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Abstract

This study aimed to investigate the metabolic profile of gestational diabetes mellitus (GDM) at both antepartum
and  postpartum  periods.  Seventy  pregnant  women  were  divided  into  three  groups:  the  normal  glucose-tolerant
group  (NGT, n=35),  the  abnormal  glucose-tolerant  groups  without  insulin  therapy  (A1GDM, n=24)  or  with
insulin  therapy  (A2GDM, n=11).  Metabolic  profiles  of  the  plasma  were  acquired  by  proton  nuclear  magnetic
resonance (1H-NMR) spectroscopy and analyzed by multivariate statistical data analysis. The relationship between
demographic  parameters  and  the  potential  metabolite  biomarkers  was  further  explored.  Group  antepartum  or
postpartum  showed  similar  metabolic  trends.  Compare  with  those  of  the  NGT  group,  the  levels  of  2-
hydroxybutyrate,  lysine,  acetate,  glutamine,  succinate,  tyrosine,  formate,  and  all  three  BCAAs  (leucine,  valine,
isoleucine) in the A2GDM group were increased dramatically, and the levels of lysine, acetate, and formate in the
A1GDM  group  were  elevated  significantly.  The  dramatically  decreased  levels  of  3-methyl-2-oxovalerate  and
methanol  were  observed  both  in  the  A1GDM  group  and  A2GDM  group.  Compare  to  the  A1GDM  group,  the
branched-chain  amino  acids  (BCAAs)  of  leucine,  valine,  and  isoleucine  were  increased  dramatically  in  the
A2GDM  group.  The  levels  of  aromatic  amino  acids  (AAAs),  tyrosine  and  phenylalanine,  were  significantly
increased  in  GDM  women,  consistent  with  the  severity  of  GDM.  Interference  of  amino  acid  metabolism  and
disturbance  in  energy  metabolism  occurred  in  women  with  different  grades  of  GDM.  Metabolic  profiles  could
reflect the severity of GDM. Plasma BCAA concentrations showing strong positive correlations with weight and
pre-delivery BMI. This study provides a new perspective to understand the pathogenesis and etiology of GDM,
which may help the clinical management and treatment of GDM.
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Introduction

Gestational  diabetes  mellitus  (GDM)  is  defined  as
hyperglycemia  for  the  first  time  during  pregnancy,

without  pre-existing  type  1  or  type  2  diabetes[1].
Poorly controlled GDM could cause severe short-term
complications  and  long-term  consequences  for  both
mothers and their fetus[2–3]. Pregnant women suffering
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from  GDM  may  have  complications  including
gestational  polyhydramnios,  hypertension,  infection,
increased  risks  of  type  2  diabetes[4],  cardiovascular
diseases[5],  and female malignancies[6] in later life. As
a  clinical  feature  of  the  metabolic  syndrome,  GDM
also has long-term effects on the metabolic profile and
future risk of diabetes in the offspring. It may increase
the  risk  of  macrosomia[7],  respiratory  distress
syndrome[8],  hypoglycemia,  hyperbilirubinemia[9],  and
other adverse health outcomes in neonates[10].

Considering  the  great  risk  of  GDM  for  type  2
diabetes  in  women  and  their  children,  metabolic
features  of  GDM  can  not  only  illuminate  potential
new  biological  mechanisms  underlying  diabetes  in
pregnancy,  but  also  help  the  prevention  and  optimal
treatment of GDM.

By  systematically  studying  the  small-molecule
metabolites,  metabolomics  has  shown  great  potential
in the identification of key metabolites associated with
the  pathogenesis  of  several  metabolic  diseases
including  gestational  diabetes[11–12].  Among  the
various  techniques  used  in  metabolomics,  proton
nuclear  magnetic  resonance  (1H-NMR)  has  its
inherent  advantages:  non-bias  for  a  wide  range  of
metabolites, easy for quantification, non-destructive to
samples,  minimal  sample  processing,  and  high
throughput[13].

Women with gestational diabetes are usually treated
first  by  diet  control  and  lifestyle  changes  (A1GDM).
But  sometimes  these  means  fail  to  achieve  optimal
glycaemic control, and then insulin therapy (A2GDM)
has to be applied[14]. Many metabolic studies on GDM
have  been  conducted  by  profiling  fluid  and  tissue
samples,  which  gives  new  insights  into  the
development of GDM[15], but differentiation of the two
subtypes  of  GDM  was  seldom  investigated[15].  The
complex  pathogenesis  of  GDM  makes  the  prediction
of  GDM  difficult  and  no  single  indicator  has  been
found for high-specific screening in patients who meet
the  GDM  diagnostic  criteria.  In  this  study,  we
analyzed the metabolic profiles of plasma of pregnant
women with (A1GDM and A2GDM) or without GDM
to  characterize  the  metabolic  profile  of  GDM  from
antepartum  to  postpartum  with  different  severity  at
different  stages,  which  might  be  helpful  for  the
understanding of GDM pathogenesis and prediction of
its severity. 

