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Information gathered with advanced nucleotide sequencing technologies, small molecule
detection systems and computational biology is revealing that a community of microbes
and their genes, now termed “the microbiome,” located in gut and rhizosphere, is
responsible for maintaining the health of human beings and plants, respectively. Within the
complete microbiome a “core-microbiome” exists that plays the pivotal role in well being
of humans and plants. Recent studies in medicine have shown that an artificial mixture
of bacteria representing the core gut microbiome of healthy person when transferred
into gut of diseased person results in re-establishment of normal microflora in the latter
leading to alleviation from diseased condition. In agriculture, though not exactly in similar
manner as in medicine, success in plant disease management has been achieved through
transfer of microbiome by mixing disease suppressive soils with disease conducive soils.
A study more similar to artificial gut microbiome transfer in medical field has been recently
reported in agriculture, in which transfer of microbiome via soil solutions (filtered and
unfiltered) has shown ability to alleviate drought stress in Arabidopsis thaliana. However,
the exact practice of transferring artificially cultivated core-microbiome as in medicine has
not thus far been attempted in plant disease management. Nonetheless, as the gut and
rhizosphere microbiome are known to share many common traits, there exists a good
scope for accomplishing similar studies in agriculture. Based upon the information drawn
from all recent works in microbiome studies of gut and rhizosphere, we propose that
tailor-made core-microbiome transfer therapy can be a success in agriculture too and it
could become a viable strategy for management of plant diseases in future.
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MICROBIOME IN RELATION TO HUMAN AND PLANT HEALTH
The power of next generation sequencing technology is
transforming today’s biology (Mardis, 2008; Schuster, 2008).
Combined with bioinformatics (Lee et al., 2012), it is prising open
the microbial “dark matter” and revealing the diversity and func-
tions of microbiome at resolutions unknown hitherto (Forde and
O’Toole, 2013; Rinke et al., 2013). It is shedding new light on
the role played by the gut microbiome in governing the human
health (Turnbaugh et al., 2007; Kinross et al., 2011; Cho and
Blaser, 2012; Ottman et al., 2012; Norris et al., 2013), reviving
the Metchnikoffian paradigm: colonizing the gut with beneficial
microflora could lengthen the human life. The gut microbiota
is not only limiting its influence on the human health by its
functions in the intestine, it also is impacting the human brain
and behavior (Heitz et al., 2011; Cryan and Dinan, 2012; Mulle
et al., 2013) as well as social development evidenced by studies
in mice (Desbonnet et al., 2013). Remarkably, similar train of
evidences is being uncovered in plant world; root microbiome
is observed to be tightly linked with the health of the plants
(Friesen et al., 2011; Chaparro et al., 2012; Bulgarelli et al., 2013;
Gaiero et al., 2013; Mendes et al., 2013). In insects, too, the same
story is unfolding (Engel and Moran, 2013). The microbial diver-
sity associated within these ecosystems is being referred to as the
“second genome” that is easily 10 times more in scale than the
host genome (Grice and Segre, 2012; Turner et al., 2013) and its

impact on regulating human and plant health is becoming more
apparent.

CORE MICROBIOME
From among the multitude microbial communities inhabiting the
gut and root, there appears to be a clutch of them which consti-
tute the core microbiome (Tschöp et al., 2009). Core microbome
contains organisms common across the microbiome hypothe-
sized to play a key role in ecosystem function within a habitat
(Lederberg and McCray, 2001). Core microbiome of human gut
(Turnbaugh and Gordon, 2009; Turnbaugh et al., 2009; Huse
et al., 2012; Petrof et al., 2013a,b) and plant (Bulgarelli et al., 2012;
Lundberg et al., 2012; Peiffer and Ley, 2013) have been deter-
mined at Operational Taxonomic Unit (OTU) levels with small
subunit ribosomal RNA genes or random sequencing of all genes.
Any changes in the core-microbiome composition or function
leads to debilitative or destructive diseases in humans as well as
plants (Kinross et al., 2011).

