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Abstract
Failure to achieve a protected state after influenza vaccination is poorly understood but

occurs commonly among aged populations experiencing greater immunosenescence. In

order to better understand immune response in the elderly, we studied epigenetic and tran-

scriptomic profiles and humoral immune response outcomes in 50–74 year old healthy par-

ticipants. Associations between DNAmethylation and gene expression reveal a system-

wide regulation of immune-relevant functions, likely playing a role in regulating a partici-

pant’s propensity to respond to vaccination. Our findings show that sites of methylation reg-

ulation associated with humoral response to vaccination impact known cellular

differentiation signaling and antigen presentation pathways. We performed our analysis

using per-site and regionally average methylation levels, in addition to continuous or dichot-

omized outcome measures. The genes and molecular functions implicated by each analy-

sis were compared, highlighting different aspects of the biologic mechanisms of immune

response affected by differential methylation. Both cis-acting (within the gene or promoter)

and trans-acting (enhancers and transcription factor binding sites) sites show significant

associations with measures of humoral immunity. Specifically, we identified a group of

CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune

response, and methylated with higher response. Additionally, CpGs that individually predict

humoral immune responses are enriched for polycomb-group and FOXP2 transcription fac-

tor binding sites. The most robust associations implicate differential methylation affecting

gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2)
and immunosenescence. We believe our data and analysis strategy highlight new and inter-

esting epigenetic trends affecting humoral response to vaccination against influenza; one of

the most common and impactful viral pathogens.
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Introduction
Influenza infection remains a seasonal source of significant morbidity, mortality, loss of pro-
ductivity, and stress. While vaccination programs have significantly reduced the morbidity and
mortality of this disease and its complications, and while yearly estimates vary widely (depend
on circulating strains, vaccine efficiency, etc.), on average 20,000 individuals die annually from
influenza- and pneumonia-related causes in the U.S., with older persons bearing the greatest
burden [1,2]. The ability of current influenza vaccines to induce protective immunity in indi-
viduals greatly determines the impact of this disease. However, studies have shown that not all
subpopulations respond to influenza vaccines in the same way, to develop or maintain a pro-
tected immune state. For example, nearly 50% of the elderly have a poor influenza vaccine
response and, consequently, experience increased morbidity and mortality from influenza
infections [3,4].

If we can understand what causes some individuals to respond—or, alternatively, not
respond—to standard vaccines, then development of alternative vaccines or immunization
protocols can focus on the differential humoral, cellular, or molecular processes underlying
immune response mechanisms. Numerous studies have been conducted on genotypes and
gene expressions in the context of influenza vaccine response to find genetic markers that pre-
dict or explain immune response [5,6,7]. It is increasingly recognized that the immune
response is a systems-level orchestration of many pathways across multiple cell and tissue
types, operating on multiple timescales [8,9].

In this work, we present discovery of epigenetic markers that are associated with influenza
vaccine response and, in the process, capture a more comprehensive picture of the underlying
molecular mechanisms that determine response. The scope of which biologic processes are
encompassed within “epigenetics” varies [10]. The covalent modification of DNA bases, specif-
ically cytosine methylation at CG dinucleotides (CpG sites), is a commonly recognized epige-
netic element that regulates gene expression, both in development (lineage determination) and
in environmental response. Ongoing studies of epigenetics have been extensively reported in
the literature [11,12,13,14], mostly from cancer fields [15,16,17], but also from a growing diver-
sity of applications including imprinting [14], atherosclerosis [18,19], and aging [20,21,22,23].
Recent reviews are available from the NIH Roadmap Epigenomics Mapping Consortium
online (http://www.roadmapepigenomics.org). Recently, epigenetic associations have been
made between specific methylation states and response to Hepatitis B vaccine [24] and to T-
cell [25,26] and macrophage [27] differentiation, indicating potential contributions to influ-
enza vaccine response.

While many CpG sites can be readily associated with specific genes or their promoters by
proximity (cis-acting) and are likely to have a direct influence on expression [28], many cannot
(trans-acting) and require a broader organizing framework to facilitate their interpretation. For
example, many differentially methylated regions are within enhancers and must be interpreted
via transcription factor binding or other regulatory effects [29]. Gene set and pathway aggrega-
tion methods provide an organizational framework for understanding how these individual
gene changes work together to orchestrate a systems-level response. Genomic annotations
from previous studies were used to identify enhancers, active transcription factor binding sites,
and methylation-associated regulatory regions. In addition, the co-localization of transcrip-
tional factor binding sites indicates which transcriptional regulatory elements may be most
closely related to influenza vaccine-induced immune response. Finally, we utilized network
biology resources to identify enriched pathways and biologic functions associated with differ-
ent methylation states, which associate with an individual’s ability to generate a protective
humoral immune response. Together, these data and our analyses expand current
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understanding of the epigenetic regulatory landscape that is potentially active in shaping
humoral immune responses to influenza vaccination.

Materials and Methods
The subjects and methods described in this study are similar to those published for our previ-
ous studies [30,31,32,33,34,35]. High-throughput data (methylation and mRNA-Seq) used in
this study are available at https://immport.niaid.nih.gov under study number SDY67.

Study Participants
Study recruitment has been presented in our previous work [30,31,32]. Briefly, study partici-
pants (n = 158) recruited at the Mayo Clinic (ages 50–74) were generally healthy with no
immune-compromising conditions. Candidates were excluded if they exhibited symptoms
consistent with influenza prior to or during the study. Written, informed consent from partici-
pants was obtained at the time of enrollment and participants received one dose of the 2010–
2011 licensed trivalent inactivated influenza vaccine, which contains the influenza A/Califor-
nia/7/2009 H1N1-like, A/Perth/16/2009 H3N2-like and B/Brisbane/60/2008-like viral strains.
The Mayo Clinic Institutional Review Board granted approval for the study. Written informed
consent was obtained from all study participants.