Materials and methods
 

Patient population and experimental design

The  study  was  conducted  according  to  the
guidelines  in  the  Declaration  of  Helsinki,  and

approved  by  the  Ethics  Committee  of  the  First
Affiliated  Hospital  of  Nanjing  Medical  University,
China  (No.2013SR061).  All  patients  signed  a  written
consent and fulfilled a detailed survey. A routine oral
glucose  tolerance  test  (OGTT)  was  performed
between 24 and 28 weeks  of  gestation,  following the
criteria  of  the  International  Association  of  Diabetes
and  Pregnancy  Study  Groups.  The  study  cohort,
composed  of  70  pregnant  women,  was  divided  into
three  groups:  patients  with  negative  OGTT  (NGT,
n=35);  those  with  positive  OGTT  treated  with  diet
alone  during  pregnancy  (A1GDM, n=24),  or  with
insulin (A2GDM group, n=11). Women with multiple
pregnancy, maternal age <18 or >45 years, gestational
age <36  weeks,  or  accompanying  diseases  (pre-
eclampsia, heart disease, asthma, etc.) were excluded. 

Clinical sample collection

Maternal  weight,  height,  blood  pressure,  and  fetal
weight  were  measured  using  calibrated  apparatus
following  standard  procedures.  Gestational  age  was
calculated  based  on  the  last  menstrual  period  and
verified  by  ultrasound  examination  during  early
pregnancy.  Before  the  beginning  of  delivery
(antepartum) and on the 2nd day after cesarean section
(postpartum), after an overnight fasting, venous blood
was collected into EDTA-prepared tubes. The plasma
samples  were  obtained  by  centrifugation  (1200 g,
10  minutes,  4  °C),  and  stored  at  −80  °C  before
measurement. 

1H-NMR spectroscopy

In order to obtain a clear NMR spectrum with good
quality,  300 μL of plasma was added with 600 μL of
methanol to remove the soluble protein in the plasma.
After  vortex,  the  mixtures  were  kept  at  −20  °C  for
20  minutes.  The  supernatant  was  taken  into  the
centrifuge  tube  after  centrifugation  at  1330 g at  4  °C
for  15  minutes,  and  then  the  solvent  was  removed
with  a  nitrogen  blower  complemented  with  freeze-
dryer  to  afford  freeze-dried  sample  powder.  The
freeze-dried plasma samples were dissolved in 600 μL
of  phosphate  buffer  in  D2O,  vortexed,  and  then
centrifuged at 1200 g at 4 °C for 10 minutes to afford
supernatant  (550  μL),  which  was  taken  out  and
transferred  into  a  5  mm  NMR  tube  for  NMR
measurement.

1H-NMR  spectra  were  recorded  on  a  500  MHz
flow-injection  NMR  system  (Bruker  AV500
spectrometer, Germany) at 300 K. In order to remove
the  influence  of  macromolecular  on  the  small
molecular  signals,  we  used  Call –Purcell –Meiboom –
Gill  sequence  [90° –(τ –180° –τ)n–acquisition]  with  a
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total  spin-echo  delay  (2  nτ)  of  10  milliseconds.  The
1H-NMR spectrum was measured by 64 scans of 32 K
data points in the spectrum width range of 10 000 Hz.
The  Fourier  transform  after  free  magnetic  induction
attenuation  was  calculated  by  an  exponential
weighting function of line broadening at 0.5 Hz. 

Data processing and analysis

The  Bruker  Topspin  3.0  software  (Bruker  GmbH,
Germany)  was  used  to  manually  adjust  the  spectral
phase  and  correct  the  baseline.  The  zero  point
calibration  was  determined  by  the  chemical  shift  of
the  trimethylsilylpropanoic  acid  (1H,  0.00  ppm).
Resonances  were  assigned  according  to  literature,
database  query  (Madison,  [http://mmcd.nmrfam.
wisc.edu/];  HMDB, [http://www.hmdb.ca/], etc.),  and
Chenomx  NMR  suite  (Version  7.5,  Chenomx,
Canada)[16–17]. 1H-NMR  spectra  were  converted  to
ASCII  format  by  MestReNova  software  (Version
8.0.1,  Mestrelab  Research  SL,  Spain)  and  then  were
processed with R language (http://cran.r-project.org/).
The residual water signal and the affected neighboring
regions  in  4.7  to  5.4  ppm  were  excluded,  and  the
remaining  integrated  spectral  regions  were  binned
using  an  adaptive  binning  approach.  To  account  for
the  difference  in  sample  dilution  effect,  all  the  data
were  normalized  by  probability  quotient  normali-
zation,  and  then  mean  centered  followed  by  Pareto-
scaling before further analysis.