DISEASE SUPPRESSIVE SOILS AND THEIR MICROBIOME
It is well known that farmers moved soil from one field to
another to take advantage of its disease suppression abilities
endowed by the soil microbial populations harbored in it (Weller
et al., 2002). Soil microbial studies mainly based on cultiva-
tion dependent methods lead to the finding of several bacteria
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termed plant growth promoting rhizobacteria (PGPR) (Kloepper
and Schroth, 1978), particularly the genus Pseudomonas spp., in
imparting the disease suppressive ability to such soils (Schroth
and Hancock, 1982; Haas and Defago, 2005; Mendes et al., 2013).
Today, with advanced technologies, studies are generating evi-
dence that it is not an individual or couple of microbes, rather
it is “microbiome” (Forde and O’Toole, 2013; Rinke et al., 2013),
the complete assemblage of microbial communities of a habi-
tat and their functions, in rhizosphere that is determining plant
health (Berendsen et al., 2012; Mendes et al., 2013; Rout and
Southworth, 2013). In insects too, the same phenomenon is being
observed (Hussa and Goodrich-Blair, 2013). Rhizosphere/core
microbiome of Arabidopsis (Bulgarelli et al., 2012; Lundberg et al.,
2012), desert shrubs Zygophyllum dumosum (Zygophyllaceae)
and Atriplex halimus (Kaplan et al., 2013), and maize (Peiffer
and Ley, 2013) have been deciphered and reported to be stable
(Lozupone et al., 2012; Lundberg et al., 2012; Li et al., 2013),
inheritable (Peiffer et al., 2013) and tightly linked to host tissues
(Lee et al., 2013).

ROOT MICROBIOME TRANSFER TO MANAGE PLANT DISEASE
In plant disease management, a simple method of transferring
complete microbiome by mixing disease suppressive soils with
disease conducive one is practiced. Mendes and colleagues (2011)
showed that when soils suppressive to Rhizoctonia solani, an
important fungal pathogen, is mixed with disease conducive soils
at 1:9 ratio (w/w), it successfully suppressed the infection in sugar
beet. Metagenomic analysis of the soils using PhyloChip revealed
consistent involvement of 17 bacterial communities belonging
to Proteobacteria, Firmicutes, and Actinobacteria, considered as
core-microbiome, in disease suppression. Other works too, simi-
larly point to the involvement of core-microbiome in soils sup-
pressive to potato common scab (Rosenzweig et al., 2012) and
tobacco black root rot (Kyselkova et al., 2009). In all the above
mentioned works, Pseudomonadaceae group of bacteria has been
suggested as a key player in disease suppressiveness within the core
microbiome.

GUT MICROBIOME TRANSFER TO MANAGE HUMAN HEALTH
As with rhizosphere microbiome of plants in agriculture, in med-
ical studies too, the gut microbiome has been found to control
the health of the human beings (Turnbaugh et al., 2007; Cho
and Blaser, 2012) with a core mainly involved (Tschöp et al.,
2009; Turnbaugh et al., 2009; Huse et al., 2012). “Stool trans-
plant” therapy (de Vos, 2013) is one of the several medical
practices that is adopted wherein stool taken from healthy per-
son is transferred to diseased person resulting in suppression of
many important gastro-intestinal diseases. The principle here is
to re-establish normal gut bacteria in the gut of diseased per-
son and bring about positive changes in their health. However,
the “stool transplant” therapy is not widely followed since the
method is not acceptable to many patients, besides the appre-
hension that it can transfer pathogenic microbes too. Two recent
studies (Petrof et al., 2013a; Ridaura et al., 2013) have found
a way to overcome “stool transplant therapy” by using “stool
substitute” in which a culturable consortium representing core
microbiome is transferred and found to transmit the phenotype

expression aimed for. Petrof and colleagues’ (2013a) work was
first of its sort successfully demonstrating that patients suffer-
ing from Clostridium difficile infection, a debilitative disease of
intestine, can be cured when administered with stool substi-
tute mixture comprising a multi-species community of bacteria
(RePOOpulate sample) of a healthy individual exhibiting resis-
tance to the disease. Post-treatment metagenomic analysis of the
cured patients revealed that the OTU reads from their guts were
similar to that of the RePOOPulate sample until six months after
its administration even though the microbiota profiles were dif-
ferent. This work was quickly followed by Ridaura et al. (2013)
in which they transplanted intact uncultured or cultured human
fecal microbiota from each member of a discordant twin pair (one
lean and other obese) into separate groups of recipient germ-free
mice and found that the obese twin’s fecal microbiota significantly
increased the body biomass and adiposity in the germ free mice. It
will not, therefore be, contrary to consider that the “stool substi-
tute” transfer consisting of the core-microbiome is an extension
of the “stool therapy” and is able to reproduce the expected
microbial ecology with desired results. Such successful scientific
endeavors are spurring development of new disease management
paradigm termed MET: Microbial Ecosystem Therapy (Petrof
et al., 2013b).