Isolation of peripheral blood mononuclear cells (PBMCs)
The methods described below are similar to those published for our previous studies [36,37].
PBMCs were isolated from 100 mL of whole blood at each timepoint (Day 0 prior to vaccina-
tion, Day 3, Day 28). Cell processing was performed using cell preparation tubes with sodium
citrate. Purified PBMCs were re-suspended at a concentration of 1×107/mL in freezing medium
[RPMI 1640 medium containing L-Glutamine (Invitrogen; Carlsbad, CA) supplemented with
10% dimethyl sulfoxide (DMSO; Protide Pharmaceuticals; St. Paul, MN) and 20% fetal calf
serum (FCS; Hyclone, Logan, UT)], frozen overnight at −80°C, and then transferred to liquid
nitrogen for storage.

Preparation of influenza virus stock
The influenza A/California/7/2009/H1N1-like virus (Centers for Disease Control and Preven-
tion, CDC; Atlanta, GA) was propagated in nine-day-old embryonated chicken eggs at 37°C
and 82% humidity. The allantoic fluid was harvested 48 hours post-inoculation and influenza
virus titers were determined by hemagglutination and the tissue culture infectious doses 50%
(TCID50) method in MDCK cells using standard protocols [38,39,40]. To reduce variability,
one viral stock was used for all assays.

Immune Response Measurements
Influenza A/H1N1-specific humoral immunity was assessed in triplicate by HAI assay and by a
memory B cell ELISPOT assay, as described previously [31,33,41]. For HAI, sera from each
subject were treated with receptor-destroying enzyme, and serial dilutions were incubated with
a fixed quantity of influenza virus before the addition of turkey erythrocytes to measure hem-
agglutination. The Day 0 intra-class correlation coefficient, measuring the correlation between
replicate measurements [31], was high; 0.91.

Influenza virus-positive memory-like IgG B cells in subjects’ PBMCs were quantified in trip-
licate using the Mabtech ELIspotPLUS kit for human IgG (Mabtech Inc.; Cincinnati, OH)
according to the manufacturer’s specifications, and as previously described [31,35]. Briefly,
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PBMCs were thawed, plated and pretreated with R848 (1 μg/mL) and IL-2 (10 ng/mL) for 72
hours. Pre-stimulated cells were collected, counted and plated in influenza virus-coated ELI-
SPOT plates at 2×105 cells/well. Influenza A/California/7/2009/H1N1-like strain was used for
the coating. Plates were incubated overnight, processed and developed according to the kit
manufacturer’s specifications, and analyzed with an ImmunoSpot S6 Analyzer and Immuno-
Spot v5.1 software (Cellular Technology Ltd.; Cleveland, OH). The Day 0 intra-class correla-
tion coefficient for the B cell ELISPOT assay was 0.88.

Illumina Human 450 Methylation BeadChip data filtering and
normalization
DNA samples were randomly allocated to each plate, keeping the three time-points for each
participant adjacent to each other. Beyond the laboratory quality-control metrics, data quality
was assessed via probe detection rates at the 0.01 level within and across specimens, box and
whisker plots, residual MVA plots, and distributions of control probes. Placental and WGA
control samples were included on each plate as positive and negative controls.

Given our population of participants of northern European descent, we mapped SNPs from
Refsnp [42], Hapmap [43], 1000 Genomes Project [44] that are found in Caucasian population
to the CpG probe sequences on the genome. 76,670 probes with overlapping known single
nucleotide polymorphism locations were removed from further analysis. We excluded 11,648
X and Y chromosome probes from our study. A further 3,085 CpG probes with� 5% missing
reads (across samples) were removed. As a final filtering method and in order to manage false
discovery, the variance of the normalized M-values was calculated for each probe and analysis
was restricted to the 101,456 probes (25%) that had the largest variability between samples and
across time points.

Design I and II probe intensities were normalized separately on the log2 scale via quantile
normalization. Subsequently, we applied color adjustment followed by quantile normalization
of intensity values between arrays; the beta-mixture quantile normalization to align distribu-
tions between Design I and II probes [45,46]. This algorithm is similar to that proposed by
Teschendorff et al. [45], with the order of the first two steps reversed [46]. Percent methylation

values (Beta-value) were transformed to M-values by the relation,Mi ¼ log2
bi

1�bi

� �
for the ith

CpG site. As M-values have been shown to have more robust statistical properties [47], they
were used in all statistical analyses.

Identifying Genomic Features
Gene Expression. Single-end Illumina HiSeq 2000 (Illumina, San Diego, CA) mRNA

sequencing was performed using the procedures outlined in our previous studies [48,49] and as
presented in Ovsyannikova et. al. [50]. Briefly, Qiagen (Valencia, CA) RNeasy Plus mini Kit and
the RNAprotect reagents were used to extract total RNA from 1x106 PBMCs. cDNA libraries
were generated using the mRNA-Seq 8 Sample Prep Kit by Illumina (San Diego, CA). Agilent
2100 Bioanalyzer (Agilent, Palo Alto, CA) was used for library validation and quantification and
were loaded (5-7pM) onto individual flow cell lanes. Sequencing reads were aligned to the
human genome build 37.1 using TopHat [51] (version 1.3.3) and Bowtie [52] (version 0.12.7).
Gene counting was performed using HTSeq [53] (version 0.5.3p3). Within-participant differen-
tial expression was quantified over time using F-tests [46]. Differential expression was quanti-
fied across participants using gender-adjusted linear models on the log2 scale.

