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1 |  INTRODUCTION

Atypical chronic myeloid leukemia (aCML) and chronic 
myelomonocytic leukemia (CMML) represent two entities 
of hematopoietic neoplasms which display a combination 
of myelodysplastic and myeloproliferative features (MDS/
MPN).1

Atypical CML is a rare BCR‐ABL1 negative disease with an 
estimated frequency of 1 to 2 cases for every 100 CML cases.2 
World health organization (WHO) criteria for aCML disease 

are (a) absence of BCR‐ABL1 rearrangement, (b) >13 000 leu-
kocytes, and (c) <10% monocytes.1 The median overall sur-
vival (OS) is 25 months, approximately 40% of aCML cases 
show leukemic transformation within 18 months of diagnosis 
(source). Risk factors that impair OS in aCML patients are 
>65 years, female gender, <10 g/dL hemoglobin, leukocytes 
>50 × 109 L, and circulating immature myeloid cells.2,3

During the last decade, the establishment of genetic mark-
ers significantly improved diagnosis of myeloid neoplasms. 
CSF3R mutations, which were discovered in 2013, are shared 

Received: 2 October 2018 | Revised: 30 November 2018 | Accepted: 6 December 2018

DOI: 10.1002/cam4.1946

O R I G I N A L  R E S E A R C H

Comprehensive mutation profiling and mRNA expression 
analysis in atypical chronic myeloid leukemia in comparison with 
chronic myelomonocytic leukemia

Muhammad Faisal | Helge Stark | Guntram Büsche | Jerome Schlue |  
Kristin Teiken | Hans H. Kreipe | Ulrich Lehmann | Stephan Bartels

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Institute of Pathology, Hannover Medical 
School, Hannover, Germany

Correspondence
Stephan Bartels, Institute of Pathology, 
Hannover Medical School, Hannover, 
Germany.
Email: bartels.stephan@mh-hannover.de

Funding information
MHH

Abstract
Atypical chronic myeloid leukemia (aCML) and chronic myelomonocytic leukemia 
(CMML) represent two histologically and clinically overlapping myelodysplastic/
myeloproliferative neoplasms. Also the mutational landscapes of both entities show 
congruencies. We analyzed and compared an aCML cohort (n = 26) and a CMML 
cohort (n = 59) by next‐generation sequencing of 25 genes and by an nCounter ap-
proach for differential expression in 107 genes. Significant differences were found 
with regard to the mutation frequency of TET2, SETBP1, and CSF3R. Blast content 
of the bone marrow revealed an inverse correlation with the mutation status of 
SETBP1 in aCML and TET2 in CMML, respectively. By linear discriminant analy-
sis, a mutation‐based machine learning algorithm was generated which placed 19/26 
aCML cases (73%) and 54/59 (92%) CMML cases into the correct category. After 
multiple correction, differential mRNA expression could be detected between both 
cohorts in a subset of genes (FLT3, CSF3R, and SETBP1 showed the strongest cor-
relation). However, due to high variances in the mRNA expression, the potential 
utility for the clinic is limited. We conclude that a medium‐sized NGS panel provides 
a valuable assistance for the correct classification of aCML and CMML.
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by aCML and chronic neutrophilic leukemia, a rare subtype 
of myeloproliferative neoplasms (MPN) characterized by 
neutrophilia with less than 10% immature precursors in the 
peripheral blood.1,4,5 SETBP1 mutations are also found to be 
closely related to the aCML phenotype. Mutations are present 
in 24% to 33% of cases and are associated with leukocytosis 
and shorter OS.6,7 Furthermore, ETNK1 gene mutations were 
found recently in a minority of cases of aCML and CMML.9,10 
Mutational landscape of CMML are already analyzed in large 
series of patient samples.11,12 ASXL1, SRSF2, and TET2 gene 
mutations are found frequently in CMML, each in approxi-
mately 40% of cases.14 However, none of these mutations are 
specific for aCML or CMML, even SETBP1 mutations can 
be found in a subset of CMML cases.15