As an unsupervised multivariate  statistical  method,
principal component analysis (PCA) does not need the
input  of  group  information.  PCA  was  first  used  to
outline  metabolic  patterns  and  metabolic  trends,  and
can be  used to  detect  any outliers  in  the  sample.  The
unsupervised nature of PCA makes its group resolving
ability  poor.  Therefore,  to  better  find  patterns  among
groups,  supervised  orthogonal  partial  least  squares
discriminant  analysis  (OPLS-DA)  method  was  used,
which placed changes contributing to grouping to the
first component, and the remaining unrelated changes
in  subsequent  components.  Repeated  two-fold  cross-
validation  and  mutation  test  (n=2000)  were  used  to
obtain  R2  and  Q2  values  to  verify  the  validity  and
predictability  of  the  model.  The P-value  of  the
permutation test was less than 0.05, indicating that the
OPLS-DA model was reliable. Variables differentiating
groups  were  identified  and  displayed  by  S-plot  and
color-coded loading plot. 

Statistical analysis

The  score  plot  showed  the  classification  of  groups
and  the  color-coded  loading  plot  with  the  absolute
value of the coefficient  values revealed variables that

contributed  to  group  differentiation.  In  the  loading
plot,  the  warm-colored  (e.g.,  red)  metabolites  were
more  significant  to  grouping  than  the  cold-colored
(e.g.,  blue)  ones.  Parametric  Student's t-test  or
nonparametric  Mann-Whitney  test  (according  to  the
conformity  of  the  data  to  normal  distribution)  were
used  to  compare  the  differences  between  groups.
A P-value  less  than  0.05  was  considered  statistically
significant. 

Results
 

Demographic  and  biochemical  analysis  among
patient groups

Demographic  data  and  biochemical  analysis  of  the
three  groups  are  summarized  in Table  1.  Women  in
older  ages  were  more  likely  to  incur  GDM.  Slim
women  were  healthier  according  to  parameters  of
height,  pre-pregnancy  weight,  pre-delivery  weight,
pre-pregnancy  body  mass  index  (BMI),  pre-delivery
BMI,  and  BMI  gain,  despite  the  insignificance.  The
levels of fasting blood glucose, 1-hour OGTT, and 2-
hour  OGTT in  the  A2GDM group  were  significantly
higher than those in the A1GDM and NGT groups. No
statistically  significant  differences  were  detected
regarding systolic and diastolic blood pressure, among
the  three  groups.  The  gestational  weeks  in  the
A2GDM group were significantly lower than those in
the  NGT  and  A1GDM  groups.  With  the  severity  of
the  disease  increased,  neonatal  weight  and  weight
ratio increased but without statistical significance. 

1H-NMR spectra analysis

Representative 1H-NMR spectra of plasma samples
at both antepartum and postpartum periods are shown
in Fig. 1 with major metabolites labeled. A total of 25
metabolites in plasma were identified. 

Metabolic changes in the three groups

The  important  differential  metabolites  were
visualized  in  heatmap  (Fig.  2)  aided  by  hierarchical
cluster  analysis  to  disclose the pattern of  endogenous
metabolites across groups intuitively.

To  explore  metabolic  differences,  we  firstly
compared  the  GDM  (A1GDM+A2GDM)  group  and
NGT group (Fig. 2A). Compared with the antepartum
NGT group, the levels of sarcosine, lactate glutamine,
formate,  succinate,  lysine,  acetate,  creatine,  and  all
three  branched-chain  amino  acids  (BCAAs:  leucine,
valine,  isoleucine)  were  increased  dramatically  in  the
antepartum  GDM  group,  while  the  levels  of  hypo-
xanthine,  3-methyl-2-oxovalerate,  3-hydroxybutyrate,
and methanol were dramatically decreased. Compared
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with  the  postpartum  NGT  group,  phenylalanine,
glucose,  glutamine,  formate  lysine,  tyrosine,  acetate,
and all three BCAAs were increased in the postpartum
GDM  group,  while  levels  of  3-methyl-2-oxovalerate,
3-hydroxyisobutyrate, and methanol were dramatically
reduced.

