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Abstract

After an epidemic outbreak, the infection persists in a community long enough to engulf the

entire susceptible population. Local extinction of the disease could be possible if the suscep-

tible population gets depleted. In large communities, the tendency of eventual damp down

of recurrent epidemics is balanced by random variability. But, in small communities, the

infection would die out when the number of susceptible falls below a certain threshold. Criti-

cal community size (CCS) is considered to be the mentioned threshold, at which the infec-

tion is as likely as not to die out after a major epidemic for small communities unless

reintroduced from outside. The determination of CCS could aid in devising systematic con-

trol strategies to eradicate the infectious disease from small communities. In this article, we

have come up with a simplified computation based approach to deduce the CCS of HIV dis-

ease dynamics. We consider a deterministic HIV model proposed by Silva and Torres, and

following Nåsell, introduce stochasticity in the model through time-varying population sizes

of different compartments. Besides, Metcalf’s group observed that the relative risk of extinc-

tion of some infections on islands is almost double that in the mainlands i.e. infections cease

to exist at a significantly higher rate in islands compared to the mainlands. They attributed

this phenomenon to the greater recolonization in the mainlands. Interestingly, the applica-

tion of our method on demographic facts and figures of countries in the AIDS belt of Africa

led us to expect that existing control measures and isolated locations would assist in tempo-

rary eradication of HIV infection much faster. For example, our method suggests that

through systematic control strategies, after 7.36 years HIV epidemics will temporarily be

eradicated from different communes of island nation Madagascar, where the population

size falls below its CCS value, unless the disease is reintroduced from outside.

Introduction

Periodicity in the recurrence of local epidemics has attracted mathematicians and epidemiolo-

gists for centuries. Soper [1] pointed out that the time to extinction of infection and the size of
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the susceptible population are possibly the responsible candidates behind the periodicity. The

persistence of a disease in a community, often measured by the time for an epidemic to die

out, is a major concern to date. After an epidemic outbreak, the infection persists in the com-

munity long enough to engulf the entire susceptible population. Local extinction of the disease

could be possible if the susceptible population gets depleted. The success of Hamer-Soper

model [1] in predicting periodicity of epidemics from simple assumptions, led Bartlett [2–4] to

observe a threshold for the susceptible population size. If the susceptible population is equal to

that threshold, there is a 50% chance that the infection would cease to exist after the corre-

sponding mean fade-out time unless the disease is reintroduced from outside. He analyzed

this threshold using a semi-stochastic version of the Hamer-Soper model and established time

to extinction of the epidemic using quasi stationarity. Bartlett’s model sufficiently explained

the undamped epidemic outbreaks and its extinction. Bartlett applied the semi-stochastic

model for the recurrent measles outbreak in England and Wales. He observed that in large

communities, the tendency of eventual damp down of recurrent epidemics is balanced by ran-

dom variability; but, in small communities, the infection would die out when the size of the

susceptible population falls below a certain threshold. These led Bartlett to define Critical

Community Size (CCS) as a threshold size of the susceptible population in a small community,

at which infection is as likely as not to die out, after a major epidemic, unless reintroduced

from outside. The idea is that, if the size of susceptible population drops below that threshold,

the pathogen might cease to exist in the population.

Apart from the works by Andersson and Britton [5], scarcely significant mathematical con-

tributions were made in this direction until Nåsell [6] reformulated CCS for Bartlett’s Suscepti-

ble-Infected (SI) model using quasi stationarity under more realistic assumptions. Nåsell [6, 7]

used a fully stochastic model to study the time to extinction of an epidemic for a number of

disease models. The model and method proposed by Nåsell [6] is based on a standard SI

model that involves a system of two differential equations. This model can easily be extended

to an SIR model where the population size remains constant at any time, as this SIR model can

be reduced to a two-equation model and the above method is applicable without any signifi-

cant modification. Nåsell [6] also focused to unleash the potential of CCS as a control strategy

for the epidemic outbreak. Later, Metcalf et al. [8] mentioned this potential of CCS. But, calcu-

lation of CCS is limited mostly to models based on a two-equation system of differential equa-

tions or measles type diseases. One predominant reason is that the analytical formulation of

CCS for complex infectious diseases is quite cumbersome. The absence of any method to cal-

culate CCS for higher-order models motivated us to develop a cost (in terms of time) effective

technique to evaluate CCS. In this paper, we propose a simplified computation based approach

for rapid calculation of CCS, that could emphasize prompt formulation of control strategies

and/or policies at the time of disease outbreak.

Technically, this paper determines the time to extinction of an epidemic outbreak theoreti-

cally and also develops a computation based approximate formulation of CCS using the diffu-

sion approximation. The application of our method is free from any restriction on the number

of variables in the system that defines the disease dynamics. To demonstrate our method we

consider an HIV model by Silva, Torres, and Djordjevic [9–11] that describes the disease

dynamics using a system of four differential equations. Since infectious diseases mostly have a

stochastic nature [12–14], we consider a stochastic version of the HIV disease dynamics. Fol-

lowing Nåsell, we introduce stochasticity through time-varying population sizes of different

compartments in the deterministic HIV model [9]. Next, we calculate the mean time to extinc-

tion of the HIV epidemic and compute approximate value of CCS using diffusion approxima-

tion based on the Ornstein-Uhlenbeck process.
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In this paper, we have cited the HIV epidemic case of Madagascar, in Sub-Saharan Africa

because of a special reason. In spite of less remarkable progress in the 90-90-90 HIV treatment

target of the Joint United Nations Programme on HIV and AIDS (UNAIDS), Madagascar has

shown a much lower prevalence and incidence rate of HIV infection, compared to some other