Gene Annotation. Methylation probes were mapped to hg19 genome coordinates using
the annotation files provided by Illumina. They are associated with genes using the 2013-04-08
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hg19 RefFlat file (current version available at http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/database/refFlat.txt.gz). We used the most upstream (towards 5’, accounting for strand)
transcription start site (TSS) across transcripts defined for each gene. Promoters are defined
from 500 bases into the gene to 1500 bases upstream of the gene, from the TSS and accounting
for strand. Gene body regions encompass all bases from the edge of the promoter to the end of
the longest transcript. Transcription Factor Binding Sites (TFBSs) and regions of open chroma-
tin are identified from the ENCODE data tracks [54] made available through the UCSC
Genome Browser [55,56]. Histone marks (H3k04me1 and H3k27ac) in lymphoblastoid
(GM12878) and embryonic stem cell (H1-hESC) lines were accessed similarly. Analyses were
conducted using custom scripts written in the R programming language [57] version 3.1.1, and
leveraging the R packages IRanges version 2.0.1 and GenomicRanges version 1.18.4.

Transcription Factor (TF) Interactions. We considered trans-acting methylation sites as
those that are within transcription factor binding sites (TFBSs). Their most probable functional
role is to influence gene expression by altering the propensity for a TF to bind to an enhancing
element. We mapped trans-acting CpGs to enhancers, open-chromatin marks, and TFBSs,
generated by ENCODE and made available through UCSC. Using this TFBS annotation, we
counted the number of DNA bases covered by each TF as a measure of their genome-wide
prevalence. To quantify if an observed number of trans-acting CpGs in our dataset is enriched
for a particular TF, we employed the null hypothesis that TFs were randomly distributed with
density proportional to their genome-wide prevalence. This generated the expected ratio of
CpGs overlapping a TF, given the number of CpGs under investigation. A Χ2 statistic with 1
degree of freedom (2-by-2 contingency table) was used to compare the observed and expected
occurrences. TFs have different DNA binding profiles, as captured by position frequency
matrices (PFMs) of aligned TF-bound sequences, which are typically summarized as binding
motif logos. In order to assess the enrichment of TFs at CpG sites in greater detail, we down-
loaded PFMs derived from vertebrate sequences indexed by the JASPAR database [58] and
computed the probability weight of CpGs (WCpG) occurring in each TF’s binding profile by:
WCpG ¼ S PC

i � PG
iþ1 þ PG

i � PC
iþ1, where P

C
i is the probability of observing a cytosine at the i

th

position from a given TF’s PFM, and the two terms with the summation correspond to sense
and antisense DNA strands.

Statistical Methods
We associated humoral immune response outcomes with methylation probe intensities using
logistic and linear regression (dichotomized and continuous endpoint, respectively). The FDA
defines a sufficient vaccine response as a 4-fold increase in HAI titer (two dilution levels in our
protocol) following vaccination [40]. We adjusted for each subject’s initial level (Day 0 values)
in all models (change in response to vaccination). E.g. the linear model: E(Log2(HAIDay28)) =
log2(HAIDay0) + wiMi. Immune outcomes were measured in triplicate. We utilized the median
across replicates for both immune outcomes (HAI and B-cell ELISPOT). The models gave us a
computed effect size (wi) and associated p-value for how informative the methylation site is for
predicting immune outcome. Spearman correlation was used to assess the association between
M-values and mRNA expression. We computed q-values using the approach of Storey and
Tibshirani [59].

Network Biology
We leveraged multiple network resources focused on high-confidence interactions. We com-
bined HPRD [60], CCSB [61], the Pathway Interaction Database [62], Transcription Factor
Encyclopedia [63], a directed-PPI resource [64], and a subset of STRING [65]. STRING is itself
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an integration of many pathway and network resources, including predicted interactions. Each
interaction is provided with a confidence score. We used the subset (7.8% of interactions) of
STRING where all edges have a score of at least 70%. When network resources include gene
IDs (e.g., Entrez or RefSeq gene ID), we map these identifiers to current HGNC symbols. Net-
work operations were performed using the igraph R package, version 0.7.1. Networks are visu-
alized using Cytoscape [66] version 3.2.1.

Genesets were downloaded fromMSigDB [67] v5.0, excluding those derived from genomic
proximity, computational studies, and oncogenic signatures. Functional terms were also gath-
ered from the Gene Ontology (http://geneontology.org/gene-associations/gene_association.
goa_human.gz; accessed 2015-07-14) and analyzed similarly to genesets. To quantify the
enrichment of genes annotated with a given functional term, we have used the standard hyper-
geometric test approach, where the sample (foreground) is the set of genes we have deemed
“significant” by their relationship to a molecular or immunologic outcome. The background of
possible genes for each test is the intersection of genes indexed by the resource (e.g., MSigDB
and GO) and those assayed by RNA-Seq within our dataset.

Results

Data Quality
One sample had systematic low performance and failed to produce usable data from the array
and was excluded from further analysis. There were 158 subjects used in the analysis; 61% were
female, with an age range of 59–73 years. All but two subjects were Caucasian. Overall, methyl-
ation changed little over time (not shown). Day 0 methylation levels are thus used, unless stated
otherwise.

