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Abstract

Loss of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity in mammals

results in severe combined immuno-deficiency (SCID). This SCID phenotype has been

postulated to be due solely to the function of DNA-PKcs in V(D)J recombination, a process

critical for lymphocyte maturation. However; we show that DNA-PKcs is required for IL-2

production via regulation of the calcineurin signaling pathway. Reducing DNA-PKcs activity

in activated T cells either by shRNA or an inhibitor significantly reduced IL-2 production by

blocking calcineurin activity and the translocation of NFAT into the nucleus. Additionally, we

show that DNA-PKcs exerts its effect on calcineurin by altering the expression of the endog-

enous calcineurin inhibitor Cabin1 through activation of the kinase CHK2, a known Cabin1

regulator. The discovery of DNA-PKcs as a potent regulator of IL-2 production will drive con-

tinued investigation of small molecule inhibition of this enzyme within the clinic.

Introduction

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a 460 kDa polypeptide

member of the PI3k family. It was initially discovered to be a key component in non-homolo-

gous end-joining (NHEJ) which is the predominant pathway used to repair DNA double

strand breaks in mammalian cells and is critical for V(D)J recombination [1, 2]. DNA-PKcs is

believed to serve as a recruiting and scaffolding protein for DNA ligase [3]. Knock out of

DNA-PKcs activity in mammals results in a Severe Combined Immunodeficiency (SCID) phe-

notype which is characterized by diminished levels of mature B and T cells [4–6]. This has

been attributed to disruption of V(D)J recombination which is necessary for lymphocyte

development and responsible for both antibody and T cell receptor diversity [7, 8]. Given this

profound effect, we suspected that this enzyme is involved in other aspects of the immune

response including Interleukin-2 (IL-2) signaling since the disruption of the IL-2 pathway in

IL-2 receptor mutants also results in a SCID phenotype [9]. Of note, DNA-PKcs has previously
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been associated with multiple receptor signaling pathways including EGF, RET, and the insu-

lin signaling pathway and phosphorylates key molecules associated with cell growth, e.g. AKT

[10–14].

Well described, IL-2 is a T cell-derived cytokine that influences a multitude of key elements

in the immune response including the proliferation and differentiation of B and T lympho-

cytes [15]. Expression of IL-2 is initiated upon calcineurin activation. Calcineurin is a calcium

and calmodulin-dependent protein serine/threonine phosphatase that upon activation,

dephosphorylates Nuclear Factor of Activated T-cells (NFAT) allowing it to translocate to the

nucleus and upregulate expression of target genes (including IL-2) [15–17]. IL-2 then binds to

its receptor IL-2R, expressed on the surface of lymphocytes, to induce signaling that impacts

both arms of the immune response, humoral and cellular immunity [18]. IL-2 is known to pro-

mote the expansion and maturation of B and T lymphocytes and regulates the differentiation

of T cells into effector or regulatory T cells [15–17].

To evaluate the function of DNA-PKcs in this pathway, we inhibited its activity by either

shRNA or the commercially available inhibitor NU7441 in Jurkat cells, a human T cell line,

and analyzed the effect on IL-2 levels. Inhibiting DNA-PKcs in activated Jurkat cells resulted

in reduced calcineurin activity, loss of NFAT translocation to the nucleus and decreased IL-2

expression. We showed that this effect was linked to the calcineurin inhibitor, Cabin1. Cabin1

directly binds to activated calcineurin and blocks its dephosphorylation of NFAT. Overexpres-

sing full length Cabin1 or its N-terminal region in Jurkat cells has been shown to reduce IL-2

expression by inhibiting the calcineurin-NFAT pathway [19, 20]. Cabin1 was also identified

to function in DNA damage by inhibiting activity of p53 [21]. Through these studies it was

revealed that phosphorylation of Cabin1 by the checkpoint kinase CHK2 targets it for ubiqui-

nation and degradation [22]. Interestingly, phosphorylation by DNA-PKcs is known to regu-

late activity of CHK2. DNA-PKcs phosphorylates CHK2 at site Thr68 thereby activating the

kinase [23]. We showed that inhibiting DNA-PKcs in Jurkat cells resulted in a decrease in

CHK2 phosphorylation causing an increase in Cabin1 expression. This novel pathway for reg-

ulation of IL-2 signaling indicates a much broader function for DNA-PKcs in the immune sys-

tem than previously understood and further explains the development of a SCID phenotype in

mice lacking DNA-PKcs activity.