The  differences  of  metabolic  profile  among  the
three  groups  were  further  explored  (Fig.  2B).  Subtle

changes  were  found  indicating  both  antepartum  and
postpartum  changes  in  metabolite  abundance  among
the three groups of NGT, A1GDM, and A2GDM. As
compared  to  the  antepartum  NGT  group,  trends  of
metabolite  changes  in  the  A1GDM  and  A2GDM
groups  were  similar.  Compared  with  the  antepartum
NGT  group,  the  levels  of  2-hydroxybutyrate,  lysine,
acetate,  glutamine,  succinate,  tyrosine,  formate,  and

Table 1   Baseline clinical characteristics of the NGT, A1GDM, and A2GDM groups

Characteristics NGT (n=35) A1GDM (n=24) P-valuea A2GDM (n=11) P-valueb

Age (year) 31.12 (3.96) 33.83 (4.59) * 34.00 (5.68)

Height (cm) 163.37 (4.95) 161.91 (4.23) 159.82 (4.40) *

Pre-pregnancy weight (kg) 59.41 (8.67) 62.34 (11.82) 60.85 (8.57)

Pre-pregnancy BMI 22.22 (2.86) 23.92 (4.08) 24.06 (3.65)

Pre-delivery weight (kg) 73.77 (8.12) 74.28 (8.49) 78.15 (17.24)

Pre-delivery BMI 27.60 (2.67) 28.38 (3.02) 28.99 (3.07)

BMI gain 5.40 (2.06) 4.68 (1.94) 4.93 (2.02)

Systolic pressure (mm/Hg) 117.97 (10.53) 120.94 (10.09) 123.64 (8.13)

Diastolic pressure (mm/Hg) 74.91 (8.36) 78.13 (9.53) 79.00 (9.98)

FBG (mmol/L) 4.26 (0.36) 5.14 (0.91) *** 6.93 (1.21) ***

1-hour OGTT (mmol/L) 7.57 (1.45) 10.72 (1.98) *** 13.78 (3.80) ***

2-hour OGTT (mmol/L) 6.92 (0.98) 9.61 (1.65) *** 12.42 (2.52) ***

Neonatal weight (g) 3605.71 (455.43) 3684.09 (669.65) 3700.00 (543.60)

Gestational weeks 38.90 (0.98) 38.60 (1.09) 38.00 (0.77) ***

Neonatal weight ratio 1.08 (0.12) 1.11 (0.18) 1.16 (0.18)
Group data are presented as mean (standard deviation). *P<0.05, **P<0.01, ***P<0.001. Parametric Student's t-test or nonparametric Mann-Whitney test (according to the
conformity of the data to normal distribution) were used to calculated the P-values. NGT: normal glucose-tolerant group; A1GDM: abnormal glucose-tolerant group
without insulin therapy; A2GDM: abnormal glucose-tolerant group with insulin therapy; BMI: body mass index; BMI gain: BMI gain during pregnancy; FBG: fasting
blood glucose; OGTT: oral glucose tolerance test. aComparison between A1GDM and NGT, bcomparison between A2GDM and NGT.
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Fig. 1   Typical 500 MHz 1H-NMR spectra of plasma samples obtained from six groups. A total  of 25 metabolites were identified in
plasma with database query and software. 1: 2-hydroxybutyrate; 2: leucine; 3: valine; 4: isoleucine; 5: 3-hydroxyisobutyrate; 6: 3-methyl-2-
oxovalerate;  7:  3-hydroxybutyrate;  8:  lactate;  9:  alanine;  10:  lysine;  11:  acetate;  12:  N-acetylcysteine;  13:  glutamine;  14:  glutamate;  15:
succinate;  16:  sarcosine;  17:  creatine;  18:  creatine phosphate;  19:  glucose;  20:  methanol;  21:  glycine;  22:  tyrosine;  23:  phenylalanine;  24:
hypoxanthine; 25: formate. 1H-NMR: proton nuclear magnetic resonance; NGT: normal glucose-tolerant group; A1GDM: abnormal glucose-
tolerant  group  without  insulin  therapy;  A2GDM:  abnormal  glucose-tolerant  group  with  insulin  therapy;  NGTA:  antepartum  NGT  group;
NGTP:  postpartum  NGT  group;  A1GDMA:  antepartum  A1GDM  group;  A1GDMP:  postpartum  A1GDM  group;  A2GDMA:  antepartum
A2GDM group; A2GDMP: postpartum A2GDM group.
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all  three  BCAAs  were  increased  dramatically  in  the
antepartum A2GDM group, but only three metabolites
(lysine,  acetate,  and  formate)  were  significantly
elevated  in  the  antepartum  A1GDM  group.
Dramatically  decreased  levels  of  3-methyl-2-
oxovalerate  and  methanol  were  observed  in  the
antepartum  A1GDM  and  A2GDM  groups  compared
with  the  antepartum  NGT  group.  All  three  BCAAs
were  increased  dramatically  in  the  antepartum
A2GDM  group  compared  with  the  antepartum
A1GDM group.