Methylation-Expression Associations
We considered the correlation between methylation loci and cis-gene expression independent
of immune outcome. Table 1 lists the top 20 cis-associations between Day 0 methylation levels
and Day 0 gene expression measured by RNA-Seq, for the average methylation level across
each genomic region (gene promoter or body). See S6 Table for the full list, and for correlations
with gene expression at later time points. The system-wide summary of differential (through
time) cis-acting methylation is shown in Fig 1, using the genes whose expression is correlated
with a cis-acting CpG with p< 1E-4; 716 CpG sites in total, with the 161 genes sharing network
connections displayed in Fig 1. We show the same network configuration with color indicating
three different temporal states: Baseline (Day 0, pre-vaccination); Early (Day 3); and Late (Day
28) immune response after vaccination. While Day 28 is approximately a peak of adaptive
response [68,69], we refer to it as “late” in this study for simplicity. The genes meeting the
aforementioned significance threshold were carried on to GO term [70] enrichment, which
identifies participation in similar biologic functions. Further, this group of genes with signifi-
cant methylation-expression associations are depleted (compared to randomly selecting 716
genes) for network interactions (p = 0.028), potentially indicating their diverse functional
roles. Interestingly, there are many genes in common between the three time states; 28.8% are
significant in all three, and 61.7% in at least two (S1 Fig).

For Day 0 methylation and expression data, 1,127 individual promoter CpGs are correlated
with the cis-gene’s expression at the q� 0.01 significance level. This is 2.5% of the 40,483 pro-
moter CpGs, and 4.2% of the 26,817 promoter CpGs with expression of the cis-gene in our
dataset (robustly assayed and with non-trivial variance across participants). Using methylation
levels averaged across the gene’s promoter, 346 out of 11,517 promoters (3.0%) have significant
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associations at same significance level, 174 (50%) of which also have at least one individual
CpG with a significant association with cis-gene expression.

Humoral Immune Response Associations
We analyzed the association between baseline methylation and HAI at multiple timepoints
using linear regression models, showing the top results in Table 2 and the full list in S7 Table.
Cis-acting CpGs showed temporal patterns of biologic function enrichment with new and dif-
ferentially activated biologic processes observed through Day 3 and Day 28 (Fig 2). Few genes
(8.2%) are recapitulated at a second timepoint (S1 Fig). The strongest statistical associations
are plotted in S5 Fig, and are for the HLA genes HLA-DQB2 (p = 9.57E-6; q = 0.38) and HLA-B
(p = 1.08E-5; q = 0.38).

Starting from candidate genes that show within-person changes over time, we identified the
associated changes in cis-acting CpG methylation. A concise list of genes exhibits both associa-
tions: TAF5, PAX6, EPHB1, CCDC23, CTR9, and CWC22 exhibit both cis-CpG association
(p< 0.01) and HAI association; ZNF628, TMF1, CKAP5, TNFAIP1, and RUNDC1 exhibit both
cis-CpG association (p< 0.01) and B-cell ELISPOT association.

Next, we averaged methylation levels across shared genomic regions (e.g. multiple cis-acting
CpGs within a gene’s promoter) and quantified their association with humoral immune out-
comes (strongest associations are shown in S3 Table). Regions with greater heterogeneity
between probes (see S2 Fig for examples) are more likely to show differences compared to the

Table 1. Genes for which cis-acting methylation sites are highly correlated with expression.

Gene Promoter‡ Gene Body

r† p-value q-value r p-value q-value

LOC654433 -0.89 6.17E-54 5.60E-50 PAX8 -0.77 1.77E-31 1.30E-27

DDX43 -0.82 1.35E-39 6.13E-36 LOC654433 0.75 1.53E-29 5.64E-26

PM20D1 -0.78 1.19E-33 3.60E-30 TMEM8A -0.74 8.97E-29 2.21E-25

ZNF714 -0.76 6.80E-31 1.54E-27 DDX43 -0.73 3.15E-27 5.81E-24

IRF6 -0.76 1.19E-30 2.15E-27 GLB1L -0.72 9.64E-27 1.42E-23

NLRP2 -0.75 1.51E-29 2.28E-26 PRSS21 -0.71 7.43E-26 9.14E-23

LOC391322 -0.73 1.42E-27 1.83E-24 MDGA1 0.69 2.85E-23 3.00E-20

ZFP57 -0.69 2.03E-23 2.30E-20 LOC253039 -0.68 1.37E-22 1.27E-19

NLRP2 -0.68 8.85E-23 8.91E-20 MRPL21 -0.68 3.00E-22 2.46E-19

HLA-DQB1 -0.68 1.09E-22 9.92E-20 PNMAL2 0.67 2.12E-21 1.47E-18

AMDHD1 -0.68 2.04E-22 1.68E-19 PPP5C -0.66 2.19E-21 1.47E-18

C8orf31 -0.66 2.37E-21 1.79E-18 NLRP2 -0.66 3.98E-21 2.45E-18

LCLAT1 0.66 4.25E-21 2.96E-18 FADS2 -0.66 5.02E-21 2.85E-18

PRSS21 -0.66 4.64E-21 3.00E-18 SRXN1 -0.64 1.07E-19 5.63E-17

DNAJC15 -0.65 7.00E-20 4.23E-17 QDPR -0.64 2.06E-19 1.01E-16

TNNT1 0.64 1.72E-19 9.75E-17 AGAP4 0.64 2.24E-19 1.03E-16

GTSF1 -0.62 7.58E-18 4.04E-15 VARS2 -0.64 2.89E-19 1.25E-16

IL32 -0.61 2.71E-17 1.36E-14 PRKG2 -0.63 4.91E-19 2.01E-16

NAPRT1 -0.60 6.65E-17 3.17E-14 AMDHD1 0.63 7.76E-19 3.01E-16

HOXC4 0.60 9.20E-17 4.17E-14 POMC -0.63 1.29E-18 4.77E-16

†r is the Spearman’s correlation coefficient.
‡The regionally averaged methylation levels are used; see Methods.

doi:10.1371/journal.pone.0152034.t001
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per-CpG analysis when averaged, than more uniform regions. By comparing the genes identi-
fied by each method (logistic and linear regressions, per probe and regionally averaged), we
observed greater concordance among per-CpG analyses than among regionally averaged analy-
ses (S3 Fig). However, each HAI-centric method showed associations with different genes.