Materials and methods

Materials

PHA-L, PMA, X-treme GENE transfection reagent, and 0.1% poly-lysine solution were pur-

chased from Sigma-Aldrich (St. Louis, MO). NU7441 was purchased from Selleckchem

(Houston, TX). shRNA against DNA-PKcs was purchased from Origene (Rockville, MD).

Dynabeads Human T-Activator CD3/CD28 was purchased from Thermo Fisherscientific

(Waltham, MA).

Cell culture

Human peripheral blood mononuclear cells (PBMC,) and Jurkat cells were purchased from

ATCC (PCS-800-011, Manassas, VA). Cells were maintained at 37˚C in a humidified atmo-

sphere composed of 5%CO2. Jurkat cells were cultured in RPMI 1640 medium which was sup-

plemented with 10%FCS and human PBMC was cultured in RPMI 1640 medium which was

supplemented with 10% FCS and pen/strep. Both Jurkat cells and PBMC were stimulated with

PHA (50ng/mL) and PMA (1μg/mL) for 24 hours prior to harvesting for IL-2 detection or 6

hours prior for western blot analysis. The NU7441 DNA-PKcs inhibitor was added at varying

concentrations at the time of stimulation.

DNA-PKcs mediates IL-2 production
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Knockdown of DNA-PKcs in Jurkat cells

Jurkat cells (5 x 105 cells/well) were grown in 6-well plates. The cells were transfected with

short-hairpin RNA (shRNA) plasmids generated by Origene. (2.5 μg of scramble or 2.5 and

5 μg of specific to DNA-PKcs) using X-treme GENE and incubated for 72 hours. Four shRNA

plasmids were obtained from Origene that target various regions of DNA-PKcs. The shRNA

plasmid that provided the best knock down of DNA-PKcs expression was used for our experi-

ments. The cells were subjected to Western blot analysis and IL-2 ELISA assay. shRNA plas-

mids against DNA-PKcs was purchased from Origene (Rockville, MD).

Cell lysis and nuclear extract

Cells were washed with cold PBS twice and centrifuged at 5000rpm for 5 min. For the nuclear

extract, pellets were suspended with 800μL of 10mN HEPES lysis buffer (10mM HEPES at pH

7.9, 10mM KCl, 1mM DTT, and 1X protease and phosphatase inhibitor) and incubated on ice

for 15min. 50uL of NP-40 (10% in water) was added and the pellets were mixed for 10 sec.

Lysates were centrifuged for 5 min at 4˚C at 13,000rpm. The supernatant solution which is

containing the cytosolic fraction was discarded and the pellets were resuspended in 20mM

HEPES lysis buffer (20mM HEPES at pH 7.9, 0.4M NaCl, 1mM DTT, and 1X protease and

phosphatase inhibitor) and incubated on ice for 15min with intermittent mixing. Lysates were

centrifuged for 10 min at 4˚C at 13,000rpm. The supernatant containing nuclear extract was

stored at -20˚C until they were used for the Western blot analysis. For total cell lysates, cell pel-

lets were resuspended with 100uL of RIPA buffer (150mM NaCl, 1% Triton X-100, 0.1% SDS,

and 50mM Tris at pH 8.0) and incubated on ice for 10min. The lysates were centrifuged for

10min at 4˚C at 13,000rpm and the supernatant solutions were stored at -20˚C until they were

used for the Western blot analysis.