As  compared  with  the  postpartum NGT group,  the
levels of 2-hydroxybutyrate, lysine, acetate, glutamine,
glutamate,  glucose,  glycine,  tyrosine,  phenylalanine,
formate,  and  all  three  BCAAs  were  increased  in  the
postpartum  A2GDM  group,  while  the  levels  of
leucine,  isoleucine,  lysine,  acetate,  glutamine,
tyrosine,  and  formate  were  increased  in  the  post-
partum  A1GDM  group.  Dramatically  reduced  levels
of  3-methyl-2-oxovalerate,  3-hydroxyisobutyrate,  and
methanol  were  observed  in  the  postpartum A1GDM

and  A2GDM  groups,  compared  with  the  postpartum
NGT  group.  There  were  no  significant  metabolites
changes  between  the  postpartum  A1GDM  and
A2GDM groups.  The  levels  of  3-hydroxyisobutyrate,
3-methyl-2-oxovalerate, and alanine were significantly
decreased in the postpartum A1GDM group compared
with the antepartum A1GDM group. 

Metabolic pattern of the three groups

The  PCA model  was  performed  on  the  binned 1H-
NMR  metabolites  from  the  study  groups.  The  PCA
score  plot  for 1H-NMR  data  of  plasma  exhibited
partial  separation  in  the  scores  plots  among the  three
groups.  Relatively  good  separation  was  achieved
between  the  NGT  and  A2GDM  groups  for  both
antepartum  and  postpartum  periods,  but  severe
overlapping  of  other  groups  was  found.  To  eliminate
the  variations  irrelevant  to  the  grouping,  OPLS-DA
was  performed  to  disclose  the  metabolic  differences
among  groups.  Score  plots  were  used  to  show  the
clusters between classes and loading/S-plot were used
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Fig. 2   Heat map visualization of clustering results of the metabolites in plasma for gestational diabetes mellitus patients of different
groups. Rows represent  metabolites  and columns represent  groups.  Color  key indicates  metabolite  quantities:  reddish means increase and
bluish  means  decrease  of  metabolites.  A:  Comparisons  between  the  GDM  (A1GDM  [n=24]  +  A2GDM  [n=11])  group  and  NGT  group
(n=35) at antepartum and postpartum periods: GDMP vs. NGTP, GDMA vs. NGTA. *P<0.05, **P<0.01, ***P<0.001. B: Comparisons between
the A1GDM group (n=24),  A2GDM group (n=11),  and NGT group (n=35)  at  antepartum and postpartum periods:  A2GDMA vs.  NGTA,
(a)A2GDMA vs. A1GDMA, A2GDMP vs. NGTP, A1GDMP vs. NGTP, (b)A1GDMP vs. A1GDMA, A1GDMA vs. NGTA. *P<0.05, **P<0.01,
***P<0.001.  Parametric  Student's t-tests  were  used  for  calculating  the P values.  NGT:  normal  glucose-tolerant  group;  A1GDM:  abnormal
glucose-tolerant  group  without  insulin  therapy;  A2GDM: abnormal  glucose-tolerant  group  with  insulin  therapy;  NGTA:  antepartum NGT
group;  NGTP:  postpartum  NGT  group;  A1GDMA:  antepartum  A1GDM  group;  A1GDMP:  postpartum  A1GDM  group;  A2GDMA:
antepartum A2GDM group; A2GDMP: postpartum A2GDM group.
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to  identify  differential  metabolites  between  groups.
Differential  metabolites  were those in  the upper  right
and lower left quadrant of the S-plot.

In  the  score  plot  (Fig.  3),  the  antepartum  GDM
groups  were  completely  separated  from  the
antepartum  NGT  group  (Fig.  3A),  which  suggested
that  severe  metabolic  perturbation  happened  in
antepartum women of both the A1GDM and A2GDM
groups.  The  partial  overlapping  of  the  antepartum
A1GDM  group  and  the  antepartum  A2GDM  group
suggested  subtle  severity  difference  of  the  diseases.
The  postpartum  A1GDM  and  A2GDM  groups  were
separated from the postpartum NGT group (Fig. 3C),
with  severe  overlapping  between  the  postpartum
A1GDM  and  A2GDM  groups.  Metabolites  with
significant  contribution  to  the  clustering  were
showcased in the score plot (Fig. 3B and D). 

Relationship  between  endogenous  metabolites  and
demographic parameters

To  further  investigate  the  relationship  between
demographic  parameters  and  the  plasma  biomarkers,

PLS  regression  analyses  of  patients'  data  in  three
groups  at  antepartum  and  postpartum  periods  were
performed  using  demographic  parameters  as  Y
variables and metabolite concentrations as X variables
showing in Fig.  4.  The  NGT women were  shown on
the  left  panel,  while  the  GDM  women  on  the  right,
with  A1GDM  closing  to  NGT  women.  Positive
correlations  between  BCAAs  and  parameters  of
weight  and  pre-delivery  BMI  were  observed.  Lysine,
2-hydroxybutyrate,  acetate,  and  glutamine  showed
positive  correlations  with  weight  and  pre-delivery
BMI. In addition, negative correlations were presented
from  methanol,  3-hydroxyisobutyrate,  3-hydroxybu-
tyrate , and 3-methyl-2-oxovalerate to weight and pre-
delivery BMI (Fig. 4A and B). 