Bone marrow histopathology reveals tremendous over-
lap between aCML and CMML which sometimes have very 
similar presentation. The WHO classification separates both 
myelodysplastic‐myeloproliferative neoplasm according to 
peripheral blood findings (10% blood monocytes and ≥1000 
monocytes/µL for CMML, >10% immature granulocytic pre-
cursors in aCML), although monocytosis in the context of 
neutrophilia may be present in both diseases.16 In addition, 
leukocytosis may also be found in the peripheral blood of 
CMML patients not only in case of aCML disease.14

Here we report a comprehensive mutation profiling (by 
next‐generation sequencing, NGS) and mRNA expression 
analysis (by nCounter technology) of aCML vs CMML pa-
tient sample cohorts. Our aim was to delineate overlapping 
and discriminatory molecular features between both entities. 
To the best of our knowledge, high throughput mRNA ex-
pression profiling of bone marrow cells in aCML was not 
performed before.

2 |  PATIENT SAMPLES, 
MATERIALS, AND METHODS

Decalcified formalin‐fixed, paraffin‐embedded (FFPE) 
bone marrow trephines were selected retrospectively from 
the archive of the Institute of Pathology, Hannover Medical 
School, Germany. All cases were analyzed in the routine di-
agnostic procedures of the institute. In total, 119 patient sam-
ples (aCML n = 26, CMML n = 59, reactive controls n = 34) 
were included and clinical data (age, gender, hemoglobin, 
leukocyte count, percentage of monocytes, and blasts in pe-
ripheral blood) were collected, if available. Disease classifi-
cation was following the WHO criteria.1

Reactive controls were obtained from individuals who 
underwent a bone marrow biopsy, but histomorphological 
examination was unobtrusive. All samples of this control 
cohort were analyzed by sequencing as described below. 
None of the 25 genes under investigation showed a gene 
mutation.

Statistical analysis was performed with GraphPad Prism 
Version 5.00, two‐sided Fisher’s exact test (results are con-
sidered to be statistically significant when α < 0.05) and 
two‐tailed Mann‐Whitney U test (results are considered to be 
statistically significant when P < 0.05) were used. The study 
design is following the guidelines of the Hannover Medical 
School ethics committee. Informed consent was obtained 
from all patients under study.

2.1 | Nucleic acid extraction
Extraction of DNA and RNA was performed with the 
Maxwell RSC instrument (Promega, Madison, WI, USA) 
according to the manufacturer's recommendations. Three to 
five sections of 10 µm each were taken, depending on the 
size of the trephine. DNA was extracted with the Maxwell 
RSC DNA FFPE kit; RNA was extracted with the Maxwell 
RSC RNA FFPE kit (Promega). Nucleic acid concentration 
were quantified using a Qubit 2.0 fluorometer (Invitrogen, 
Darmstadt, Germany) and the Qubit dsDNA high sensitiv-
ity kit as well as the Qubit RNA high sensitivity assay kit 
(LifeTechnologies, Carlsbad, CA, USA).

2.2 | NGS
Targeted re‐sequencing of 23 genes was performed with a 
customized panel as described previously.17 MPL Exon 
10 and ETNK1 Exon 3 sequencing were performed by 
Pyrosequencing as described.18 PCR and sequencing primers 
for pyrosequencing are listed in Table S1. Data evaluation 
and variant annotation were performed with the ANNOVAR 
software and database tools19 (http://annovar.openbioinfor-
matics.org/en/latest/).

2.3 | BCR‐ABL1 fusion gene analysis
Multiplex reverse transcription PCR to detect BCR‐ABL1 fu-
sion transcripts was performed as described.20 In the entire 
aCML cohort (n = 26), the BCR‐ABL1 fusion transcript was 
absent.

2.4 | Classification of samples
Classification analysis was performed in the R program-
ming language (https://www.r-project.org/) using logistic 
regression (R package stats), multinomial logistic regression 
(R package nnet), linear discriminant analysis (R package 
MASS), random forest analysis (R package randomForest), 
and support vector machines with linear kernel (R package 
e1071). Except for random forest analysis, for each possi-
ble number of genes used for classification, the most suitable 
gene subset was identified using an exact leaps‐and‐bounds 
algorithm optimizing the Tau‐squared coefficient (R package 

http://annovar.openbioinformatics.org/en/latest/
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744 |   FAISAL et AL.

subselect). This algorithm also automatically excluded gene 
sets with highly correlated variables. The performance all 
resulting models for unknown samples was estimated using 
leave‐one‐out cross‐validation (R package caret).