Western blot analysis

Nuclear extract lysates were separated on 3–8% Tris-Acetate gels (invitrogen). Total cell lysates

were separated on 4–20% Tris-Glycine gels (Bio-Rad). Gels were transferred onto PVDF mem-

brane (Millipore) for 2h in the cold room at 100V. Immunoblotting was performed using

following antibodies: pDNA-PKcs at S2056 (ab18192, Abcam), DNAPK (ab53701, Abcam),

pNFAT2 at S237 (ab183023, Abcam), CABIN1 (12660S, Cell signaling), GAPDH (MAB374,

Millipore), and Lamin B1 (ab16048, Abcam). HRP-conjugated secondary antibody anti-Rabbit

and anti-Mouse (7074S and 7076S, Cell Signaling) was used.

Cell viability assay

Cell viability assay was performed using Promega CellTiter 96 AQueous One Solution Cell

Proliferation Assay (Madison, WI) and following the manufacturer’s protocol. Briefly, 100uL

of PBMC or Jurkat cells were plated in a 96-well plate and treated with various concentration

of NU7441 for 48h. CellTiter solution (20uL/100uL of cell suspension) was added to the cells

and the plate was incubated for 3h at 37˚C and the absorbance at 490nm was recorded using

SynergyHTX (BioTek, Winooski, VT) plate reader.

Immunofluorescence of NFAT

Jurkat cells were plated in poly-lysine treated 35mm dish with glass-bottom (BioTek) over-

night. The cells were fixed with 4% formaldehyde and permeabilized with permeabilization

solution (0.2% Triton X-100 + OVA solution (0.1 mg/ml), 0.01% sodium azide). NFAT was

probed with anti-NFAT2 (ab2796, Abcam) in permeabilization solution overnight at 4˚C, and
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then washed with PBS. Fluorescein (FITC)-conjugated AffiniPure Donkey Anti-Mouse IgG

(715-095-151, Jackson ImmunoResearch) was applied to the cells for 1h at RT. The cells were

washed with PBS and ProLong Antifade reagent with DAPI (Molecular Probes) was applied. All

samples were analyzed on an Olympus Fluoview FV1000 laser confocal microscope. Images

from all microscopy experiments were processed using the FV10-ASW 3.1 Viewer (Olympus).

Detection of secreted IL-2

Secreted IL-2 was detected by Human IL-2 ELISA Kit from Thermo Scientific (Waltham,

MA). The manufacturer’s protocol was followed. Prior to harvesting, cells were treated with

PHA (50ng/mL) and PMA (1μg/mL) for 24 hours with or without the NU7441 inhibitor.

Jurkat cells stimulated with the anti-CD28/CD3 dynabeads were done so according to the

manufacturer’s protocol at a 1:1 ratio for 24 hours prior to harvesting. After stimulation,

supernatant samples of Jurkat cells or PBMCs (2 million cells/mL) were collected and diluted

10 times before the assay. IL-2 standards and samples (50 μL) and Biotinylated antibody

reagents (50 μL) were added to each well and the plate was incubated for 3h at RT. The plate

was washed 3 times and 100 μL of Streptavidin-HRP solution was added. After 30 min of incu-

bation at RT, the plate was washed 3 times. TMB substrate (100 μL) was added and incubated

for 30min in the dark at RT. Stop solution was added and the absorbance of each well was read

at 450nm using the plate reader.

Detection of calcineurin and mTOR activities

Calcineurin phosphatase activity was detected by Calcineurin Cellular Activity Assay Kit from

Millipore (Billerica, MA) and mTOR signaling was detected by Calcium Detection Kit from

Abcam (Cambridge, MA). The manufacturer’s protocols were followed. Briefly, Jurkat cells (2

million cells/mL) were lysed using lysis buffer. For calcineurin activity, the cell lysates were

desalted by gel filtration to remove free phosphates before the assay and were subjected to cal-

cineurin activity assay. The absorbance of each sample was read at 620nm using the plate

reader. For mTOR ELISA assay, the cell lysates were added to each well and antibody against

phosphorylated mTOR at serine 2448 was used to detect the activity of mTOR signaling. The

absorbance of each sample was read at 450nm using the plate reader.