African countries. It is interesting to note that, despite being in the part of Africa where HIV is

in a state of epidemic, it has much lower rates of prevalence and incidence. Incidentally, Mada-

gascar is situated in a geographically isolated location, separated by 60 km of water from the

other eastern and southern countries that lie in the mainland of the African continent. This

observation echoes a fact from Metcalf et al. [8], that says the relative risk of extinction of some

infectious diseases on islands is almost double that of those in the mainland. They also suggest

that persistence of the infection within a region in the mainland is fuelled constantly by recolo-

nization and infections cease to exist at significantly higher rates in islands where access to and

from the mainland is much less. This fascinating phenomenon led us to postulate that, in con-

junction with UNAIDS controlling strategies if it is possible to keep the HIV susceptible popu-

lation of Madagascar small or rather below CCS, effective and rapid eradication of HIV might

be possible there, after the mean extinction time of the disease. This is primarily based on the

fact that the isolated geographical location of Madagascar might lead to lesser chances of rein-

troduction of the infection.

We, therefore, applied our method on the demographic facts and figures of Madagascar to

obtain the CCS value and mean time to extinction of the disease. Our calculations suggest that,

unless the disease is reintroduced from outside, after 7.36 years HIV epidemics might fade out

from different cities or communes of the island nation where the susceptible population size

drops below 4585, the CCS value of Madagascar. This time period of 7.36 years could appear

astonishing as HIV has become a long-standing epidemic situation in the countries of the Sub-

Saharan AIDS belt. But there is a strong possibility that the idea of CCS would propel the con-

trolling strategies of UNAIDS to eradicate the disease in the near future. This work suggests

that the systematic spreading of control measures could lead to accelerated progress to achieve

the 90-90-90 target of UNAIDS for HIV eradication. Such progress shall prevent the HIV epi-

demic in Madagascar unless the infection is reintroduced from outside. Moreover, countries

like Uganda, Malawi (located in Eastern and Southern Africa) are separated from their neigh-

boring countries by water bodies such as fresh water lakes. These countries have lower rates of

prevalence and incidence compared to landlocked countries such as Eswatini (in Southern

Africa). Notably, these rates are still much higher than that of Madagascar.

To date, CCS has largely been a part of mathematical theory only. But implementing CCS

as controlling strategies of epidemics might prove beneficial in the future. Therefore, to utilize

the potential that CCS holds, it is important to determine its value promptly for any disease

dynamics. This motivated us to calculate CCS (approximately) using simplified computations.

Our method will help in finding country-specific CCS and time to extinction of the disease,

using real demographic facts and figures for HIV infection in different countries as parameter

values. We emphasize the potential utility of CCS to guide public health practitioners to

develop appropriate area-specific control strategies and interventions especially when they are

limited, before or after an epidemic outbreak.

Materials and methods

Model formulation

We work with the model proposed by Silva and Torres [9] that explains the dynamics of HIV

infection assuming homogenous mixing within communities. Here the entire population is

divided into four compartments. These compartments are mutually exclusive in the sense that
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no person can belong to more than one compartment at any time point. The four compart-

ments are: susceptible individuals (S), individuals infected with HIV but having no clinical

symptoms of AIDS (I), individuals infected with AIDS and having ART treatment as they are

supposed to belong to chronic stage (C), and individuals infected with HIV having clinical

symptoms of AIDS (A). Note that a person belonging to I may transmit HIV to other individu-

als although he/she has no symptoms of AIDS. Under this situation, the model we consider is,

dS
dt
¼ L � b IðtÞ þ ZCCðtÞ þ ZAAðtÞð Þ

SðtÞ
N
� mSðtÞ ð1Þ

dI
dt
¼ b IðtÞ þ ZCCðtÞ þ ZAAðtÞð Þ

SðtÞ
N
� ðrþ �þ mÞIðtÞ þ oCðtÞ þ aAðtÞ ð2Þ

dC
dt
¼ �IðtÞ � ðoþ mÞCðtÞ ð3Þ

dA
dt
¼ rIðtÞ � ðaþ mþ dÞAðtÞ ð4Þ

Here β represents the contact rate for HIV transmission, ηA (� 1) is the relative infectious-

ness of individuals with AIDS symptoms compared to those infected with HIV but no AIDS

symptoms, and ηC (� 1) is the rate of partial restoration of immune function of HIV infected

individuals who are correctly treated under ART. ρ and ϕ are the rates at which individuals in

class I move to A and C respectively. α and ω are the respective rates at which individuals from

class A and class C move to I. We assume that d is the HIV induced death rate while μ is the

natural death rate in the population.

We consider the total population as N(t) = S(t) + I(t) + A(t) + C(t) implying that
dNðtÞ
dt ¼ L � mNðtÞ � dAðtÞ. It can be easily shown that NðtÞ � L

m
.

Basic reproduction number

We use the approach of next generation matrix [15] to calculate R0. Note that the rate of new

infections coming in the compartments I, C and A are bðI þ ZCC þ ZAAÞ S
N, 0 and 0 respec-

tively. On the other hand, new infections moving out of the compartments I, C, and A are (ρ +

ϕ + μ)I − ωC − αA, (ω + μ)C − ϕI and (α + μ + d)A − ρI respectively. Thus following [9, 15], we

have basic reproduction number (R0) as:

R0 ¼
S0b

N
x2ðx1 þ rZAÞ þ ZC�x1

mðx2 þ ðrþ x1Þ þ �x1 þ rdÞ þ rod
¼

S0

N
z

g
�
z

g
ð5Þ

where z = β(ξ2(ξ1 + ρηA) + ηC ϕξ1), γ = μ(ξ2 + (ρ + ξ1) + ϕξ1 + ρd) + ρωd, ξ1 = α + μ + d and

ξ2 = ω + μ.