2.5 | nCounter‐based quantification of 
mRNA expression
For mRNA expression analysis, 150 ng of total RNA was 
used per patient sample. A customized code set was designed 
including 107 genes (Table S2) which are involved in cell 
signaling, transcription, apoptosis and mitosis, epigenetic 
regulation, and RNA processing. Hybridization of RNA and 
probes was performed using the nCounter Gene Expression 
Assay according to the manufacturer's recommendations 
(NanoString Technologies, Seattle, WA, USA). Processing 
and analysis of mRNA expression data was performed using 
the nSolver™ Analysis Software version 3.0, the nCoun-
ter™ Advanced Analysis Package version 1.1.5 as well as 
in‐house software written in the R programming language. 
Normalization parameters included background normaliza-
tion (arithmetic mean of reactive controls), positive control 
normalization (geometric mean of positive controls), and 
reference gene normalization. We used the GeNorm algo-
rithm21 included in the nCounter™ Software to automatically 
select the five most suitable reference genes for normaliza-
tion (EHMT1, HDAC3, PIAS1, NUBP1, and PIK3R4). After 
normalization, samples that exhibited less than 20 counts 
for more than 50% of all mRNA targets were excluded from 
further analysis. Statistical analysis included comparisons 
of multiple groups using the Kruskal‐Wallis test with cor-
rection for multiple testing (Benjamini‐Hochberg) as well 
as pairwise comparisons against reference samples using 

the Mann‐Whitney test with correction for multiple test-
ing (Benjamini‐Hochberg). The reactive control sample co-
hort (n = 34) was used as the normal reference for mRNA 
expression.

3 |  RESULTS

3.1 | Clinical characteristics of patient 
cohorts
Clinical characteristics of cases are summarized in Table 
1. Mean values of gender, age, and hemoglobin are not dif-
ferent between the cohorts. Individual data of all patients 
under study are listed in Tables S3 and S4. As expected, the 
mean leukocyte count in the aCML cohort was significantly 
higher than in the CMML cohort (52.1 × 103 vs 25.4 × 103, 
P < 0.0001). Likewise, the percentage of monocytes in the 
peripheral blood is highly increased in the CMML cohort 
(21.1% vs 5.3%, P < 0.0001). Excess of blasts in the bone 
marrow was detectable in 53.8% of the aCML and 39.0% of 
the CMML cases. Seven cases (two aCML and five CMML) 
were in transformation into an acute myeloid leukemia and 
had blast counts of approximately 20% (Tables S3 and S4).

3.2 | Mutation profiling of 
aCML and CMML
Results of the comprehensive mutational profiling in 25 
genes are shown in Figure 1. In the aCML cohort in total 92 
pathogenic mutations could be detected. The CMML cases 
show 164 pathogenic mutations in the genes under investiga-
tion. Mean number of gene mutations were significantly dif-
ferent between the cohorts (3.54 in aCML vs 2.78 in CMML; 

aCML (n = 26) CMML (n = 59) P‐value‡,¥

Gender 73.1% male 67.8% male ns‡

Age 72.3 y (range 46‐89; SD 
11.7)

74.9 y (range 26‐90; SD 
9.6)

ns‡

Hemoglobin 10.1 g/dL (range 
6.1‐14.3; SD 2.5)

10.6 g/dL (range 
5.0‐15.0; SD 2.3)

ns‡

Leukocytes 52.1 × 103 (range 
15.7‐300.0; SD 60.0)

25.4 × 103 (range 
0.7‐234.5; SD 47.0)

*** 
(P < 0.0001)‡

Monocytes 5.0% (range 1.0‐10.0; 
SD 3.5)

21.5% (range 2.0‐42.0; 
SD 10.6)a

*** 
(P = 0.0003)‡

Blasts in peripheral 
blood

14 (53.8%) 23 (39.0%) ns¥

ns, not significant (P > 0.05); SD, standard deviation.
aAvailable biopsies of CMML patients sometimes show lower absolute monocyte counts than 1000 due to ther-
apeutic effects (see Table S4). At the time of diagnosis, absolute monocyte count was above 1 × 109/L, regarding 
to the WHO criteria. 
‡Mann‐Whitney test. 
¥Fishers‐exact test. 