Fig 1. Genes whose expression is highly correlated with cis-acting CpGs show functional enrichment. A)Genes with significant association (p < 1E-

4) indicate 32 GO terms enriched at the p < 0.01 level and annotating at least 3 genes, across time points. Color intensity is used to signify statistical
significance. Genes are mapped to network biology resources (see Methods) and the associations atB) baseline,C) during early andD) late time periods
shown, represented in the same location in all panels; (for brevity, only genes within the largest connected components are shown). We color genes in the
network that have a significant association at each time period (baseline teal, early green, late orange). The network layout is manually adjusted and edges
bundled to improve legibility. See the online version for sufficient resolution to view gene names.

doi:10.1371/journal.pone.0152034.g001
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We next considered trans-acting CpGs as those that are not easily associated with a specific
gene via proximity in the genome, and annotated them with using TFBSs and histone marks.
We summarize the overlapping TFs across trans-acting CpGs in S1 Table. The overall occur-
rence pattern of TFBSs is similar to that of the whole genome, with CpGs most often occurring
at positions important for nucleosome spacing (CTCF) and global growth and development
(MYC/MAX). Typically, multiple TFs overlap each locus, likely indicating combinatorial regu-
lation at each site. Methylation of these TFs’ binding sites may have important impacts on
modulating immune cell growth and differentiation rates and influencing HAI via this
mechanism.

CpGs overlapping accessible TFBSs shows the potential for a regulatory role, but further
association with established enhancer marks via histone H3K4 mono-methylation (H3K4me1)
and H3K27 acetylation (H3K27Ac) provides greater regulatory evidence. Considering regions
of the genome outside of gene promoters and gene bodies, we calculated the fraction of bases
associated with one of these histone marks to be 18%. The analogous background rate within
the filtered CpGs used in our analysis (n = 101,456) is 74%. H3K4me1 peaks overlap 42 of our
154 HAI-associated trans-acting CpGs, while H3K27Ac overlaps 86. Together, the two histone
marks overlap 95 (62%) CpGs; this is an overall enrichment (one-sided exact binomial test p-
value< 1x10-16), but slightly depleted compared to expectation for the chip in general
(p = 5.2x10-4). Similarly, of the 135 trans-acting CpGs associating with B-cell ELISPOT out-
comes across timepoints, 35 overlap H3K4me1 and 68 overlap H3K27Ac, with 81 (60%) in the
union of the two.

Table 2. Influenza HAI linear models utilizing Day 0 methylation.

CpG (Mi) ΔHAI for ΔMi Q3 to Q1
† p-value q-value GenomicRegion Gene

cg15321244 -0.81 9.57E-6 0.38 GeneBody HLA-DQB2

cg23923934 -0.58 1.08E-5 0.38 GeneBody HLA-B

cg02914652 0.63 1.41E-5 0.38 Open, TF -

cg10544627 -0.53 1.64E-5 0.38 Open, No TF -

cg00016156 -0.44 2.71E-5 0.42 Promoter MIR3912;NPM1

cg04483460 -0.53 2.73E-5 0.42 GeneBody LRP8

cg13022911 -0.42 3.43E-5 0.43 Promoter LOC401980;TMEM183A; TMEM183B

cg18001427 -0.59 3.71E-5 0.43 Promoter RWDD2B

cg12625454 -0.51 4.29E-5 0.43 GeneBody PTPRN2

cg06824297 -0.38 4.67E-5 0.43 Promoter RWDD2B

cg14311250 -0.49 5.69E-5 0.48 Open, No TF -

cg11705439 -0.45 7.96E-5 0.52 Promoter CCDC151;PRKCSH

cg19333739 -0.50 8.04E-5 0.52 - -

cg20803547 -0.50 8.36E-5 0.52 Promoter IL12RB2

cg20404355 -0.50 8.41E-5 0.52 - -

cg11194925 0.60 9.15E-5 0.53 GeneBody PAX9

cg01109337 -0.49 1.04E-4 0.53 GeneBody TEX14

cg10016610 0.17 1.07E-4 0.53 GeneBody ROBO3

cg15249796 -0.44 1.25E-4 0.53 GeneBody TEX14

cg12390946 -0.50 1.29E-4 0.53 Promoter INPP5A

All models were adjusted by baseline HAI values.
† We express the effect size of linear regression models in terms of the change in HAI titer predicted from the model for participants at the Q3 (75th)

percentile of methylation M-value relative to Q1 (25th).

doi:10.1371/journal.pone.0152034.t002
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We also considered the level to which we’d expect to observe TFBSs compared to randomly
selected loci. We quantified the enrichment of each TF among the 154 TFBS-overlapping
CpGs that also had an HAI titer-association, normalized by each TF’s prevalence across the
genome. For CpGs significantly associated with HAI, we identified the transcription factor
EP300 (10 CpGs; p = 8.37E-2) as under-represented and EZH2 (21 CpGs; p = 4.79E-3), CTBP2
(11 CpGs; p = 2.34E-2), and SUZ12 (7 CpGs; p = 7.33E-2) as over-represented (see S1 Table).