Stochastic model and quasi-stationarity

Evaluation of CCS depends on the time to extinction of disease based on the given model. In

order to find the time to extinction, we now construct the fully stochastic version of the model

(1)—(4). Next, we write the Kolmogorov forward equation for this stochastic model. This

would be the key step for further downstream analysis.

First, we note the nature of transitions and the respective transition rates from one com-

partment to another (Table 1).

PLOS ONE Determination of critical community size

PLOS ONE | https://doi.org/10.1371/journal.pone.0244543 January 28, 2021 4 / 16

https://doi.org/10.1371/journal.pone.0244543


Here, s = S/N, i = I/N, c = C/N, a = A/N. Then the Kolmogorov forward equation becomes,

p0s;i;c;aðtÞ ¼ l1ðs � 1; i; c; aÞps� 1;i;c;a þ l2ðsþ 1; i; c; aÞpsþ1;i;c;a

þl3ðsþ 1; i � 1; c; aÞpsþ1;i� 1;c;a þ l4ðsþ 1; i; c � 1; aÞpsþ1;i;c� 1;a

þl5ðsþ 1; i; c; a � 1Þpsþ1;i;c;a� 1 þ l6ðs; iþ 1; c � 1; aÞps;iþ1;c� 1;a

þl7ðs; iþ 1; c; a � 1Þps;iþ1;c;a� 1 þ l8ðs; iþ 1; c; aÞps;iþ1;c;a

þl9ðs; i � 1; cþ 1; aÞps;i� 1;cþ1;a þ l10ðs; i; cþ 1; aÞps;i;cþ1;a

þl11ðs; i � 1; c; aþ 1Þps;i� 1;c;aþ1 þ l12ðs; i; c; aþ 1Þps;i;c;aþ1 � kðs; i; c; aÞps;i;c;a

ð6Þ

where kðs; i; c; aÞ ¼
P12

i¼1

liðs; i; c; aÞ and ps,i,c,a(t) = P[S(t) = s, I(t) = i, C(t) = c, A(t) = a].

Now, we find quasi-stationarity by conditioning on non-extinction of the disease. So we

write,

qs;i;c;aðtÞ ¼ P S tð Þ ¼ s; I tð Þ ¼ i;C tð Þ ¼ c;A tð Þ ¼ aj I tð Þ;C tð Þ;A tð Þð Þ 6¼ 0; 0; 0ð Þ½ � ¼
ps;i;c;aðtÞ

1 � p�000ðtÞ

where p�000ðtÞ ¼
P1

s¼0

P½SðtÞ ¼ s; IðtÞ ¼ 0;CðtÞ ¼ 0;AðtÞ ¼ 0� ¼
P1

s¼0

ps;0;0;0ðtÞ.

Differentiating qs,i,c,a(t) with respect to t, we have,

q0s;i;c;aðtÞ ¼
p0s;i;c;aðtÞ

1 � p�000ðtÞ
þ

ps;i;c;aðtÞ
ð1 � p�000ðtÞÞ

2
:p0
�000
ðtÞ: ð7Þ

Now, from Eq (6), we have, after simplification,

p0
�000
ðtÞ ¼

X1

s¼0

�

mNps� 1;0;0;0ðtÞ þ mðsþ 1Þpsþ1;0;0;0ðtÞ þ mð0þ 1Þps;1;0;0ðtÞ

þmð0þ 1Þps;0;1;0ðtÞ þ ðmþ dÞð0þ 1Þps;0;0;1ðtÞ
�

� ðmN þ msÞ
X1

s¼0

ps;0;0;0ðtÞ

¼ mp�1 0 0ðtÞ þ mp�0 1 0ðtÞ þ ðd þ mÞp�0 0 1ðtÞ ¼ pðd;mÞ
�
ðtÞ ðsayÞ:

ð8Þ

Table 1. Chart for transition rates.

Event Transition Transition rate

Immigration of susceptibles (S) (s, i, c, a)! (s + 1, i, c, a) λ1(s, i, c, a) = μN
Death of susceptibles (S) (s, i, c, a)! (s − 1, i, c, a) λ2(s, i, c, a) = μs
Susceptible (S) to Infected (I) (s, i, c, a)! (s − 1, i + 1, c, a) λ3(s, i, c, a) = βsi/N
Susceptible (S) to Infected under treatment (C) (s, i, c, a)! (s − 1, i, c + 1, a) λ4(s, i, c, a) = βηC sc/N
Susceptible (S) to Infected with AIDS (A) (s, i, c, a)! (s − 1, i, c, a + 1) λ5(s, i, c, a) = βηA sa/N
Infected (I) to Infected under treatment(C) (s, i, c, a)! (s, i − 1, c + 1, a) λ6(s, i, c, a) = ϕi
Infected (I) to Infected with AIDS (A) (s, i, c, a)! (s, i − 1, c, a + 1) λ7(s, i, c, a) = ρi
Death of Infected (I) (s, i, c, a)! (s, i − 1, c, a) λ8(s, i, c, a) = μi
Infected under treatment (C) to infected (I) (s, i, c, a)! (s, i + 1, c − 1, a) λ9(s, i, c, a) = ωc
Death of Infected under treatment(C) (s, i, c, a)! (s, i, c − 1, a) λ10(s, i, c, a) = μc
Infected with AIDS symptoms (A) to Infected (I) (s, i, c, a)! (s, i + 1, c, a − 1) λ11(s, i, c, a) = αa
Death of Infected with AIDS symptoms (A) (s, i, c, a)! (s, i, c, a − 1) λ12(s, i, c, a) = (μ + d)a

https://doi.org/10.1371/journal.pone.0244543.t001

PLOS ONE Determination of critical community size

PLOS ONE | https://doi.org/10.1371/journal.pone.0244543 January 28, 2021 5 / 16

https://doi.org/10.1371/journal.pone.0244543.t001
https://doi.org/10.1371/journal.pone.0244543