Measurements of calcium ions

Intracellular concentration of calcium ions was measured by Calcium Detection Assay Kit

from Abcam (Cambridge, MA). The manufacturer’s protocols were followed. Briefly, Jurkat

cells (2 million cells/mL) were lysed using cold PBS with 0.1% NP-40. The cell lysates were

diluted 10 times before use. After following the assay protocol, the absorbance of each sample

was read at 575nm using the plate reader.

Statistical analysis

Assays to monitor IL-2 levels, calcineurin and mTOR activities, and Ca2+ ion levels were per-

formed in both technical triplicate and biological triplicate. Standard student t-test were performed

to compare group means. Means with p-value below 0.05 were considered statistically different.

Results

DNA-PKcs regulates IL-2 secretion in T cells

The immune cytokine IL-2 is a key element of the immune response affecting both the

humoral and cell-mediated arms of the immune system. To determine if DNA-PKcs regulates

DNA-PKcs mediates IL-2 production
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T cell-mediated IL-2 production, we evaluated the effect of the DNA-PKcs inhibitor NU7441

on IL-2 in Jurkat cells. NU7441 is a potent and specific inhibitor of DNA-PKcs which does not

interfere with ATR or ATM activation [24]. We first determined that NU7441 at varying con-

centrations did not alter the viability of Jurkat cells (Fig 1A). Next, we monitored the produc-

tion of IL-2 in Jurkat cells treated with NU7441. In Fig 1B, we observed the expected spike in

IL-2 levels following 24 hour stimulation with PMA+PHA. In the presence of the inhibitor,

the level of IL-2 was significantly decreased with 2.5 μM of NU7441 and further decreased

with 5 μM (Fig 1B). During an immune response, T cells are typically stimulated by activation

of the T cell receptor (TCR). To determine if DNA-PKcs was acting in a TCR directed path-

way, we repeated the IL-2 production assay after stimulating T cells with anti-CD28/CD3

Fig 1. Inhibition of DNA-PKcs in T cells and PBMCs blocks IL-2 production. A) Jurkat cells were treated with the DNA-PKcs inhibitor NU7441 at

varying concentrations for 48 hours and no significant reduction in viability was detected. B) Jurkat cells were stimulated with PMA (50 ng/mL)+PHA

(1 μg/mL), treated with NU7441, and analyzed for IL-2 production 24 hours later. NU7441 treatment significantly blocked IL-2 secretion. C) IL-2

production stimulated by activation of Jurkat cells with anti-CD28/CD3 dynabeads at a 1:1 ratio for 24 hours was inhibited by NU7441 treatment. D)

Treatment of Jurkat cells with shRNA reduced DNA-PKcs expression at 2.5 and 5 μg as seen by western blot analysis. Loss of DNA-PKcs expression

significantly reduced IL-2 production. E) NU7441 significantly reduce IL-2 production following activation with PHA+PMA in PBMCs. ** p< 0.002

*** p<0.001 error bars = s.d.

https://doi.org/10.1371/journal.pone.0181608.g001
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dynabeads which activate the TCR. Cells were harvested 24 hours after stimulation and treat-

ment with or without the NU7441 inhibitor. As seen with PMA+PHA activation, NU7441 sig-

nificantly blocked IL-2 production stimulated by anti-CD28/CD3 dynabeads (Fig 1C). To

confirm that the effect of IL-2 secretion was specific to DNA-PKcs and not a side effect of the

inhibitor, we knocked down expression of DNA-PKcs using short hairpin RNA plasmids

(shRNA). The protein level of DNA-PKcs was reduced with shRNA indicating that the knock

down of DNA-PKcs was successful (Fig 1D). Loss of DNA-PKcs expression significantly inhib-

ited secretion of IL-2 in T cells following activation with PMA+PHA confirming DNA-PKcs

as a critical regulator of IL-2 production (Fig 1D).