T A B L E  1  Clinical data of the aCML 
and CMML patients
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P = 0.0266; Table 2). This effect was even stronger when 
several mutations in the same gene were excluded from the 
calculation (3.23 vs 2.29; P = 0.0009).

Nine patients in the aCML cohort showed two gene mu-
tations, 17 patients (65.4%) revealed three or more gene mu-
tations (Figure 1A). With over 65%, SRSF2 gene mutations 
represent the most frequent genetic lesion in these aCML pa-
tients. Furthermore, 11 patients showed mutation of SETBP1 
(42.3%), and nine cases of these were SRSF2/SETBP1 co‐
mutated. Taken together, KRAS, NRAS and/or BRAF are mu-
tated in 9/26 patients (34.6%). ASXL1 and EZH2 were found 
to be mutated in eight and six cases (30.8% and 23.1%), re-
spectively. Interestingly, only in one of these cases both genes 
are co‐mutated (aCML#5, Figure 1A). Consequently, half of 
the aCML patients displayed a defect in the histone modifi-
cation (Table S3).

In the CMML cohort, a high frequency of TET2 (78.0%) 
and SRSF2 mutations (50.8%) was detectable (Figure 1B). 

Only eight of the 59 cases (13.6%) exhibit neither a TET2 
nor a SRSF2 mutation. The presence of splice factor muta-
tions in CMML is even higher when the five U2AF1 and 
two SF3B1 mutations were taken into account. Splice factor 
genes are mutated exclusively in our cohort; consequently 37 
of 59 (62.7%) CMML patients harbor a defect in the spli-
ceosome. However, none of the additionally analyzed genes 
alone showed mutation frequencies above 20% of the cases. 
Combined, KRAS and NRAS are mutated in 12 (20.3%) of 
all CMML cases. ASXL1 (8/59, 13.6%) and RUNX1 muta-
tions (6/59, 10.2%) were less frequently mutated than in other 
studies.13,14

When the mutation profiling results of both cohorts are 
compared, a different mutational landscape is distinguish-
able (Table 1B). TET2 mutations are specific for CMML 
(P < 0.0001), whereas SETBP1 and CSF3R mutations 
are significantly more frequent in aCML (P < 0.0001, and 
P = 0.0074, respectively). IDH, RAS, ASXL1, and SRSF2 

F I G U R E  1  Results of mutation profiling in the aCML cohort (A, n = 26) and in the CMML cohort (B, n = 59). Green‐filled squares indicate 
a wild‐type, red‐filled squares indicate one pathogenic gene mutation, and blue‐filled squares indicate two pathogenic mutations within the specific 
gene. Excess of blasts in the bone marrow (EB) is indicated with + (see Tables S3 and S4 for patient details)
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mutations are more frequent in aCML, but the differences are 
not significant.

Table 3 shows the frequently mutated genes in the aCML 
cohort related to the presence of increased blasts counts in the 
bone marrow, independently of the blast percentage. None of 
the genes showed a correlation with the blast excess, except 
for SETBP1. In the aCML cohort, the presence of a SETBP1 

gene mutation showed a significant correlation with the ab-
sence of blast increase (P = 0.0447).