From Eqs (7) and (8) we have,

q0s;i;c;aðtÞ ¼
p0s;i;c;aðtÞ

1 � p�0 0 0ðtÞ
þ

ps;i;c;aðtÞ
ð1 � p�0 0 0ðtÞÞ

2
:p0
�0 0 0
ðtÞ

¼
p0s;i;c;aðtÞ

1 � p�0 0 0ðtÞ
þ

ps;i;c;aðtÞ
1 � p�0 0 0ðtÞ

:
pðd;mÞ
�
ðtÞ

1 � p�0 0 0ðtÞ

¼
p0s;i;c;aðtÞ

1 � p�0 0 0ðtÞ
þ

ps;i;c;aðtÞ
1 � p�0 0 0ðtÞ

:qðd;mÞ
�
ðtÞ; ðsayÞ

ð9Þ

where qðd;mÞ
�
ðtÞ ¼

pðd;mÞ
�
ðtÞ

1 � p�0 0 0ðtÞ
ð10Þ

Now, following Nåsell [6, 7] we have,

q0s;i;c;aðtÞ ¼ 0

) p0s;i;c;aðtÞ ¼ �
ps;i;c;aðtÞ

ð1 � p�0 0 0ðtÞÞ
:qðd;mÞ
�
ðtÞð1 � p�0 0 0ðtÞÞ ¼ � q

ðd;mÞ
�
ðtÞps;i;c;aðtÞ

;ps;i;c;aðtÞ ¼ ce� q
ðd;mÞ
� :t ¼ qðd;mÞ

�
e� q

ðd;mÞ
� :t

ð11Þ

Let τQ be the time to extinction when the initial distribution is equal to the quasi-stationary

distribution. Therefore, we have,

EðtQÞ ¼
1

qðd;mÞ�

: ð12Þ

Equilibrium points

The disease-free equilibrium is obtained as: S0 ¼ ðS0; I0;C0;A0Þ ¼ L

m
; 0; 0; 0

� �
. To find the

other endemic equilibrium, if exists, we put N = N(0), x1(t) = S(t)/N, x2(t) = I(t)/N, x3(t) =

C(t)/N, and x4(t) = A(t)/N. The equilibrium point is obtained by equating the first differentia-

tion in Eqs (1)–(4) to zero [9, 10], i.e.

x0
1
ðtÞ ¼ m � bðx2ðtÞ þ ZCx3ðtÞ þ ZAx4ðtÞÞx1 � mx1ðtÞ ¼ 0 ð13Þ

x0
2
ðtÞ ¼ bðx2ðtÞ þ ZCx3ðtÞ þ ZAx4ðtÞÞx1 � ðrþ �þ mÞx2ðtÞ þ ox3ðtÞ þ ax4ðtÞ ¼ 0 ð14Þ

x0
3
ðtÞ ¼ �x2ðtÞ � ðoþ mÞx3ðtÞ ¼ 0 ð15Þ

x0
4
ðtÞ ¼ rx2ðtÞ � ðaþ mþ dÞx4ðtÞ ¼ 0 ð16Þ

For simplicity we use the notations: xj(t) = xj for j = 1, . . ., 4, ξ1 = α + μ + d, ξ2 = ω + μ, γ =

ξ1 ξ2(ρ + ϕ + μ) − ωϕξ1 − ραξ2, z = β(ξ1 ξ2+ ηC ϕξ1+ ηA ρξ2).

Then solving Eqs (13)–(16), we have the endemic equilibrium as:

x̂1 ¼
g

z
¼

1

R0

ð17Þ
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x̂2 ¼
ðz � gÞ

zg
:mx1x2 ¼ ðR0 � 1Þ

m

z
:x1x2 ð18Þ

x̂3 ¼
ðz � gÞ

zg
:m�x1 ¼ ðR0 � 1Þ

m

z
:�x1 ð19Þ

x̂4 ¼
ðz � gÞ

zg
:mrx2 ¼ ðR0 � 1Þ

m

z
:rx2 ð20Þ

Diffusion approximation

We consider a diffusion approximation to the stochastic version of our model (1)—(4). This

would allow us to approximately evaluate the quasi-stationary distribution using a multivariate

normal distribution when N is large and R0 is greater than 1. First we find the multivariate nor-

mal distribution corresponding to the state variables. Let the changes in the scaled state vari-

ables x1, x2, x3, and x4 during the time interval (t, t + δt) be denoted by δx1, δx2, δx3, and δx4

respectively, where δxi(t) = xi(t + δt) − xi(t), 1, 2, 3, 4.

Under the assumptions of the original process on the sequence of transitions, we evaluate

the mean vector and covariance matrix for δxi (i = 1, 2, 3, 4) during the time interval (t, t + δt)
as follows. At first, we assume that we are in the state (S, I, C, A). So, the possible transitions

from this state are:

(a). S increases by 1 at the rate μ

(b). S decreases by 1 at the rate μ

(c). S decreases by 1 and I increases by 1 at the rate βSI/N

(d). S decreases by 1 and I increases by 1 at the rate βηC SC/N

(e). S decreases by 1 and I increases by 1 at the rate βηA SA/N

(f). I decreases by 1 and C increases by 1 at the rate ϕI

(g). I decreases by 1 and A increases by 1 at the rate ρI

(h). I decreases by 1 at the rate μI

(i). C decreases by 1 and I increases by 1 at the rate ωC

(j). C decreases by 1 at the rate μC

(k). A decreases by 1 and I increases by 1 at the rate αA

(l). A decrease by 1 at the rate (μ + d)A.