ROOT CAN FOLLOW THE GUT
In agriculture, a system of manipulating the root environment by
artificially inoculating plant and soil beneficial microbes has been
followed for long time for improving crop yields. The PGPRs and
other plant beneficial microbes (nitrogen fixing and phosphate
solubilizing bacteria, Trichoderma spp., arbuscular mycorrhizae
fungi etc.) isolated from rhizospheres were mass multiplied and
artificially inoculated, either singly or in combination of twos,
for disease management in plants (Berg, 2009; Lugtenberg and
Kamilova, 2009; Chaparro et al., 2012; Qiu et al., 2013). Though
this approach has been widely adopted, its success in field condi-
tions have been limited (Bakker et al., 2012). With unequivocal
reports coming out indicating that it is not a single taxon, but
a consortium of microorganism that is responsible for bring-
ing about diseases suppression in plants (Mendes et al., 2011;
Rosenzweig et al., 2012; Trivedi et al., 2012; Klein et al., 2013),
the stage is now set for the root to follow gut by adopting
the strategy of using “stool substitute” for disease management.
Transferring disease suppressive soils has been the only alternate
method for transferring the complete rhizosphere/core micro-
biome in plant protection strategy. Coming closer to “stool
substitute” therapy, transfer of microbiome via soil solutions
(filtered and unfiltered) has shown ability to alleviate drought
stress in Arabidopsis thaliana. Pyrosequencing analysis of soils
revealed a core microbiome (Burkholderia, Phormidium, Bacillus,
Aminobacter, Acidiphilum among others) involved in alleviating
the abiotic stress (Zolla et al., 2013). However, the exact trans-
fer of artificially cultivated core-microbiome as performed by
Petrof et al. (2013a) and Ridaura et al. (2013) with gut envi-
ronment is yet to be attempted in root environment. The pos-
sibilities of achieving success is high as there exists a striking
similarity between the gut and root microbiota (Berendsen et al.,
2012; Ramírez-Puebla et al., 2013). Also, the fact that soil type
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plays significant role in the selection and election of microbiome
of rhizosphere and root compartment (Berg and Smalla, 2009;
Bulgarelli et al., 2012; Lundberg et al., 2012), chances of success
for the “rhizosphere substitute” is significantly augmented.

ROOT MICROBIOME CULTURING
In an important meeting convened on topic “culturing a plant-
microbiome community” in Rhodes, Greece in 2012, a long-term
future research strategy became apparent in which it was sug-
gested that after an initial culture-independent survey of the
plant microbiota, the corresponding community members are
isolated in collections of pure cultures (Lebeis et al., 2012).
Today, by converging information deduced on microbial diver-
sity and functions using next-generation sequencing technologies
and multi-species transcriptome analysis (Schenk et al., 2012),
molecules/volatile involved in plant-microbe interaction using
mass-spectral investigations (Watrous et al., 2012; Badri et al.,
2013) combined with power of bioinformatics (Lee et al., 2012),
it has become very much possible to culture the appropriate core-
microbiome and apply it successfully (Ridaura et al., 2013). To
assemble a robust core microbiome of an ecosystem not lim-
ited to OTU records alone, Shade and Handelsman (2012) and
Lozupone and colleagues’ (2012) suggested collecting the data on
(i) OTU membership/α diversity, (ii) OTU composition/β diver-
sity, (iii) OTU persistence across time and space and (iv) commu-
nication/metabolic networking among the OTUs. Determination
of models, particularly of root environment, in which the plants
favor the recruitment of antibiotic-producing (and -resistant)
bacteria by stimulating interference competition through produc-
tion of abundant resources, can help improve establishment of the
artificially introduced microbiomes(Scheuring and Yu, 2013).

BESPOKE MICROBIOME THERAPY FOR PLANT DISEASE
MANAGEMENT
Artificial core-microbiome transfers can decrease the noise
intrinsic to any complex communities and are step in right direc-
tion in disease management, both for plants and humans, built
upon the principles of binary plant/human-microbe interaction
in an ecological perspective.

The similarities between the gut and rhizosphere microbiota is
striking in many aspects which can encourage emulating exper-
iments carried out in gut with root environment and vice-versa.
Based on the increasingly available body of evidences discussed
in this article, we propose the model of transfer of bespoke core-
microbiome, rather than individual species, as a viable strategy
for management of plant diseases in future.
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