Fig 2. Methylation-HAI network based on linear regressionmodels. Day0 methylation levels of cis-acting CpGs and the change in HAI titer between
Day28 and Day0 are used to generate linear regression models. Coloring and display is as in Fig 1.

doi:10.1371/journal.pone.0152034.g002

DNA-Methylation and Humoral Response to Influenza Vaccine

PLOS ONE | DOI:10.1371/journal.pone.0152034 March 31, 2016 10 / 21



Finally, we weighted TFs by their probability of binding a DNA sequence containing a CpG
site (Fig 3). In addition to being prevalent, TFs that are more likely to bind CpG-rich sequences
include CTCF, CEBPB,MAX, and YY1. However, TFs that are unlikely to bind CpG-containing
sequences, but which overlap multiple HAI-associated CpG loci, include JUND, JUNB, FOS,
FOSL2, FOSL1, STAT3, STAT1, GATA2, GATA3, RELA, and FOXP2.

We applied the same analysis strategy for B-cell ELISPOT outcomes. The most significant
per-CpG results are shown in S4 Table. Among these top associations are PIEZO1 (p = 1.34E-6;
q = 0.14), KRT7 (p = 3.71E-6; q = 0.15), HDAC4 (p = 4.44E-5; q = 0.64) and intergenic CpGs
within regions of open chromatin with known TFBSs. GO term enrichment and the implicated
sub-networks are shown in S4 Fig. The strongest regionally averaged methylation associations
with B-cell ELISPOT level is TTC5 (p = 2.37E-6; q = 4.25E-2) promoter methylation. Finally, we
applied the same methodology to quantify the enrichment of 135 TF among TFBS-overlapping
CpGs that also have a B-cell ELISPOT association (see S1 Table). We identified POLR2A (20
CpGs; p = 8.96E-2) as under-represented and YY1 (22 CpGs; p = 2.20E-2), and FOXP2 (10
CpGs; p = 8.81E-2) as over-represented. Considering the likelihood of TFs to bind CpG-

Fig 3. Trans-acting CpGs whose baseline levels correlate with HAI titer and that overlap TFBSs are
annotated by the TF’s genome-wide prevalence and the probability for the TF’s binding motif to
contain CpGs. The probability weight, WCpG, corresponds to the probability that a TFBSmotif will contain the
indicated number of CpGs. If a TF is not indexed by JASPAR, it is given aWCpG value of 1.

doi:10.1371/journal.pone.0152034.g003
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containing sequences, TFs very similar to the above for HAI are highlighted, but with increased
representation for GATA3, RELA, and FOXP2.

Integrating Expression and Outcome Associations
We have identified associations between DNAmethylation, gene expression, and humoral
immune outcomes. Next, we compared and contrasted these analyses (Fig 4). In order to inte-
grate across cis-acting associations using both individual CpG and promoter-averaged analyses,
all results are summarized to the gene level. First, we identified cis-acting methylation with asso-
ciations in at least two analyses and list them in Table 3. Two genes show association in all three
analyses: ADARB2, an inhibitor of adenosine deaminase activity (RNA editing), and SPEG, a
kinase with known function in myocyte development. Second, subsets of CpGs that predict late
response also show concordance with low baseline activation (S6 Fig). Participants with low
methylation within a particular cluster of CpGs show lower baseline log2 B-cell ELISPOT values
(2.7±1.8) than participants with high methylation of levels of the same CpGs (3.4±1.4). Third,
known interactions between these genes from network biology resources are gathered and the
level of interaction between them tested for statistical significance. Many of the genes identified
in one analysis have direct interactions (protein-protein interaction or one link apart in known
pathways) with genes identified in the other analyses. For example, there are 640 genes identi-
fied in the analyses focused on B-cell ELISPOT or gene expression. Similar ratios are seen start-
ing from B-cell ELISPOT associated genes (40%) and expression- level associated genes (44%).
Beyond this highly connected core, we tested the level of interconnectivity (fraction of genes

Fig 4. Interrelationships between genes associating with each humoral immune outcome. A) A Venn diagram summarizes the number of genes
associated with each outcome across time points. A “core” set of 54 genes are identified using at least two outcomes. We divide genes only associated with
one outcome into two groups; those that share network links with genes in the core (inner number), and those that do not (outer number).B) The fraction of
genes with direct links to each other (gene-gene connectivity), within and between each outcome-specific set, is compared to observations from random
gene sets of the same size. The six comparisons between HAI, B-cell ELISPOT, and gene expression are shown in the same relative position as the Venn
diagram with a colored vertical bar indicating the gene-gene connectivity observed in our study and the distribution of connectivity from randomly generated
genesets in gray.C) A visualization of the network is shown using the subset of links with greatest confidence and laid out similarly to the other panels. The
extent of gene-gene connectivity is apparent from the number of genes (represented by colored circles) with known direct interactions (gray lines crossing
between groups).

doi:10.1371/journal.pone.0152034.g004
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sharing links) between the genes showing association with only one outcome. Comparing our
observed levels of gene-gene interconnectivity to distributions of randomly selected genes of the
same sizes, the observed levels are high (p< 0.005) for all three pairwise comparisons (Fig 4).

Discussion
In order to better understand immune response to influenza vaccine in the elderly, we investi-
gated the changes in and associations between genome-wide DNAmethylation, gene expres-
sion, and humoral immune response outcomes in a cohort of 158 50–74 year old individuals.
We did not identify large changes in methylation patterns after vaccination. Given the impor-
tant role of epigenetic modification during T cell differentiation [26] and response to infection
[71], this finding was unexpected. It is likely that parenteral administration of a split-virion
vaccine induces a much smaller epigenetic response that a live viral infection. Another factor to
consider is the use of PBMC samples in our study instead of purified cell subsets, which may
have diluted changes in cell subset-specific DNA methylation patterns.