The random variable δx1 equals 1

N in cases (a), � 1

N in cases (b), (c), (d), (e), and 0 in other

cases. Similarly, δx2 equals 1

N in cases (c), (d), (e), (i), (k), � 1

N in cases (f), (g), (h), and 0 in other

cases. δx3 equals 1

N in cases (f), � 1

N in cases (i), (j), and 0 in other cases. δx4 equals 1

N in cases (g),

� 1

N in cases (k), (l), and 0 in other cases. Denoting x = (x1, x2, x3, x4)0 we have,

EðdxÞ ¼ bðxÞdt þ oðdtÞ
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where bðxÞ ¼

m � bðx2 þ ZCx3 þ ZAx4Þx1 � mx1

bðx2 þ ZCx3 þ ZAx4Þx1 � ðrþ �þ mÞx2 þ ox3 þ ax4

�x2 � ðoþ mÞx3

rx2 � ðaþ mþ dÞx4

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð21Þ

Now to derive the covariance matrix we need to find the Jacobian matrix at point x, which

is obtained from b(x) as,

BðxÞ ¼
@bðxÞ
@x
¼

� bðx2 þ ZCx3 þ ZAx4Þ � m � bx1 � bZCx1 � bZAx1

bðx2 þ ZCx3 þ ZAx4Þ bx1 � ðrþ �þ mÞ bZCx1 þ o bZAx1 þ a

0 � � ðoþ mÞ 0

0 r 0 � ðaþ mþ dÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

Then we approximate B(x) at equilibrium point x̂ ¼ ðx̂1; x̂2; x̂3; x̂4Þ
0
by Bðx̂Þ. So, covariance

matrix of δx = (δx1, δ x2, δx3, δx4)0 is,

VðdxÞ ¼ 1

N SðxÞdt þ oðdtÞ where,

SðxÞ ¼

bðx2 þ ZCx3 þ ZAx4Þx1 � bx1x2 � bZCx1x3 � bZAx1x4

m0 þ mx1

� bx1x2 bðx2 þ ZCx3 þ ZAx4Þx1 � �x2 � ox3 � rx2 � ax4

þðrþ �þ mÞx2 þ ox3 þ ax4

� bZCx1x3 � �x2 � ox3 �x2 þ ðoþ mÞx3 0

� bZAx1x4 � rx2 � ax4 0 rx2

þðaþ mþ dÞx4

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

We again approximate S(x) by Sðx̂Þ, where x̂ is the equilibrium point. For large N, the process
ffiffiffiffi
N
p
ðxðtÞ � x̂Þ is approximated by a multivariate Ornstein-Uhlenbeck (O-U) process [16],

with a local drift matrix Bðx̂Þ and local covariance matrix Sðx̂Þ.
The stationary distribution of this O-U process approximates the quasi-stationary distribu-

tion. It is approximately normal with mean zero and covariance matrix S, where S is obtained

by solving

Bðx̂ÞSþ SB0ðx̂Þ ¼ � Sðx̂Þ: ð22Þ

Exact analytical solution for S is not straightforward [5]. However, since we are interested in

calculating the CCS, we can easily solve the Eq (22) numerically using the parameter values

and the equilibrium point.

Let σij be the solution of the (i, j)th element of S, where i, j = 1, . . ., 4. The diffusion approxi-

mation guides us to consider appropriate mean and variance-covariance matrix for the joint
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distribution of x(t). Thus we have,

ffiffiffiffi
N
p
ðxðtÞ � x̂Þ � N4ð0;SÞ; with xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; x3ðtÞ; x4ðtÞÞ

0
; x̂ ¼ ðx̂1; x̂2; x̂3; x̂4Þ

0
;

and S ¼

s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

0

B
B
B
B
@

1

C
C
C
C
A

ð23Þ

The approximation for quasi-stationary distribution is obtained by using conditional trun-

cated distributions of the above multivariate normal distribution. Thus in order to evaluate

p•000, p•100, p•010, and p•001 we need to use a result from conditional truncated multivariate nor-

mal distribution, which is given below as theorem 1 (for proof see S1 Appendix). Even then, it

is extremely difficult, if not impossible [5], to get an exact expression for q•(d, μ). So, we evalu-

ate an approximate expression of q•(d, μ) using Result 1 (for proof see S1 Appendix).

Theorem 1 Let Y� Np(μ, S) and write y ¼ ðy0
1
; y0

2
Þ
0
, μ ¼ ðμ0

1
;μ0

2
Þ
0
, and S ¼

S11 S12

S21 S22

 !

.

Suppose instead ofRp
, Y is defined only on a truncated support c< y< d. Consider the parti-

tions c ¼ ðc0
1
; c0

2
Þ
0 and d ¼ ðd0

1
; d0

2
Þ
0
. Then, the conditional distribution of Y1 given y2 is given by

f �ðy1jy2Þ ¼
f ðy1jy2Þ

R d1

c1
f ðy1jy2Þdy1

ð24Þ

where f(y1|y2) is the conditional probability density function of Y1 given y2 i.e.
Y1jy2

