at this point, without further and more detailed exploration. However,
additional analyses with classic statistical methods, starting with differences analysis,
followed by more advanced analyses such as ROC, the identification of cutoff points,
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and various classification measures, reveal huge differences between parameters that
appear so well related. Summarizing this part, a set of several classical statistical methods
for comparing various methods or parameters should be constantly employed in clinical
medicine. Referring to one method, usually correlation analysis, can produce misleading
conclusions and false diagnoses.

5. Conclusions

In conclusion, pRRx values for various x thresholds are not the same or interchangeable.
Although most pRRx help detect AF, the parameters around pRR31 outperform others. If
in a 60-s ECG the pRR31 is at least 68.79%, it is far more likely to be AF than SR. Using
optimal pRRx instead of pRR50 should improve machine learning models for AF detection.
Our results potentially apply to different biomedical systems used for screening for AF,
e.g., long-term ECG Holter or bio-patch systems. However, we are aware that this potential
should be validated using real-life ECG recordings acquired in clinical conditions, and it
requires further prospective studies. It is worth noticing that the proposed approach for
searching for the most valuable, from the point of view of AF detection, pRRx parameters
can be repeated in other conditions and applied, for example, to specific ECG devices.
Finally, pRR50 has been used in several studies as one of the HRV features incorporated in
various machine learning models detecting AF. Replacing pRR50 with pRRx with a smaller
x might improve the diagnostic properties of such models.
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Appendix A. Results of Validation on MIT–BIH AF Database

We used the optimal cutoff values of pRRx parameters from the training set long-term
Atrial Fibrillation Database (LTAFDB) to detect AF in the test set from the Massachusetts Insti-
tute of Technology–Beth Israel Hospital (MIT–BIH) Atrial Fibrillation Database (AFDB) [35,49].
Data preparation was the same as in the training set (Figure 1), and a nonparametric
bootstrap with 5000 samples was used to estimate classification results’ distribution.

Appendix A.1. Comparison between Training Set and Test Set Results

A comparison of the results of AF detection in the training set and the test set is
presented in Figure A1. The classification metrics include the diagnostic odds ratio (DOR),
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV). In the test set, the highest DOR (median 276) and accuracy (median 0.944)
are achieved for pRR31 (in training set 194 and 0.928, respectively). Peak values of DOR,
accuracy, PPV, NPV, and specificity are higher in the test set AFDB, while sensitivity is
higher in the training set LTAFDB in the whole range of threshold values x.

https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/ltafdb/1.0.0/
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Figure A1. Medians and 95% confidence intervals of AF detection results in the training set Long-Term
Atrial Fibrillation Database (LTAFDB) and the test set MIT–BIH Atrial Fibrillation Database (AFDB):
diagnostic odds ratio (DOR, top left), accuracy (top right), sensitivity (middle left), specificity
(middle right), positive predictive value (PPV, bottom left), and negative predictive value (NPV,
bottom right).

The difference between performance in the training set and the test set can be a result
of one or more factors, including:

• Distinct patient populations in two databases:

– LTAFDB: 84 subjects;
– AFDB: 25 subjects.

• Various sampling frequencies:

– LTAFDB: 128 Hz;
– AFDB: 250 Hz.

• The different lengths of the ECG recording:

– LTAFDB: 24 h (night and day);
– AFDB: 10 h (unspecified time of day).

• Unequal proportions of 60-s segments with AF and SR:

– LTAFDB: 32,769 SR, 32,141 AF (49.5% AF);
– AFDB: 8836 SR, 5490 AF (38.3% AF).
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Appendix A.2. Comparison between pRR31 and pRR50

The histograms in Figure A2 show the distribution of four classification metrics
(accuracy, sensitivity, specificity, and DOR) in AF detection in the test set using pRR31 and
pRR50. For accuracy, specificity, and DOR, the results are higher for pRR31 than for pRR50.
For sensitivity, there is an overlap between the distributions for pRR31 and pRR50, but the
average is higher for pRR50.

Figure A2. Histograms of atrial fibrillation detection results in the test set MIT–BIH Atrial Fibrillation
Database (AFDB) for pRR31 and pRR50 (the percentages of successive RR intervals differing by at
least 31 ms and 50 ms, respectively). DOR - diagnostic odds ratio.

Since not all the metrics had normal distribution (Shapiro–Wilk test) both for pRR31
and pRR50, we used the Wilcoxon test to compare the performance of pRR31 and
pRR50. In all cases, the differences between the classification results cannot be explained
by randomness.

Appendix A.3. Conclusions from the Validation

The results presented in the Appendix A confirm the study’s findings. For AF detection
in 60-s ECG, the most effective threshold value x in pRRx is not 50 ms (pRR50). Both in
the training set LTAFDB and in the test set AFDB, pRR31 achieves the best performance,
measured by accuracy and DOR. This phenomenon is not limited to a single ECG database;
thus, pRR50 should not necessarily be a default pRRx parameter used in AF detection.
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