In contrast, strong cis-CpG associations with gene expression were revealed. The impact of
methylation on humoral immunity is complex and highly dependent upon the immune out-
come and the CpG handling–the measurement (HAI versus B-cell ELISPOT), resolution (con-
tinuous or dichotomized), and data handling (per-CpG versus regionally-averaged). These
differences in prioritization potentially indicate the breadth of regulatory marks involved in a
system-wide response.

First, we were interested in which sites’methylation levels have a strong association with
gene expression. Methylation levels in gene promoters and gene bodies have a direct influence
on whether the gene will be expressed. We have referred to such sites as cis-acting and present
their enriched effects (GO terms) in Fig 1. Because of other regulatory interactions, methyla-
tion is not necessarily deterministic for expression levels, but can have a significant effect on
the likelihood that a gene will be expressed. For example, we find a strong negative correlation
(r = -0.61) between IL32 promoter methylation and IL32 gene expression. IL32 is a pro-inflam-
matory cytokine that plays an important role in inducing INF-α production. When differences
in IL32 activity are seen between individuals, a strong component of this difference is likely due
to differential methylation.

In Table 1 we list the genes with highest correlation between average promoter (and gene
body) methylation and expression of the same gene. Functional term enrichment is an efficient

Table 3. Genes showing associations in multiple analyses.

Methods N Gene Symbols

Methylation†-Expression‡ &
Methylation-HAI

22 AATK, AGA, ARHGEF17, C16orf55, DPY19L2P2, EBF4,
FAM24B, FAM24B-CUZD1, FAT4, HCP5, IGHMBP2, MRPL21,
PCDHGA4, PCDHGB2, PPFIBP2, PTCD3, RASSF1, RDH13,
RWDD2B, SLC12A7, WWTR1, ZNF418

Methylation-Expression &
Methylation-B-cell ELISPOT

11 APOLD1, ARHGEF10, CORO2B, IL6ST, LACC1, MCF2L,
NAPRT1, PLEKHN1, SDR42E1, SPATC1, TNFRSF9

Methylation-HAI & Methylation-B-
cell ELISPOT

19 ANGEL2, C2, CDC40, FLOT1, HCN2, HDAC4, JPH4,
METTL22, NXN, PTPRN2, RCOR3, SLC6A19, SLFN13,
SORCS3, TMEM132C, TNRC18, TTC40, UNC13A, ZBTB12

All 3 2 ADARB2, SPEG

† Genes are represented by average probe intensities for cis-acting (promoter or body) CpGs.
‡ Genes are represented by their normalized RNA-Seq expression levels.

doi:10.1371/journal.pone.0152034.t003
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way to summarize themes common to groups of genes. Without focusing the analysis on
immune outcome, the most enriched GO terms among these genes include glutathione regula-
tion, T-cell receptor complexes, antigen and cytokine production, and other immune-related
functions (Fig 1). The observed baseline (pre-vaccination) enrichment of immune-related
genes is likely due to the standard expression profile of PBMCs (immune cell-enriched expres-
sion). It is the change in activation over time that is most directly a result of vaccination. Due
to the high fraction of genes with shared methylation-expression associations between time-
points, the statistically enriched GO terms are often enriched across timepoints. Glutathione is
a potent anti-oxidant. Differential regulation of glutathione could impact overall stability or
robustness of the immune cell population. We find more associations for individual CpGs than
for methylation averaged across the promoter. This is likely to have contributions from multi-
ple effects including the combinatorial nature of gene promoters [72]. Such trends, while not
necessarily directly associated with immune outcomes, are likely to have an indirect impact via
age-associated immune-senescence, or via differential activation of immune-related pathways.

Focusing the analysis on cis-acting CpGs (within a gene promoter or body) whose methyla-
tion level is associated with HAI, more granular terms are prioritized. For example, vesicle traf-
ficking, antigen processing, TLR3 signaling, and multiple cellular differentiation pathways are
significantly enriched (Fig 2). Within vesicle trafficking, COPI complex genes have been
shown to play a role in the phagocytic process in other pathogenic contexts [73,74], making a
plausible mechanism for their strong association with HAI in our study; determining the extent
of immune reaction to vaccination. Unsupervised clustering of humoral immune outcome-
associated CpGs identified a group of subjects with low relative methylation across a cluster of
CpGs and lower B-cell ELISPOT values (S5 Fig).

We also analyzed the association of HAI using a dichotomized endpoint according to FDA
guidelines (responder or non/low responder), using logistic regression models. The top CpGs
are shown in S2 Table. Due to the large number of statistical comparisons, all q-values were
large. However, some of the marginal results may be of some interest due to their known immu-
nologic role. For example, methylation levels of a CpG within the gene body ofHLA-B were
strongly associated with HAI response. Specifically, participants in the 75th percentile of methyl-
ation were at 1/3 the odds of being a responder as their contemporaries in the 25th percentile. A
second example isHCP5 (HLA-complex 5 lincRNA) for which an opposite trend is observed.

We found a relatively small number of overlapping genes among our HAI-centric analyses
(S3 Fig). The genes overlapping across methods and at multiple time points include
HLA-DQB2, RWDD2B, PTPRN2, DNAH2, HCP5, FAM24B, and LOC399815.HLA-DQB2 is a
class-II antigen-presentation gene; a gene vital to immune response. PTPRN2 has been shown
to (de)phosphorylate phosphoinositols leading to an insulin regulatory role [75]. Further genes
associated in at least two time points include the class-I antigen presentation gene,HLA-B, his-
tone deacetylase HDAC4, interleukin receptor IL12RB2, and the transcription factors PAX7
and PAX9.