� Nqðμ1 þ S12S
� 1

22
ðy

2
� μ2Þ;S11:2 ¼ S11 � S12S

� 1

22
S21Þ

Result 1 Let �ðxÞ ¼ 1ffiffiffiffi
2p
p e� x2=2 andFðxÞ ¼

R x
� 1
�ðtÞdt for any x 2 ð� 1;1Þ. Then, an

approximate expression of qðd;mÞ
�

is given as,

qðd;mÞ
�
¼
mp�100 þ mp�010 þ ðd þ mÞp�001

1 � p�000

ð25Þ

where p�100 �
1

2N
ffiffiffiffiffiffi
s�

22

p

�
x̂�

2ffiffiffiffiffi
s�

22

p

� �

F
x̂�

2ffiffiffiffiffi
s�

22

p

� � :
1

2N
ffiffiffiffiffiffi
s�

33

p

�
x̂�

3ffiffiffiffiffi
s�

33

p

� �

F
x̂�

3ffiffiffiffiffi
s�

33

p

� � :
1

2N ffiffiffiffiffiffi
s44

p
�

x̂4ffiffiffiffiffi
s44
p

� �

F
x̂4ffiffiffiffiffi
s44
p

� �

p�010 �
1

2N
ffiffiffiffiffiffi
s��

33

p

�
x̂��

3ffiffiffiffiffi
s��

3

p

� �

F
x̂��

3ffiffiffiffiffi
s��

33

p

� � :
1

2N
ffiffiffiffiffiffi
s��

22

p

�
x̂��

2ffiffiffiffiffi
s��

2

p

� �

F
x̂��

2ffiffiffiffiffi
s��

22

p

� � :
1

2N ffiffiffiffiffiffi
s44

p
�

x̂4ffiffiffiffiffi
s44
p

� �

F
x̂4ffiffiffiffiffi
s44
p

� �

p�001 �
1

2N
ffiffiffiffiffiffiffiffi
s���

44

p

�
x̂���

4ffiffiffiffiffiffi
s���

44

p

� �

F
x̂���

4ffiffiffiffiffiffi
s���

44

p

� � :
1

2N
ffiffiffiffiffiffiffiffi
s���

22

p

�
x̂���

2ffiffiffiffiffiffi
s���

22

p

� �

F
x̂���

2ffiffiffiffiffiffi
s���

22

p

� � :
1

2N ffiffiffiffiffiffi
s33

p
�

x̂3ffiffiffiffiffi
s33
p

� �

F
x̂3ffiffiffiffiffi
s33
p

� �

ð26Þ

where x̂�i ; s
�
ii for i ¼ 2; 3, x̂��i ; s

��
ii for i ¼ 2; 3, x̂���i ; s���ii for i ¼ 2; 4 are obtained from the

truncated conditional distribution of multivariate normal distribution as given in (23).
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Once we find qðd;mÞ
�

, we have an expression for expected time to extinction ÊðtQÞ using Eq

(12). However, this involves N, which is unknown. Now, our aim is to find the above expres-

sion in another way so that we can equate them and solve for N. So, following [6], if we can

find the quasi-period (T̂ 0), we may use the relation ÊðtQÞ log 2 ¼ T̂ 0 to get the value of N,

which is the critical community size.

We determine the quasi-period of the oscillation about the critical point using linearisation

method [17]. Note that for our model, the linearised system about the equilibrium point x̂ ¼
ðx̂1; x̂2; x̂3; x̂4Þ

0
can be written as:

dx�

dt
¼

� b 1þ ZC
�

x2
þ ZA

r

x1

� �
x̂2 � m � b

R0
�

bZC
R0

�
bZA
R0

b 1þ ZC
�

x2
þ ZA

r

x1

� �
x̂2

b

R0
� ðrþ �þ mÞ

bZC
R0
þ o

bZA
R0
þ a

0 � � ðoþ mÞ 0

0 r 0 � ðaþ mþ aÞ

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

x� ð27Þ

where x� ¼ x � x̂.

Now we can find the eigenvalues of the matrix in Eq (27) and hence the angular frequency,

provided there are imaginary roots. Using Eq (27) and putting the values of the parameters,

we can also find the angular frequency (θ) numerically. Hence the quasi-period (T̂ 0, say) is

obtained as T̂ 0 ¼
2p

y
, which is independent of N. Now noting the relation ÊðtQÞ log 2 ¼ T̂ 0

and using Result 1, we can solve for N.

Since we are dealing with a system consisting of four equations, it is not possible to obtain

an explicit or compact expression for CCS (i.e. N) in terms of the model parameters. Hence we

find an approximate value of CCS numerically.

Our approach is not restricted to only two [6] or three variables [5]. It generalizes the

numerical calculation of CCS for any finite number of variables. Thus, our method for finding

CCS is a general one and is applicable to any number of variables. Let n be the number of vari-

ables and m be the number of equations in the system of differential equations that explains

the disease dynamics. An algorithm to calculate CCS for such a process is given below.

• Step I: Calculate basic reproduction number and endemic equilibrium for the system of dif-

ferential equations i.e. the model.

• Step II: Write down a fully stochastic model and the joint distribution of the state variables

conditioning on non-extinction of the disease.

• Step III: Write the expression for expected time to extinction based on quasi-stationary

distribution.

• Step IV: Introduce diffusion approximation to obtain the local drift matrix and local covari-

ance matrix from multivariate Ornstein-Uhlenbeck process.

• Step V: Using conditional truncated multivariate normal distribution, calculate expected

time to extinction (ÊðtQÞ, say)

• Step VI: Using linearisation of the model, calculate the angular frequency (T̂ 0, say).

• Step VII: Merge expected time to extinction with angular frequency by the relation

ÊðtQÞ log 2 ¼ T̂ 0, and solve for N, which is the CCS with respect to the model.
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Note that CCS thus calculated is an approximate one as we have made some approxima-

tions at few stages. However, this algorithm is a general one and may be applied to any model

involving a system of differential equations that explains the disease dynamics. However, the

basic reproduction number (R0) must be greater than 1 in order to calculate CCS using our

method.

Results

Case study

For HIV transmission, we can calculate the critical community size for any region or commu-

nity. Note that this value of CCS and time to extinction are approximate as we have made

some approximation while applying diffusion approximation using conditional truncated

multivariate normal distribution. All calculations are based on the assumed model (1)-(4).

We suppose that an individual in the susceptible compartment/class (S) either moves to the

infected (I) compartment or infected under treatment (C) compartment or infected with

AIDS (A) compartment; while an individual from infected (I) class may receive treatment and

move to infected under treatment (C) class or get infected with AIDS and move to infected

with AIDS (A) class; while an individual after treatment may have reduced viral load and thus

move from class C to the infected (I) class; similarly, an individual infected with AIDS (A) may

have reduced viral load and move to infected (I) class. Death may occur in each class while

immigration occurs only in the susceptible class.