When related to the presence of blast increase in the 
bone marrow of CMML patients, only TET2 displayed a 
significant association. Patients with TET2 mutations had a 
lower risk of increased blast counts (P = 0.0218; Table 4). 
Interestingly, of the 14 patients which showed blast increase 

aCML (n = 26) CMML (n = 59) P‐value‡,¥

Mean no. of mutated genes 
per case

3.23 (range 2‐7; 
SD 1.21)

2.29 (range 0‐5; 
SD 1.05)

*** 
(P = 0.0009)‡

Mean no. of mutations per 
case

3.54 (range 2‐7; 
SD 1.36)

2.78 (range 0‐6; 
SD 1.23)

* (P = 0.0266)‡

TET2 7 (26.9%) 46 (78.0%) *** 
(P < 0.0001)¥

SETBP1 11 (42.3%) 3 (5.1%) *** 
(P < 0.0001)¥

CSF3R 4 (15.4%) 0 (0.0%) ** (P = 0.0074)¥

ASXL1 8 (30.8%) 8 (13.6%) ns¥

EZH2 6 (23.1%) 6 (10.2%) ns¥

KRAS/NRAS/BRAF 9 (34.6%) 12 (20.3%) ns¥

IDH1/IDH2 4 (15.4%) 3 (5.1%) ns¥

SRSF2 17 (65.4%) 30 (50.8%) ns¥

ns, not significant (P > 0.05); SD, standard deviation.
‡Mann‐Whitney test. 
¥Fishers‐exact test. 

T A B L E  2  Comparison of the 
mutational profiling results between the 
cohorts

Mutated genes aCML EB+ (n = 14) aCML EB‐ (n = 12) P‐value¥

SETBP1 3 (21.4%) 8 (66.6%) * (P = 0.0447)

EZH2 2 (14.3%) 4 (33.3%) ns

TET2 3 (21.4%) 4 (33.3%) ns

SRSF2 10 (71.4%) 7 (58.3%) ns

ASXL1 4 (28.6%) 4 (33.3%) ns

KRAS/NRAS/BRAF 5 (35.7%) 4 (33.3%) ns

EB, excess of blasts in the bone marrow; ns, not significant (P > 0.05).
¥Fishers‐exact test. 

T A B L E  3  Frequently detected gene 
mutations in the aCML cohort in 
comparison with blast excess in the patient 
samples

T A B L E  4  Frequently detected gene mutations in the CMML cohort in comparison with blast excess in the patient samples

Mutated genes CMML EB+ (n = 23) CMML EB− (n = 36) P‐value¥

TET2 14 (60.9%) 32 (88.8%) * (P = 0.0218)

RUNX1 4 (17.4%) 2 (5.5%) ns

SRSF2/U2AF1/SF3B1 14 (60.9%) 20 (63.9%) ns

KRAS/NRAS 5 (21.7%) 7 (19.4%) ns

ASXL1 3 (13.0%) 5 (13.9%) ns

EB, excess of blasts in the bone marrow; ns, not significant (P > 0.05).
¥Fishers‐exact test. 
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and TET2 mutation, only five patients exhibited an isolated 
TET2 mutation. The remaining nine samples harbored TET2/
splice factor co‐mutations (Figure 1B and Table S4).

3.3 | Classification of samples via 
mutational profiling
In order to assess whether the frequency of mutations in spe-
cific genes can be used to classify unknown samples into 
one of the two disease groups, we performed classification 
analysis using the mutation profiles shown in Figure 1A,B. 
Of the five different classification algorithms used in this 
work, logistic regression and multinomial logistic regres-
sion yield the highest accuracy during cross‐validation. The 
highest estimated accuracy for unknown samples (85%) was 
achieved using the frequency of mutations of the nine genes 

SETBP1, TET2, CSF3R, TP53, U2AF1, RUNX1, KRAS, and 
IDH2 (Table S1; Figure 2). The best model achieved correct 
classification for 19 of the 26 samples from the aCML cohort 
(73%) and 54 of 59 samples from the CMML cohort (92%).

3.4 | Comprehensive mRNA profiling
The analysis of mRNA expression of all 86 samples (Figure 
3) revealed statistically significant changes in the expression 
levels of seven genes after correction for multiple testing 
between individuals with morphologic features of reactive 
states (reference) as well as the aCML and CMML cohorts. 
This applies to the comparison of multiple groups as well 
as pairwise comparisons of both patient cohorts against 
the reference. Figure S2 shows the seven genes with sig-
nificant differences after correction for multiple testing 
(Benjamini‐Hochberg). The highest differences exhibited 
FLT3 (highest expression in CMML compared to aCML 
and reference samples), CSF3R (higher expression in aCML 
and CMML compared to reference samples), and SETBP1 
(lower in aCML and CMML compared with the reference 
samples). However, even these genes show only log2 dif-
ferences of 2, meaning four times higher or lower relative 
expression. Furthermore, high variances and many outliers 
are observable.