We next wanted to solidify our findings by examining the effect of DNA-PKcs inhibition

on IL-2 production in more clinically relevant human primary immune cells. Therefore; we

inhibited DNA-PKcs activity in Peripheral Blood Mononuclear Cells, PMBC, and evaluated

IL-2 production. Like Jurkat cells, NU7441 did not affect cellular viability but did significantly

reduce the level of IL-2 produced following activation with PMA+PHA (S1 Fig and Fig 1E).

DNA-PKcs inhibition blocks nuclear localization of NFAT

IL-2 production is initiated by dephosphorylation and translocation of the transcription factor

NFAT to the nucleus. Therefore; we examined the effect of DNA-PKcs inhibition on NFAT in

Jurkat cells by western blot and immunocytochemistry. In Fig 2A, we show that activation of

Jurkat cells with PMA+PHA induced phosphorylation of DNA-PKcs at serine 2056, an activa-

tion site [25]. Additionally, NU7441 effectively inhibited DNA-PKcs phosphorylation con-

firming that NU7441 successfully inhibits DNA-PKcs activity. Without activation, NFAT was

Fig 2. Inhibition of DNA-PKcs blocks translocation of NFAT to the nucleus. A) Western blot analysis of Jurkat cell lysates showed activation of T cells

with PMA+PHA induced phosphorylation of DNA-PKcs at site s2056 (pDNA-PK) and dephosphorylated NFAT at s237 (pNFAT). Treatment with NU7441

inhibited the dephosphorylation of NFAT at site s237 which is critical for its translocation to the nucleus. GAPDH was used as a loading control. B)

Immunocytochemistry analysis of Jurkat cells treated with NU7441. The inhibitor (2.5 μM) blocked translocation of NFAT to the nucleus following activation

with PMA+PHA. Nuclei were stained with Dapi. 40X images are shown.

https://doi.org/10.1371/journal.pone.0181608.g002

DNA-PKcs mediates IL-2 production
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phosphorylated (s237) and resided in the cytoplasm in Jurkat cells (Fig 2A and 2B). Upon acti-

vation, NFAT was dephosphorylated and translocated to the nucleus. However; in the pres-

ence of NU7441, NFAT remained phosphorylated and nuclear localization was prevented,

further suggesting that DNA-PKcs is critical for proper T cell signaling (Fig 2A and 2B).

DNA-PKcs inhibition reduces calcineurin activity in T cells

As mentioned above, the regulation of NFAT is mediated via phosphorylation. During T cell

activation, calcineurin, a calcium/calmodulin-dependent serine-threonine phosphatase, is acti-

vated and dephosphorylates NFAT allowing it to translocate to the nucleus to initiate tran-

scription. Therefore, we evaluated the effect of DNA-PKcs on calcineurin activity in Jurkat

cells. The phosphatase activity of calcineurin was greatly increased in the presence of PMA

+PHA, however the activity was significantly inhibited with NU7441 treatment (Fig 3A). Since

the activity of calcineurin is regulated by the intracellular Ca2+ ion concentration, the level of

Fig 3. DNA-PKcs inhibition blocks calcineurin activity in T cells. A) Jurkat cells were activated with PMA+PHA, treated with the DNA-PKcs inhibitor

NU7441 (2.5μM) and monitored for calcineurin phosphatase activity. Inhibition caused a significant reduction in calcineurin activity. B) Level of Ca2+ in

Jurkat cell lysates following activation with PMA+PHA was monitored. Ca2+ levels were not affected by the addition of the NU7441 inhibitor. C) Western

blot and Elisa analysis of active phosphorylated mTOR in activated Jurkat cells indicated that inhibition of DNA-PKcs does not alter mTOR activation.