It is clear that in order to calculate CCS for a region or community, we need to know the

values of the parameters in the model. These parameter values are usually estimated based on

different studies. As an illustration, we consider the values of the parameters based on the data

available for Madagascar. However, the values of all parameters are not available in the litera-

ture. In such cases, we have assumed a few values considering the meaning and range of the

parameters. Based on the available data for 2018 from the UNAIDS (www.unaids.org/en/

regionscountries/countries/madagascar), we see that the number of people living with HIV

who are on ART is 3500 whereas the number of adults and children living with HIV is 39000.

The number of adults and children newly infected with HIV is 6100 and the number of deaths

due to AIDS is 1700. Based on this information and following Nåsell [6] we have considered

β = 0.156 × 365 = 56.94 and d = 0.044 × 365 = 16.06. Based on the available reports (http://cfs.

hivci.org/country-factsheet.html) from the World Health Organisation (WHO), we have ω =

0.03 × 365 = 10.95, ϕ = 0.0035 × 365 = 1.2775, ηC = 0.000105, and μ = 0.015. Other parameters

such as α = 0.001 × 365 = 0.365, ηA = 1.1, and ρ = 0.98 × 365 = 357.7 are based on available lit-

erature and intuitive meaning of the parameters. Given the poor socio-economic conditions of

Madagascar, the 90-90-90 HIV treatment target initiative by UNAIDS has not performed

remarkably well. At severe stages of HIV infection, available medication has very little effect.

This information has led us to opt for such a high value of ρ and small value for α. Here, β is

the contact rate (per year) of an HIV-infected person with the susceptible pool of individuals

and ρ signifies the rate of progress (per year) of HIV-infected individuals to become AIDS

patient. Similarly, we define other mentioned rates.

For this set of parameters, the CCS is obtained as 4585. So we can say that if the population

in a commune drops below 4585, the infection will die out automatically. Obviously, the range

of CCS for the HIV epidemic is far less than comparatively more infectious diseases such as

measles that has much higher incidence rate. UNICEF reports that there were 244,607 cases of

measles and 1,080 deaths in Madagascar from August 2018 to November 2019 (www.unicef.

org/press-releases/measles-outbreaks-continue-unabated-five-countries-accounted-nearly-

half-all-measles). Naturally, Nåsell [6] obtained CCS as 561, 000 (with R0 = 14) and Bartlett [4]
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estimated CCS as 250, 000 to 300, 000 in England and Wales for measles. Note that, using the

above parameters for Madagascar and assuming homogenous mixing within communities, we

obtain R0 as 4.059, which essentially means that in a completely susceptible population, a single

infection may produce 4.059 secondary infections in the duration of infectiveness. Our calcula-

tion also indicates that temporary eradication or fade-out could happen after 7.365 years unless

the infection is reintroduced from outside. This fade-out tends to happen in local spatial

regions until the reintroduction of the disease occurs from other areas. However, this does not

imply that a person already infected with HIV will be removed from the population within this

period. In fact, she/he may continue to exist for more than 7.365 years and we assume that no

new infection will be spread by her/him.

Next, we study the nature of CCS by varying one parameter and keeping others fixed at the

above values. For this we consider the most important parameters (β, d, ϕ, ω, α, and ρ) in our

model. Fig 1 indicates the relation of CCS with different parameters. Here, β is the contact rate

for HIV transmission. An increase of β signifies an increment of infection circulation in the

population. So the susceptible population will get infected at a much higher rate. In order to

stop the infection, the population size should be very small. So if the number of the susceptible

population falls below some threshold, the chance of the spread of infection will diminish.

This indicates that smaller the population size, lesser would be the chance of spreading the

infection. Thus, it is expected that if β increases, CCS will decrease (Fig 1A). d is the rate of

death from class A. So as d increases, the spread of infection will decrease. For large values of

d, a large susceptible population will remain unaffected. Hence the CCS value will be high for

Fig 1. Relation of CCS with different parameters.

https://doi.org/10.1371/journal.pone.0244543.g001
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large d (Fig 1B). ϕ and ω respectively are the rates at which individuals in class I move to C and

individuals in class C move to I. So, as ϕ increases, the number of individuals receiving treat-

ment increases. It is expected that individuals under treatment will spread less infection than

those who are infected but not treated. So, as more individuals go to class I from class C, the

chance of spreading infection in the susceptible population decreases. But, it is known that the

infection stays in a community long enough to engulf the entire susceptible population. There-

fore, the infection might be eradicated if the susceptible population decreases. This would

mean that, under the condition that ϕ increases, eradication of infection is expected to happen

as the CCS value decreases (Fig 1C). On the contrary, as ω increases, CCS also increases (Fig

1D). Two other parameters viz. α and ρ represent the rates at which individuals in class A
move to I and individuals in class I move to A respectively. For similar reasons, as α increases,

CCS decreases (Fig 1E) but as ρ increases, CCS increases (Fig 1F).

Discussion

Bartlett [3, 4] describes fade-out tendency of measles epidemic for small populations. He

noticed that for such populations as the size of the susceptible pool of individuals is equal to

CCS, measles has a 50% chance of fading out. Bartlett observed that for some cities in the

United States where the population size is below CCS, the epidemic ceases to exist in absence

of reintroduction of the infection from outside. But for larger cities, the tendency of damping

down of successive epidemics is offset by random variability. The idea of epidemic fade-out in

smaller spatial locations provides a clue to systematically treat epidemic rather than concen-

trating treatment for an entire continent or a large community at once.