Correlation  network  between  metabolites  and
demographic parameters

Several  important  demographic  parameters  were
filtered  out,  including  risk  factors  such  as  BMI  and
weight.  BMI  and  pre-delivery  weight  were  in  the
center  of  the  network,  showing  a  positive  correlation
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Fig.  3   OPLS-DA  score  plot  and  mean  score  trajectory  of  plasma 1H-NMR  spectra  obtained  from  antepartum  and  postpartum
NGT/A1GDM/A2GDM patients. A: The OPLS-DA score plot between NGTA (n=35), A1GDMA (n=24), and A2GDMA (n=11) groups.
B: The OPLS-DA score plot between NGTP (n=35), A1GDMP (n=24), and A2GDMP (n=11) groups. C and D: Metabolites with significant
contribution to the clustering were showcased in the score plot. NGTA: antepartum NGT group; NGTP: postpartum NGT group; A1GDMA:
antepartum A1GDM group; A1GDMP: postpartum A1GDM group; A2GDMA: antepartum A2GDM group; A2GDMP: postpartum A2GDM
group; OPLS-DA: orthogonal partial least squares discriminant analysis.
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with most metabolites at antepartum period (Fig. 5A).
BCAAs (such as leucine) played a vital role and were
correlated positively with weight and BMI at both pre-
delivery and pre-pregnancy periods. A negative correla-
tion  was  presented  between  3-methyl-2-oxovalerate
and  pre-pregnancy  BMI.  BMI  gain  and  weight  gain
had  positive  correlations  with  two  metabolites,  3-
hydroxyisobutyrate and succinate (Fig. 5A). Negative
correlations were exhibited from succinate to BMI and
weight gain, and from 3-hydroxyisobutyrate to weight

and pre-delivery BMI at postpartum period (Fig. 5B).
Acetate,  lysine,  and  formate  show  positive
correlations with weight and BMI at both pre-delivery
and pre-pregnancy periods (Fig. 5B). 

Discussion

In  this  study,  we  divided  pregnant  women  with
GDM into A1GDM and A2GDM groups according to
the  severity  of  the  disease,  then  investigated  the

 

–1.0

–1.0

–0.5

–0.5

0

0

0.5

0.5

1.0

1.0

–4

–4

–2

–2

0

0

2

2

4

4

X-component t1

X-
co

m
po

ne
nt

 t 2

Circle of Correlations on t1, t2

–1.0

–1.0

–0.5

–0.5

0

0

0.5

0.5

1.0

1.0

–4

–4

–2

–2

0

0

2

2

4

4

X-component t1

X-
co

m
po

ne
nt

 t 2

Circle of Correlations on t1, t2

 

Fig. 4   Relationship between endogenous metabolites and demographic parameters. Correlation between endogenous metabolites and
demographic parameters.  A: Correlation circle (biplot,  three components, R2=0.73, Q2=0.54) of  the three group patients  (antepartum NGT
[n=35], antepartum A1GDM [n=24], and antepartum A2GDM [n=11]). B: Correlation circle (biplot, three components, R2=0.73, Q2=0.54) of
the three group patients (postpartum NGT [n=35], postpartum A1GDM [n=24], and postpartum A2GDM [n=11]). The X- and Y-axis of the
figure denote the first and second components of the PLS model; and the concentric circles represent the explained variance, respectively.
NGT:  normal  glucose-tolerant  group;  A1GDM:  abnormal  glucose-tolerant  group  without  insulin  therapy;  A2GDM:  abnormal  glucose-
tolerant group with insulin therapy; PLS: partial least squares.
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Fig. 5   Correlation network between metabolites and demographic parameters. The network is represented with metabolites and other
parameters  as  nodes  (framed  in  circle).  The  colored  lines  indicate  correlations  (red  for  positive  and  blue  for  negative  correlations,  color
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baseline  clinical  data  and  the  changes  in  plasma
metabolites  by  comparing  with  NGT  group,  at  both
antepartum  and  postpartum  periods,  using  NMR  and
multivariate  statistical  analysis.  The  relationship
between  demographic  parameters  and  the  potential
metabolite  biomarkers  was  further  explored.
Significant  differences  in  the  blood  glucose  levels
(fasting,  1-hour  OGTT,  and  2-hour  OGTT)  of
pregnant women were found among the three groups,
and  the  blood  glucose  levels  of  the  A2GDM  group
were  the  highest.  A2GDM,  which  needs  insulin
therapy,  is  usually  considered  more  serious  than
A1GDM.