4 |  DISCUSSION

4.1 | Mutational landscape of aCML and 
CMML
Atypical CML represents a rare disease subtype of the 
MDS/MPN category1; therefore, information about the mu-
tational landscape in extended cohorts is limited so far. In 
a study of 25 aCML cases, Patnaik et al3 performed muta-
tional profiling of 29 genes. Surprisingly, when compar-
ing this aCML cohort with the 26 cases in our study some 
results differ relating to the frequency of mutated genes 
(Table 5). Similar to our study, Patnaik et al could detect 
gene mutations in all cases. ASXL1 is the most frequently 
mutated gene in their study, detected in 28% (7/25) of the 
patients. We could show a similar ASXL1 mutation fre-
quency in 30.8% (8/26) of our cases; all variants represented 
frameshift or nonsense mutations. Obviously, the frequency 
of SRSF2 mutations is different with 65.4% (17/26) in our 
aCML cohort in comparison with 12% (3/25) in the study of 
Patnaik et al Furthermore, SETBP1 shows different muta-
tion frequency in both cohorts (11/26; 42.3% vs 3/25, 12%). 
Probably, these differences resulted partly from the limited 
number of cases in both studies. However, it is high likely 
that aCML cases do not represent a homogenous disease 
entity. In particular, the differences in SETBP1 mutation 
frequency between both studies are interesting, because we 

F I G U R E  2  Accuracy of machine learning algorithms for the 
prediction of aCML and CMML via gene mutational frequency. Using 
the mutational frequency of 25 selected genes, logistic regression and 
multinomial logistic regression performed best at predicting the class 
membership of samples to either aCML or CMML among a variety 
of tested algorithms. The accuracy of all models was evaluated via 
leave‐one‐out cross‐validation, since all samples have to be used for 
the training of models. In order to prevent overfitting, the number and 
subsets of genes used for classification were selected using an exact 
leaps‐and‐bounds algorithm. Optimal accuracy for multinomial logistic 
regression is achieved when using a subset of three genes (SETBP1, 
TET2, and CSF3R, 84% accuracy) or a subset of nine genes for logistic 
regression (SETBP1, TET2, CSF3R, TP53, U2AF1, RUNX1, KRAS, 
IDH2, and BRAF, 85% accuracy, Figure S1)
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could show that the presence of these mutations is inversely 
correlated with the presence of blast increase in the bone 
marrow. Unfortunately, follow‐up data in our cohort are 
only available in a minority of cases, not sufficient for a 
prospective calculation of risk factors for progression.

Mutation profiling results of our CMML cohort are well 
comparable with previous studies. Most prominent mu-
tated genes are TET2 (78.0%), SRSF2 (50.8%), KRAS/NRAS 
(20.3%), and ASXL1 (13.6%). Only TET2 mutations seemed 
to be enriched in our study in comparison with 46%‐60% in 
the literature, whereas ASXL1 is underrepresented in com-
parison with 26%‐40% literature values.13,14 The presence of 
a TET2 mutations is inversely correlated with the presence 
of blast increase in the bone marrow in the CMML cohort 
(P = 0.0218). This finding is well in line with an adversely 

impacted survival found in CMML patients with absent 
TET2 mutations.22

A machine learning classification approach using linear 
discriminant analysis revealed that the mutation profiles of 
aCML and CMML cases are apparently divergent enough to 
allow for classification of unknown samples using only nine 
gene loci with relatively high accuracy (>85%). The higher 
accuracy for the classification of CMML samples (92%) ob-
served during this analysis is probably due to the higher sam-
ple size of the training set, indicating that further data might 
enable the generation of more precise and complex models 
and thus further facilitate the discrimination between both 
disease types. Machine learning approaches represent a pos-
sible feature to assist the histomorphological diagnosis in the 
era of digital pathology.