Shocking statistics (www.prb.org/thestatusofthehivaidsepidemicinsubsaharanafrica) reveal

that 16 countries in Sub-Saharan Africa constitute nearly 4% of the world’s population but

account for more than 50% of HIV infections worldwide. In some of these countries, the prev-

alence rate is up to 30%. However, efforts to control HIV epidemic situations have resulted in

a decrease in the disease prevalence in some African countries. Total eradication of highly

prevalent diseases such as HIV infection in the context of countries in Sub-Saharan Africa is

almost impossible in a very short time period. So we may instill the idea of CCS to systemati-

cally eradicate HIV. If we concentrate on the treatment of HIV in a more focussed manner in

smaller spatial regions, it may accelerate the HIV annihilation process unless the disease is

reintroduced from outside.

When we look at the geographical locations of Uganda, Malawi, Eswatini, and Madagascar,

interestingly we find that being at the heart of the Great Lakes region, Uganda is surrounded

by three lakes among which one is a fresh water lake. These lakes, to some extent separate

Uganda from the rest of the African countries. Malawi again is separated by a freshwater lake

(Lake Malawi) that comprises of 25% of its area. But Eswatini is a landlocked country in South-

ern Africa. We observe that, even with quite impressive progress towards achieving the 90-90-

90 target, countries that are more landlocked have higher rates of incidence and prevalence

compared to other countries that are isolated to varying extent. Although being in the AIDS

belt of Africa, Madagascar has shown remarkably lower rates of incidence and prevalence even

with little success of the 90-90-90 target. It is possibly because of the isolated location of Mada-

gascar that separates it from the mainland of the African continent to a great extent.

Metcalf et al. [8] pointed out with respect to some childhood infections that the relative risk

of extinction of infections on islands is almost double that in the mainland. Such infections

cease to exist at a significantly higher rate in islands where access to/from the mainland is

much less. But the persistence of infection within a region in the mainland is fuelled constantly

by recolonization. Hence, although the epidemic infection should apparently die out because

PLOS ONE Determination of critical community size

PLOS ONE | https://doi.org/10.1371/journal.pone.0244543 January 28, 2021 13 / 16

http://www.prb.org/thestatusofthehivaidsepidemicinsubsaharanafrica
https://doi.org/10.1371/journal.pone.0244543


of the natural stochastic extinction property (damping down) of itself after invading the total

susceptible subpopulation in the mainland, recolonization introduces infection and hinders

the damping down process. Thus, our observations are consistent with the views of this paper.

Madagascar has 111 large and small cities or districts with 39.6% of them have population

size less than 20000, 30.6% with population size somewhere between 20000 − 30000, 16.2% has

30000 − 40000 and 5.4% have population more than 100000 (http://worldpopulationreview.

com/countries/madagascar-population/cities/). Further, each district is comprised of several

communes of an even smaller population. So our idea is that if the population size falls below

the CCS of Madagascar which is 4585 in each spatially separated population, HIV infection

may cease to exist in different spatial locations, after a mean time of 7.365 years, provided

infection is not re-introduced from outside. But this will definitely not happen without con-

tinuing the controlling measures like educating people about the disease and taking necessary

preventive measures/treatment available. Through this paper, we are emphasizing that the sys-

temic spreading of control measures could lead to an acceleration in achieving the 90-90-90

goal of UNAIDS.

We observe from our case study that in addition to the existing controlling measures of

HIV epidemics in Madagascar, employing the idea of CCS might accelerate the eradication of

the infection from smaller populations after the corresponding mean extinction time. Besides,

CCS could be looked upon as an index of performance of epidemic controlling strategies in

different countries.

Conclusions

Combating pandemic and epidemic outbreaks require efficient controlling strategies, as the

available treatment facilities and/or vaccines become limited in such situations. But, the infec-

tion persists in the community long enough to engulf the entire susceptible population. Hence,

in large communities, the infection recurs in the subsequent timeline. Interestingly, Bartlett

observed that in smaller communities the infection dies out if the susceptible population drops

below a threshold size (CCS). Later, Nåsell formulated CCS for infectious diseases having Sus-

ceptible-Infected model dynamics. But the analytical calculation of CCS for more complex dis-

ease dynamics or higher-order models are quite cumbersome. So, we propose a simplified

computation based approach for rapid calculation of the approximate value of CCS, for HIV

disease dynamics with four differential equations. Since our method is free from any restric-

tion on the number of variables in the system, it could be applied to other diseases with

higher-order model dynamics. We envisage CCS for devising control strategies during epi-

demic outbreaks such as COVID-19 [18]. Because, during epidemic outbreaks with limited

treatment facilities, keeping the susceptible population below CCS by enforcing appropriate

containment plans might control the disease substantially.

So to sum up, through this paper, firstly, we have generalized the approach for CCS calcula-

tion for a system of differential equations having more than two variables. Our method for a

system containing four variables may be extended to higher dimensions for any infectious dis-

ease dynamics. This is because our method is able to tackle multivariate normal distribution

for calculating expected time to extinction as a function of CCS (Result 1). Secondly, we have

developed a method to unleash the potential that CCS holds in devising control strategies by

promptly determining its approximate numerical value from any disease dynamics using a

simplified computation approach. In particular, we believe that our method will provide a suit-

able measure for accelerated extermination of epidemic infections by aiding policymakers in

making decisions on control strategies. Thirdly, we hypothesize that, if we start treating spa-

tially isolated regions or smaller communes and then progress to the district level, and after
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that to larger regions systematically, the annihilation of HIV infection could be accelerated.

Although it is way difficult to reach out to smaller communes with treatments and other con-

trolling measures (such as educating them about the infection etc.), CCS could be worth giving

a trial, as this could utilize the natural force of damping down of epidemic oscillations to eradi-

cate HIV infection from smaller populations.
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