Interestingly,  the  height  of  pregnant  women  was
gradually decreased as GDM became more severe: the
height  of  women in  A2GDM was  significantly  lower
than those in  NGT[18].  With the decrease of  the mean
gestational age at the time of delivery, the severity of
maternal  diabetes  increased.  The  gestational  age  at
delivery in A2GDM women was significantly smaller
than  normal  pregnant  women  because  they  generally
needed  to  terminate  their  pregnancy  earlier  due  to
drug  therapy  or  other  clinical  instructions[19],  leading
to  preterm delivery  and  birth  of  small  for  gestational
age  infant.  However,  neonatal  weight  and  neonatal
weight  ratio  showed  a  gradually  rising  trend  as  the
disease  severity  increases,  but  without  statistical
significance, suggesting the overgrowth of the fetuses
in A2GDM women[8,18].

A1GDM  and  A2GDM  groups  at  both  antepartum
and  postpartum  periods  shared  similar  metabolic
changes  as  compared  with  the  NGT  group.  Most  of
these  metabolites  were  related  to  amino  acid
metabolism, energy metabolism, and oxidative stress. 

Amino acids metabolism

BCAAs,  consisting  of  leucine,  isoleucine,  and
valine,  are  the  most  frequently  studied metabolites  in
GDM[15]. BCAAs are essential amino acids that cannot
be  produced  by  the  body,  and  must  be  primarily
obtained  from  the  diet.  In  our  study,  we  found  a
steady  elevation  of  BCAAs  as  the  disease  became
more  severe:  their  levels  in  A2GDM  were
significantly  higher  than  those  in  NGT,  which  is
inconsistent  with  the  results  reported  in  several
literatures[20–21].  Higher  concentrations  of  BCAAs  are
associated  with  insulin  resistance  in  the  transition
from GDM to type 2 diabetes[21] and increased risk of
incident type 2 diabetes[22]. Plasma BCAAs are useful
markers to detect early type 2 diabetes and distinguish
type 2 diabetes subtypes[23–24].

Recent  studies  found  that  elevated  circulating
BCAAs  might  lead  to  excess  trans-endothelial  fatty

acid  transport  into  skeletal  muscle,  promote  lipid
accumulation and blunt insulin signaling via secreting
3-hydroxyisobutyrate  (catabolic  intermediate  of  the
BCAA  valine)[25],  which  was  associated  with  insulin
resistance[26]. As a metabolic product of isoleucine, 3-
methyl-2-oxovalerate  was  closely  associated  with
impaired  fasting  glucose  tolerance.  In  our  study,  as
compared  with  the  NGT  group,  the  two  metabolic
products of BCAAs were markedly decreased in both
the  A1GDM  and  A2GDM  groups,  and  the  decrease
was  even  more  significant  at  postpartum  period,
suggesting impaired catabolism of BCAAs.

In  addition  to  BCAAs,  elevated  levels  of  plasma
aromatic  amino  acids  (AAAs)  were  also  associated
with  insulin  resistance,  impaired  glucose  tolerance,
and type 2 diabetes[24]. Many studies showed elevated
plasma  levels  of  AAAs  before  the  manifestation  of
type 2 diabetes[24]. Compared with the NGT group, the
levels  of  AAAs  tyrosine  and  phenylalanine  were
significantly increased in both A1GDM and A2GDM
groups before and after delivery[20].

Glutamine and glutamine metabolism are known to
be  perturbed  in  diabetes[27]. Glutamine  levels  are
reduced in  case  of  insulin  resistance[28].  As  compared
with the NGT group, glutamine was increased in both
the  A1GDM  and  A2GDM  groups,  with  more
significant for A2GDM. Several studies have reported
the  increase  of  glutamine  in  GDM  patients[29],  which
might  be  attributed  to  blood  sugar  control  in  GDM
patients  as  both  diet  control  and  insulin  treatment
could inhibit gluconeogenesis: the latter could exert a
greater  impact.  Increased  gluconeogenesis  rate  is  a
key and very early pathological feature of diabetes and
other  states  involving  low  insulin  concentration.
Excessive  gluconeogenesis  is  also  a  contributing
factor  to  hyperglycemia  in  diabetes  because  of
impaired  downregulation  in  response  to  insulin.  As  a
gluconeogenic amino acid, glutamine is increased due
to  gluconeogenesis  inhibition  and  thus  decreases  the
consumption  of  glutamine.  Glutamate  can  be
synthesized  from  glutamine  metabolized  by  the
mitochondrial  enzyme.  The  significant  increase  of
glutamine  in  A2GDM  could  provide  ample  substrate
for  the  synthesis  of  glutamate,  leading  to  its  increase
in the A2GDM group. 