There are multiple contributing factors to the observed extent of overlapping genes: First,
we have assumed in our linear models that the change in HAI defines vaccine response. How-
ever, in the logistic regression models, a subject may meet the approved definition of “pro-
tected,” but lack any change over time (and vice versa) [32]. Second, in averaging across
genomic regions (e.g., gene promoters), real biologic signals may be lost, especially for tran-
script-specific effects. When multiple CpGs occur within a region, it may be that one (or a few)
carry a greater influence, for a given condition (e.g., vaccination). Alternatively, there could be
one CpG that has no influence. In both cases, averaging may dilute the real signal. For this rea-
son, some genes have significant associations in our per-CpG analysis, which no longer have a
significant association when averaged, and vice versa.
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Trans-acting CpGs overlapping TFBSs were tested for commonly regulated TFs (S1 Table).
CpGs that have significant associations with HAI show enrichment for EZH2 and SUZ12 bind-
ing sites. Both of these TFs are members of Polycomb Recessive Complex 2. Considering B-cell
ELISPOT outcomes, a similar analysis highlights YY1 as being enriched. YY1 assists Polycomb
Complexes [76], and is itself a broadly acting TF. Together, both humoral immune outcomes
point to genomic enhancers differentially methylated and potentially affecting Polycomb Com-
plex regulation. Further, multiple CpGs associating with B-cell ELISPOT regulate FOXP2 bind-
ing sites. FOXP2 has a known role in neurodevelopment [77], and its specific role in immune
development or response may warrant further investigation. TFBS motifs are consensus-based
models used to summarize common sequence features. Recent chromatin immune-precipita-
tion (ChIP) and ChIP-exo analyses demonstrated that not all sequences found bound to a TF
contain the canonical motif [78,79,80]. We have annotated TFs by their likelihood of binding
to CpG-containing sequence. This annotation further highlights FOXP2 (Fig 3). Multiple TFs
with known inflammatory and immune response functions are also highlighted by their low
probability of binding CpG sequences, but with high representation at CpGs whose levels asso-
ciate with HAI and B-cell ELISPOT outcomes.

While the individual genes prioritized by the previously discussed analyses differ, the bio-
logic functions that they regulate are inter-related. The known relationships between these
genes (network connections) highlight their shared functional roles. Since “links” between
genes have been selected primarily from previously reported protein-protein interactions and
pathway relationships, we assume high connectivity indicates functional relationships. Genes
with cis-acting CpGs associated with HAI, B-cell ELISPOT, or expression of the same gene, all
share a high degree of network interactions compared to the same number of randomly
selected genes (Fig 4). While, a portion of the genes showing associations could be spurious,
the extent of interaction among them, and biologic plausibility, point to common functional
roles identified by our different analysis strategies.

The methylation data in our study was generated using the Illumina Infinium Human
Methyl450 BeadChip [81,82], and whole PBMCs. PBMCs contain approximately 15% B-cells,
15% NK cells, and 70% CD3+ T-cells, each of which can be further subdivided. For example,
CD4+ and CD8+ T-cells can be separated or further subdivided into Th1, Th2, and Th17 regu-
latory T cells. While some of these subpopulations will respond to the vaccine antigen con-
gruently, there will be stratifications, such as naive and memory cells, that may respond
differently [83,84,85]. Identifying markers at these finer fractions is much more complicated
and detracts from the goal of an ideal biomarker that can be detected with minimal or no sam-
ple manipulation.

Because CpGmethylation rates will vary between cells and cell lineages, when measured as a
heterogeneous population, it will reflect the relative fraction (0% to 100%) of cells that are meth-
ylated on one or both diploid copies of each site. When the epigenetic state of a given regulatory
site influences one cell type specifically, we would expect a small overall effect size when mea-
sured in PBMCs. This makes even small absolute changes in methylation at the extreme ends
(e.g., moving from 5% to 1%methylated at a given site) of potential functional significance. By
comparing to reference datasets derived from individual cell subsets, signals can be associated
with the cell subsets most likely to be active; a process referred to as deconvolution [86,87].

The data presented here could be expanded in future work. For example, recent studies have
shown that the maximal B-cell response is likely to be observed 5–10 days after vaccination
[88]. In this study, we observed significant changes in B-cell ELISPOT levels by 3 days post-
vaccination and present methylation data associated with these changes. Unfortunately, we do
not have biospecimens from 5–10 days post-vaccination to compare to our earlier timepoint.
Further, we have identified different associations when analyzing out data on a per-CpG basis,
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or averaged across genomic regions (e.g. gene promoters). Assigning the relative strength of
each CpG within each genomic region may be possible given sufficient samples and the geno-
mic relationships available through ENCODE. Expansion of this work to larger datasets and
integration with further data types (e.g. miRNA, or immunosenescence markers across the
Human Immunophenotype Consortium; http://www.immuneprofiling.org) will give a more
complete picture of the systems-level response to vaccination.

In summary, we identify a broad list of CpG sites showing associations with gene expression
and vaccine-induced humoral immune outcomes. While few humoral immune outcome asso-
ciations reach false-discovery-corrected significance, prior knowledge of immune-related roles
for the genes indicates plausible functional associations that will inform a systems biology view
of vaccine response. Network resources indicate many interactions among these genes, provid-
ing further evidence of functional associations. We believe our data indicate compelling epige-
netic trends that play a role in determining humoral response to vaccination against influenza.
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