***p<0.001 error bars = s.d.

https://doi.org/10.1371/journal.pone.0181608.g003
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calcium ions was monitored. In the presence of NU7441 following activation, there was no

change in the concentration of Ca2+ ions (Fig 3B) proving that DNA-PKcs does not regulate

calcineurin activity by altering the influx of Ca2+ but by a different unknown mechanism.

Mammalian target of rapamycin, mTOR, a member of the PI3K kinase family, is a second

signaling pathway initiated following T cell activation [26]. Therefore; we evaluated the effect

of DNA-PKcs on the mTOR pathway. Activated Jurkat cells with or without NU7441 treat-

ment were subjected to an mTOR assay which detects the level of activated mTOR with an

antibody specific to phosphorylated ser2448. Results from the assay along with western blot

analysis of phosphorylated mTOR showed that loss of DNA-PKcs activity did not alter mTOR

activation in T cells. (Fig 3C). This further indicates a function for DNA-PKcs in T cells that is

specific to the calcineurin signaling pathway.

DNA-PKcs regulates expression of the calcineurin inhibitor Cabin1

The endogenous calcineurin inhibitor, Cabin1, binds calcineurin preventing the dephosphory-

lation of NFAT and transcription of immune cytokines including IL-2 [19, 20]. Cabin1 works

in a similar fashion in the DNA damage repair pathway by binding p53 preventing its interac-

tion with DNA [21, 22]. In this pathway, Cabin1 expression is controlled by checkpoint kinase

CHK2. DNA damage signals the phosphorylation of CHK2 by DNA-PKcs at site T68 which

stimulates CHK2 to hyper-phosphorylate Cabin1 targeting it for ubiquitination and degrada-

tion [23]. In this study, we examined the relationship between DNA-PKcs, CHK2 and Cabin1

in the T cell signaling pathway. We show that following activation of T cells, phosphorylation

of DNA-PKcs (s2056) is increased along with an increase in CHK2 phoshorylation at Thr68

(Fig 4A). Phosphorylation of both proteins was reduced with the NU744 inhibitor (Fig 4A)

Fig 4. Inhibition of DNA-PKcs reduces phosphorylation of CHK2 and stabilizes the calcineurin inhibitor, Cabin1. A) Western blot analysis of Jurkat

lysates following activation with PMA+PHA and NU7441 treatment. Activation increased phosphorylation of DNA-PKcs and CHK2. DNA-PKcs inhibition

reduced CHK2 phosphorylation and elevated Cabin1 expression. GAPDH was used as a loading control. B) Schematic depicting the signaling pathway in T

cells used by DNA-PKcs to regulate IL-2 production. DNA-PKcs phosphorylates CHK2 which in turns phosphorylates Cabin1 targeting it for destruction. This

alleviates calcineurin inhibition causing an increase in translocation of NFAT and IL-2 production. CaN, calcineurin.

https://doi.org/10.1371/journal.pone.0181608.g004
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indicating that DNA-PKcs is partly responsible for CHK2 activation in T cells. However; inhibi-

tion of DNA-PKcs and subsequently activation of CHK2 caused an increase in Cabin1 expres-

sion (Fig 4A). This effect would result in a decrease in calcineurin activity and IL-2 production.

These data highlight a novel mechanism by which DNA-PKcs regulates calcineurin signaling in

T cells by its inhibitor Cabin1. A schematic of this mechanism is displayed in Fig 4B.