Energy metabolism

In  this  study,  the  level  of  succinic  acid,  an
important  intermediate  product  of  the  Krebs  cycle,
was dramatically increased. It has been speculated that
the utilization of succinic acid (i.e., the disturbance of
Krebs  cycle)  is  blocked,  resulting  in  insufficient
energy  supply[30].  The  cell  needs  to  be  replenished  in
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other  ways  in  order  to  gain  energy.  When  energy
cannot  meet  the  body's  needs,  energy  metabolism
turns to anaerobic glycolysis as an energy remedy.

However,  when  anaerobic  glycolysis  is  not
sufficient to meet the body's energy need, it  is neces-
sary  to  activate  other  energy  metabolic  pathways,
including  the  ketone  bodies  and  the  creatine/
phosphocreatine  (Cr/PCr)  system[31].  Cr/PCr  system,
which  produces  ATP  through  the  creatine  kinase
(CK),  playing  an  important  role  in  maintaining  the
ATP level. Cell high metabolic state and energy crisis
can lead to changes in the level of Cr/PCr. The higher
level  of  Cr/PCr  in  the  A1GDM  group  and  A2GDM
group  in  our  study  showed  that  people  with  diabetes
were in a high energy expenditure state.

As  a  kind  of  organic  acid  produced  from 2-ketone
butyric acid, 2-hydroxybutyrate is also produced when
thioether  is  converted  into  cysteine  for  the
biosynthesis  of  glutathione.  Hence,  it  is  speculated
that  2-hydroxybutyrate  is  involved  in  insulin
resistance  and  impair  glucose  homeostasis[32].
Studies[33] have  found  that  in  late  pregnancy,  plasma
2-hydroxybutyrate  concentration  in  GDM  patients  is
higher  than  that  in  the  control  group.  Plasma  2-
hydroxybutyrate  concentrations  in  the  three  groups
were  steadily  increased,  as  shown  in  the  heat  map
(Fig. 2B), indicating a progressive metabolic disorder
of  the  disease.  The  increase  of  plasma  2-hydroxy-
butyrate  could  be  detected  9.5  years  before  the
diagnosis  of  hyperglycemia,  demonstrating  that  2-
hydroxybutyrate  could  be  an  independent  index  of
early prediction of human glucose abnormality.

We  observed  a  significant  decrease  of  3-hydroxy-
butyric acid in both the A2GDM and A1GDM groups,
suggesting that energy metabolism in the Krebs cycle
was  disturbed  in  GDM  patients.  In  the  absence  of
energy, 3-hydroxybutyric acid was used as the energy
source for metabolism, leading to a decreased level of
3-hydroxybutyric acid[34]. 

Correlation network analysis

The  relationships  between  metabolite  changes  and
weight,  and  pre-pregnancy  and  pre-delivery  BMIs
were  further  investigated.  Pre-pregnancy  weight  and
BMI  were  significantly  correlated  with  multiple
metabolites,  at  both  antepartum  (Fig.  5A)  and
postpartum  (Fig.  5B)  periods.  Strong  positive
correlations  between  plasma  BCAAs  concentrations
and  the  levels  of  weight  and  BMI  pre-delivery  were
observed.  However,  there  was  no  strong  correlation
between  prenatal  weight  and  BMI  gain,  and
metabolites.  The  possible  reasons  were  that  once
pregnant  women  were  diagnosed  with  GDM,  they

would receive intervention (such as diet and exercise)
to control their weight. 

Limitation

As compared with antepartum period, there were no
significant  metabolic  differences  among  the  three
groups  at  postpartum  period.  One  possible  reason  is
that  placental  hormones  related  to  insulin  resistance
usually fall back to normal 2 to 3 weeks after delivery,
so its effect on metabolism remains till the second day
after  delivery,  which  is  one  limitation  of  our  study.
Another limitation is that  the sample size is  not large
enough.  Further  studies  should  be  done  on  a  larger
scale to increase the statistical power. 

Conclusion

In  this  study, 1H-NMR  spectrometry  was  used  to
study  the  metabolic  differences  in  GDM  of  different
severity. The results showed the interference of amino
acid  metabolism  and  energy  metabolism  in  women
with  GDM.  Metabolic  profiles  could  reflect  the
severity of GDM. Differences in metabolites in GDM
patients  persisted  in  a  short  time  after  delivery.  The
body  weight  and  BMI  of  pregnant  women  were
positively  correlated  with  BCAAs  and  other
metabolites:  pregnant  women of  fatty-body type  may
be  more  prone  to  GDM.  This  study  provides  a  new
way  for  understanding  of  the  pathogenesis  of  GDM,
which  is  helpful  for  the  prediction  of  GDM severity,
as well as the management and treatment of GDM. 
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