Nevertheless, it has to be kept in mind that MPN can un-
dergo a progress or a transition into another disease type via 
clonal evolution resulting in acquisition of additional muta-
tions or loss of genetic alterations. This phenomenon requires 
the investigation of regular follow‐up biopsies.23,24

4.2 | mRNA expression in 
aCML and CMML
Statistically significant differences in mRNA expression 
of seven genes could be observed between the aCML and 
CMML compared to reference samples for the 107 genes 
investigated in this work (Figure 3). The strongest effect in 
differential expression is detectable in FLT3, SETBP1, and 
CSF3R (Table S2). This is congruent with the significantly 
different mutation frequency for SETBP1 and CSF3R be-
tween aCML and CMML. However, high variances and many 
outliers in the mRNA count are observable. Unfortunately, 
this expression dataset could not contribute to a refining of 
the classification algorithm.

F I G U R E  3  Centered, scaled, and 
hierarchically clustered log2 mRNA 
expression of statistically different expressed 
genes of all samples investigated in this 
study. In total, 107 genes were investigated 
for mRNA expression level in the aCML 
(n = 26) and CMML (n = 59) cohort as 
well as reference samples (n = 34, FFPE 
bone marrow samples from individuals 
with reactive histomorphology). Genes 
IKZF1, U2AF1, U2AF2, UPF3B, USP39, 
WAC, WT1, ZNF143, ZNF346, and ZRSR2 
were excluded from further analysis due to 
constantly low counts

T A B L E  5  Comparison of the frequently mutated genes between 
the aCML cohort in the present study with a published cohort, similar 
in number of cases and analyzed genes

Samples

Patnaik et al3
Present study 
(aCML)

P‐value¥

n = 25 n = 26

Genes 29 25

ASXL1 7/25 (28%) 8/26 (30.8.6%) ns

TET2 4/25 (16%) 7/26 (26.9%) ns

NRAS 4/25 (16%) 5/26 (19.2%) ns

CSF3R 2/25 (8%) 4/26 (15.4%) ns

EZH2 2/25 (8%) 6/26 (23.1%) ns

SETPB1 3/25 (12%) 11/26 (42.3%) * (P = 0.0266)

SRSF2 3/25 (12%) 17/26 (65.4%) *** (P < 0.0001)

ns, not significant.
¥P‐values were calculated by Fishers‐exact test. 
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Future transcriptomics research on both disease entities 
should focus on other gene loci. It cannot be excluded that al-
ternative splicing events, due to the high frequency of splice 
factor mutations in both cohorts, will cause a bias in our ex-
pression data. All expression counts for the specific mRNA 
based only on one probe per gene. Maybe alterative splicing, 
for example, increased exon skipping, has an influence on 
our results.

5 |  CONCLUSIONS

Mutation profiling reveals overlap and differences between 
aCML and CMML. Whereas TET2 mutations are signifi-
cantly enriched in CMML; SETBP1 and CSF3R are more 
frequently but not exclusively mutated in aCML. For mu-
tation profiling, targeted NGS panel represents an optimal 
approach with respect to costs and turn‐around‐time. It 
has been shown that sequencing studies of nine genes can 
identify the clonal abnormality in >90% of CMML cases.11 
Consequently, whole exome sequencing studies found a 
highly similar number and frequency of gene mutations 
compared to the more restricted targeted NGS approach with 
20 to 30 genes.14,25,26

In the approach presented, with 107 mRNA targets for ex-
pression analysis, statistically significant differences between 
the aCML and the CMML group could be detected after a 
multiple correction. However, our approach did not yield dis-
criminatory markers for differential diagnostics of individual 
cases, because all alterations were shared by both diseases.

In our study, 18/26 (69%) aCML and 51/59 (86%) CMML 
cases harbor at least one mutation in the epigenetic modifier 
genes TET2, IDH1/2, DNMT3A, EZH2, and ASXL1 (Figure 
1A,B). Consequently, alterations in the epigenetic regulation 
of aCML and CMML represent an interesting field for further 
studies.
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