Discussion

DNA-PKcs is a ubiquitously expressed enzyme with an increasing amount of functions de-

fined in the literature. Not only is the enzyme critically important for NHEJ, but it has also

been shown to phosphorylate a wide variety of substrates critical to cell growth, division, and

homeostasis [10–14]. Mutations of DNA-PKcs in mammals present clinically with a SCID

phenotype that is indistinguishable from other genetic causes of SCID [27]. Given its emerging

function as a key regulator for numerous signaling transduction pathways, we hypothesized

that DNA-PKcs not only affects the immune response through its role in V(D)J recombination

but also by regulation of the calcineurin signaling pathway which stimulates the production of

IL-2, a critical immune cell cytokine. Interestingly, DNA-PKcs has been previously reported to

associate with proteins that bind to the antigen receptor response element in the IL-2 promoter

region further suggesting a role for this protein in IL-2 regulation [28]. The IL-2 pathway has

been extensively researched and has significant clinical importance particularly with respect

to transplant, cancer, and cardiovascular biology. DNA-PKcs has not previously been linked

to either mature T cell activation or the calcineurin signaling pathway. Using a Jurkat T cell

model, we identified a novel mechanism where DNA-PKcs regulates T cell-mediated signaling

by altering the expression of the calcineurin inhibitor, Cabin1. The function of Cabin1 in T

cell signaling has been well-characterized as a negative regulator of calcineurin activity [19,

20]. We show that through Cabin1, DNA-PKcs can exert control over the immune response.

Like DNA-PKcs and CHK2, Cabin1 is involved in the DNA damage repair pathway. Cabin1

functions to inhibit the pathway by binding to p53 preventing its ability to bind DNA and pro-

mote transcription of DNA repair genes [21, 22]. Expression of Cabin1 is altered in response

to DNA damage through activation of ATM and its target kinase, CHK2. Phosphorylation and

activation of CHK2 result in degradation of Cabin1 freeing p53 to bind to DNA. DNA-PKcs

has not been shown to effect Cabin1 expression, however; it does phosphorylate and activate

CHK2 in response to DNA damage [23]. Therefore; we hypothesized that activation of DNA-

PKcs following T cell activation could alter Cabin1 expression via activation of CHK2. Our

results support this hypothesis. The mechanism by which DNA-PKcs gets activated upon T

cell activation is still unclear. T cell activation induces a multitude of kinase signaling cascades,

some of which are known to activate DNA-PKcs in response to DNA damage (ERK1/2 and

AKT) [29–31]. Therefore; it is reasonable to assume that following T cell activation DNA-PKcs

is getting activated through one of these signaling pathways.

The results presented here underscore an additional role of DNA-PKcs in the immune sys-

tem. Small molecule inhibition of DNA-PKcs is currently in Phase I clinical trials for cancer

therapy with the idea being that chemoresistance can be usurped via disruption of a DNA dou-

ble strand break repair pathway [32] (Clinicaltrials.gov). Our results suggest that inhibition of

this enzyme will likely have an immediate and profound effect on T-cell signaling in addition

to its well-established role in V(D)J recombination. While the outcome of these clinical trials

and the benefit of DNA-PKcs inhibitors as cancer therapy are still being evaluated, one could

hypothesize the outcome. Loss of IL-2 expression due to these inhibitors could result in a

reduced anti-oncogenic T cell response counteracting any positive effect from the inhibition of

DNA-PKcs mediates IL-2 production
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DNA damage repair. The effect of DNA-PKcs on IL-2 production must be considered when

deciphering the outcome of these trials.

This work also highlights a novel use for DNA-PKcs inhibitors. Single drug small molecule

inhibition of both cell mediated and humoral immunity is a goal of transplant pharmacology.

Given this data, we feel that DNA-PKcs is a worthwhile target for immunosuppresion in the

transplant population as both an induction agent and possible maintenance therapy. Results

from this study warrant investigation into the immunosuppression benefit of DNA-PKcs inhi-

bition in transplant recipients.

Supporting information

S1 Fig. NU7441 treatment does not affect viability of PBMC. PBMCs were treated with

NU7441 (1.25 and 2.5 μM) for 48 hours and monitored for viability. Viability was not affected

by NU7441 treatment. error bars = s.d.

(TIF)
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